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Stochastic Multiresonance
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We present a class of systems for which the signal-to-noise ratio as a function of the noise level may
display a multiplicity of maxima. This phenomenon, referred to as stochastic multiresonance, indicates
the possibility that periodic signals may be enhanced at multiple values of the noise level, instead of
at a single value which has occurred in systems considered up to now in the framework of stochastic
resonance. [S0031-9007(97)02943-8]

PACS numbers: 05.40.4j

In recent years, the phenomenon of stochastic reso- fx, 1) = f(xe”,1). 3
nance (SR) has been the subject of intense activity, to the i
extent that many examples have been found in differentonsequently, for the class of systems for which the
scientific areas [1-15]. The phenomenon has been chaprévious equality holds, for a certain valuepfthe SNR
acterized by the appearance of a maximum in the outpt@s the same value & and atezy_D- This fact occurs
signal-to-noise ratio (SNR) at a nonzero noise level. Invhenf(x,7) = g(In(x), 1), whereq is a periodic function
this sense, noise plays a constructive role since an optRf its first argument, with periodicity if v is the lower
mized amount is responsible for the enhancement of thBOSitive number satisfying Eq. (3). Therefore, the SNR
response of the system to a periodic signal, which otherS & periodic function of the Iogarlthm of the noise Iev_eI.
wise would be manifested with more difficulty. In spite Notice that both the signal and noise are not invariant
of the efforts devoted to its understanding, there is an aginder this transformation, but they are changed in the

pect which has not been considered up to now. Undefellowing fashion:

some circumstances, the SNR may display a multiplicit _ 2yn

of maxima and, hence, there is a sgt of \F/)alges of thgnoige S(@o)vx) = e S(@0)ur »
level at which the response of the system is enhanced. In
this Letter we address precisely this possibility for the ap-
pearance of those maxima, then we show that the concept
of SR is more general than the one we already know. In |n order to illustrate the previous results we have ana-
this regard, we have found a class of systems whose Oulgyzed some representative exp|icit expressiong‘@f, f).

put SNR is a nontrivial periodic function of the logarithm To this purpose we have numerically integrated the cor-
of the noise level. Similarly, our analysis also reveals thatesponding Langevin equation by means of a standard
the SNR as a function of the noise level may exhibit anysecond-order Runge-Kutta method for stochastic differen-
number of maxima. tial equations [16]. Moreover, as the output of the system

Consider systems with only one relevant degree ofve have used(x) = x2. We will first consider the case
freedom whose dynamics is described by the followingn which
Langevin equation
i _ fxe,1) = O7(log,p(x)) [B + a codwor)],  (5)
= —fx + VD £, (1) .
dt wherea andwg are constants, arly(s) is a square wave
where f(x, ) is a given function £(z) is Gaussian white of periodT defined by
noise with zero mean and second moméf(e) (') = o
8(t — ¢'), and D is a constant defining the noise level. Or(s) = {kl it sin(ars/T) ~ 0, (6)
Here the input signal enters the system throufgh, 7), ky if sinws/T) =0,
and we will assume it to be periodic in time with with k; andk, constants. In Fig. 1(a) we have plotted the
frequency wo. The output of the system is given by SNR corresponding to the previous form ffx, ¢), for
v(x) = [x|", with n a positive constant. The SNR is particular values of the parameters. Figure 1(a) clearly
defined, as usual, by manifests the periodicity of the SNR as a function of
_ the noise level and the presence of multiple maxima
SNR = S(@0)u(o/N(@0)ut ) at D = Dge™”, with m being any integer number and
where S(wo),(x) @and N(wo)y () are the output signal and D, the noise level corresponding to the maximum with
output noise corresponding tdx), respectively. m = 0. We show both the signal and noise in Fig. 1(b).
Under the transformatiort = ¢¥x and D = ¢**D,  Figure 1(b) also corroborates the dependence of the signal
with vy constant, Egs. (1) and (2) remain unchanged if and noise oD given in Eq. (4).

- (4)
N(w0)vx) = e7""N(wo)u(x) -
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BT T T, % —klB + asinwon)] + VIDEW, (1)
20 -
wherei = 1,2, depending on the noise level. In such a
15 4 situation the SNR is given by
o
= 10 : SNR = g(ar, wok; ki, (8)
'z, L
g with ¢ a dimensionless function [15]. For a sufficiently
I low frequency, the SNR is proportional g [SNR =
ol i g(a,0)k;], i.e., proportional to the inverse of the relaxa-
tion time. Consequently, there are two sets of val-

ues of D for which the SNR differs in approximately
10log,,(k1/k,) dB, as one can see in Fig. 1(c). We then
conclude that multiple maxima in the SNR appears as a
consequence of the form in which the relaxation time of
the system changes with the noise level.

Let us now consider another explicit expression for
f(x, ) that mainly differs from the previous one in the
form in which the input signal enters the equation,

f(x,1) = ksin2m log,o(x*)/T]
+ [B + acodwpt)]. 9

Here the spatial and temporal dependence @f r) ap-
pears in an additive fashion instead of in a multiplicative
way as in Eqg. (5). The results for the SNR are shown in
Fig. 2 and also corroborate, in this case, the periodic de-
pendence on the logarithm of the noise level.

The importance of the class of systems discussed
previously lies in the fact that the periodicity of the
SNR can be shown analytically by simple considerations
about the invariance of the system under stretching
transformations. Numerical analyses have also revealed
that the presence of multiple maxima in the SNR as a
function of the noise level is a more general phenomenon
than the situation described by the equality (3). Thus, the

30
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FIG. 1. (a) SNR corresponding tg(x,r) given through =)
Eqg. (5) with parameter valugds = 100, k, = 1, T =4, B = =
1, @ = 0.5, and wo/27 = 1. (b) Signal (filled circles) and = 20
noise (empty squares) for the previous situation. (c) SNR asin &
(a) but withT = 10. A
15
From this example one can infer the mechanism respon-
sible for the appearance of this phenomenon. Because of
the fact that the SNR has dimensions of the inverse of 10_8 ' _‘4 ' (') : "l 5
time [15], its behavior is closely related to the character-
istic temporal scales of the system. Thus variations of log(D)

the relaxation time manifest in the SNR. In this example,5 o snr corresponding t@(x, 1) given through Eq. (9)
whenT is sufficiently large, for some values of the noisewith parameter valueg = 100, T Za B =201, a = 100,
level the system may be approximated by andwo/27m = 1.
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appearance of multiple maxima is robust upon variations
of the form of f(x,7). For instance, if the periodicity
in s of the function ¢(s,r) is lost for high and low
values ofs then the SNR may be a periodic function
of In(D) for a bounded range of values @f. In this
regard, we have performed numerical simulations and we
have observed that it is possible to obtain any number
of maxima depending on the form g¢ix, ¢), even if the
periodicity of ¢(s, ) does not hold for any interval of.
As an illustrative example we will analyze a case in which
the input signal enterg(x, ¢) in a additive fashion as well
as in Eq. (9).

We will consider that the form off(x,t) consists
of two contributions, namely, one that comes from a
time-dependent parabolic potential and the other without
temporal dependence. Then,

flx, 1) = folx) + [B + acodw?)]. (10)

Parabolic potentials may arise in many physical situations
of interest. For instance, around a minimum most of
the potentials may be approximated by a parabolic one.
Experiments of a temporal variation of the intensity of
the potential are common; this is the case of a single
dipole under the influence of an external oscillating
field [17]. Another remarkable situation described in
the same way corresponds to some systems around a
bifurcation whose control parameter varies periodically in
time, as, for example, Rayleigh-Bénard convection when
the temperature difference between plates varies slowly
in a periodic fashion [18,19]. The terrfy(x) may then
represent a perturbation to this ideal situation described
by only a time-dependent harmonic force.

To be explicit and for the sake of simplicity, we will
considerfy(x) to be a linear piecewise function defined by

kl if |x| =cCy,
ky if cp <lx| =co,
folx) =1 ks if co < x| = 3, (11)
ke if c3 < |x| = c4,
ks if ca < |x]|.

In Fig. 3(a) we have depicted the potentiaj(x) corre-
sponding to the force- f(x)x for particular values of the
parameterg; andc;. Itis worth emphasizing that we have
considered other forms ofy(x) but the same qualitative
results are obtained provided th&t(x) exhibits the main
characteristics of Eq. (11), i.e., the potentials must have a

similar location of maxima and minima. In Fig. 3(b) we FIG. 3. (e
—Sfo(x)x with parameter values, = 20, k, = —80, k3 = 20,

c; = 3.16, and

have represented the SNR corresponding to the previo

Vo (SIJ)

SNR(dB)

SNR(dB)

SNR(dB)

2

28 T

log; (D)

16 L .
-1 0] 1

2

log; (D)

(@) Potential Vy(x) corresponding to the force

= —80,

k5=0, [

c = 1.73,

function f(x) as a function of the logarithm of the noise C: — 4.47. (b) SNR corresponding tg'(x,) given through
level. Figure 3(b) clearly displays two maxima, one moregq. (10). The parameter values fgi(x) are the same as
pronounced than the other. Depending on the values of the (a). Moreoverg = 121, @ = 100, and wo/27 = 1. (c)
parameters the second maximum may disappear [Fig. 3(c§§‘me situation as in (b), except = 20. (d) Same situation

or it can become more pronounced [Fig. 3(d)].
As a specific physical situation in which stochastic

multiresonance could be observed, we will discuss thef a time-dependent harmonic force [20]. When inertial

in (b), excepty = 7.75.

motion of a Brownian particle in a fluid under the action effects can be neglected, the equation of motion is
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15 : : : : , : to a wider understanding of the phenomenon of SR by
extending its scope and perspectives, thereby embracing
new situations that have not been considered up to now.
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