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Stochastic Multiresonance
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We present a class of systems for which the signal-to-noise ratio as a function of the noise level may
display a multiplicity of maxima. This phenomenon, referred to as stochastic multiresonance, indicates
the possibility that periodic signals may be enhanced at multiple values of the noise level, instead of
at a single value which has occurred in systems considered up to now in the framework of stochastic
resonance. [S0031-9007(97)02943-8]
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In recent years, the phenomenon of stochastic res
nance (SR) has been the subject of intense activity, to t
extent that many examples have been found in differe
scientific areas [1–15]. The phenomenon has been ch
acterized by the appearance of a maximum in the outp
signal-to-noise ratio (SNR) at a nonzero noise level. I
this sense, noise plays a constructive role since an op
mized amount is responsible for the enhancement of t
response of the system to a periodic signal, which othe
wise would be manifested with more difficulty. In spite
of the efforts devoted to its understanding, there is an a
pect which has not been considered up to now. Und
some circumstances, the SNR may display a multiplici
of maxima and, hence, there is a set of values of the no
level at which the response of the system is enhanced.
this Letter we address precisely this possibility for the ap
pearance of those maxima, then we show that the conc
of SR is more general than the one we already know.
this regard, we have found a class of systems whose o
put SNR is a nontrivial periodic function of the logarithm
of the noise level. Similarly, our analysis also reveals th
the SNR as a function of the noise level may exhibit an
number of maxima.

Consider systems with only one relevant degree
freedom whose dynamics is described by the followin
Langevin equation

dx
dt

­ 2fsx, tdx 1
p

D jstd , (1)

wherefsx, td is a given function,jstd is Gaussian white
noise with zero mean and second momentkjstdjst0dl ­
dst 2 t0d, and D is a constant defining the noise level
Here the input signal enters the system throughfsx, td,
and we will assume it to be periodic in time with
frequency v0. The output of the system is given by
ysxd ­ jxjn, with n a positive constant. The SNR is
defined, as usual, by

SNR ­ Ssv0dysxdyNsv0dysxd , (2)

whereSsv0dysxd and Nsv0dysxd are the output signal and
output noise corresponding toysxd, respectively.

Under the transformatioñx ­ egx and D̃ ­ e2gD,
with g constant, Eqs. (1) and (2) remain unchanged if
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fsx, td ­ fsxeg , td . (3)

Consequently, for the class of systems for which th
previous equality holds, for a certain value ofg, the SNR
has the same value atD and ate2gD. This fact occurs
whenfsx, td ­ qsss lnsxd, tddd, whereq is a periodic function
of its first argument, with periodicityg if g is the lower
positive number satisfying Eq. (3). Therefore, the SN
is a periodic function of the logarithm of the noise level
Notice that both the signal and noise are not invaria
under this transformation, but they are changed in th
following fashion:

Ssv0dysx̃d ­ e2gnSsv0dysxd ,

Nsv0dysx̃d ­ e2gnNsv0dysxd .
(4)

In order to illustrate the previous results we have an
lyzed some representative explicit expressions offsx, td.
To this purpose we have numerically integrated the co
responding Langevin equation by means of a standa
second-order Runge-Kutta method for stochastic differe
tial equations [16]. Moreover, as the output of the syste
we have usedysxd ­ x2. We will first consider the case
in which

fsx, td ­ QT sss log10sx2dddd fb 1 a cossv0tdg , (5)

wherea andv0 are constants, andQT ssd is a square wave
of periodT defined by

QT ssd ­

Ω
k1 if sins2psyT d . 0 ,
k2 if sins2psyT d # 0 , (6)

with k1 andk2 constants. In Fig. 1(a) we have plotted th
SNR corresponding to the previous form offsx, td, for
particular values of the parameters. Figure 1(a) clear
manifests the periodicity of the SNR as a function o
the noise level and the presence of multiple maxim
at D ­ D0emT , with m being any integer number and
D0 the noise level corresponding to the maximum wit
m ­ 0. We show both the signal and noise in Fig. 1(b)
Figure 1(b) also corroborates the dependence of the sig
and noise onD given in Eq. (4).
© 1997 The American Physical Society
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FIG. 1. (a) SNR corresponding tofsx, td given through
Eq. (5) with parameter valuesk1 ­ 100, k2 ­ 1, T ­ 4, b ­
1, a ­ 0.5, and v0y2p ­ 1. (b) Signal (filled circles) and
noise (empty squares) for the previous situation. (c) SNR as
(a) but withT ­ 10.

From this example one can infer the mechanism respo
sible for the appearance of this phenomenon. Because
the fact that the SNR has dimensions of the inverse
time [15], its behavior is closely related to the characte
istic temporal scales of the system. Thus variations
the relaxation time manifest in the SNR. In this exampl
whenT is sufficiently large, for some values of the nois
level the system may be approximated by
in

n-
of

of
r-
of
e,
e

dx
dt

­ 2kifb 1 a sinsv0tdgx 1
p

2D jstd , (7)

wherei ­ 1, 2, depending on the noise level. In such a
situation the SNR is given by

SNR ­ gsa, v0k21
i dki , (8)

with g a dimensionless function [15]. For a sufficiently
low frequency, the SNR is proportional toki [SNR ø
gsa, 0dki ], i.e., proportional to the inverse of the relaxa-
tion time. Consequently, there are two sets of val
ues of D for which the SNR differs in approximately
10 log10sk1yk2d dB, as one can see in Fig. 1(c). We then
conclude that multiple maxima in the SNR appears as
consequence of the form in which the relaxation time o
the system changes with the noise level.

Let us now consider another explicit expression fo
fsx, td that mainly differs from the previous one in the
form in which the input signal enters the equation,

fsx, td ­ k sinf2p log10sx2dyT g

1 fb 1 a cossv0tdg . (9)

Here the spatial and temporal dependence offsx, td ap-
pears in an additive fashion instead of in a multiplicative
way as in Eq. (5). The results for the SNR are shown i
Fig. 2 and also corroborate, in this case, the periodic d
pendence on the logarithm of the noise level.

The importance of the class of systems discusse
previously lies in the fact that the periodicity of the
SNR can be shown analytically by simple consideration
about the invariance of the system under stretchin
transformations. Numerical analyses have also reveal
that the presence of multiple maxima in the SNR as
function of the noise level is a more general phenomeno
than the situation described by the equality (3). Thus, th

FIG. 2. SNR corresponding tofsx, td given through Eq. (9)
with parameter valuesk ­ 100, T ­ 4, b ­ 201, a ­ 100,
andv0y2p ­ 1.
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appearance of multiple maxima is robust upon variatio
of the form of fsx, td. For instance, if the periodicity
in s of the function qss, td is lost for high and low
values of s then the SNR may be a periodic function
of lnsDd for a bounded range of values ofD. In this
regard, we have performed numerical simulations and w
have observed that it is possible to obtain any numb
of maxima depending on the form offsx, td, even if the
periodicity of qss, td does not hold for any interval ofs.
As an illustrative example we will analyze a case in whic
the input signal entersfsx, td in a additive fashion as well
as in Eq. (9).

We will consider that the form offsx, td consists
of two contributions, namely, one that comes from
time-dependent parabolic potential and the other witho
temporal dependence. Then,

fsx, td ­ f0sxd 1 fb 1 a cossvtdg . (10)

Parabolic potentials may arise in many physical situatio
of interest. For instance, around a minimum most o
the potentials may be approximated by a parabolic on
Experiments of a temporal variation of the intensity o
the potential are common; this is the case of a sing
dipole under the influence of an external oscillatin
field [17]. Another remarkable situation described i
the same way corresponds to some systems aroun
bifurcation whose control parameter varies periodically
time, as, for example, Rayleigh-Bénard convection whe
the temperature difference between plates varies slow
in a periodic fashion [18,19]. The termf0sxd may then
represent a perturbation to this ideal situation describ
by only a time-dependent harmonic force.

To be explicit and for the sake of simplicity, we will
considerf0sxd to be a linear piecewise function defined b

f0sxd ­

8>>>><>>>>:
k1 if jxj # c1 ,
k2 if c1 , jxj # c2 ,
k3 if c2 , jxj # c3 ,
k4 if c3 , jxj # c4 ,
k5 if c4 , jxj .

(11)

In Fig. 3(a) we have depicted the potentialV0sxd corre-
sponding to the force2f0sxdx for particular values of the
parameterski andci. It is worth emphasizing that we have
considered other forms off0sxd but the same qualitative
results are obtained provided thatf0sxd exhibits the main
characteristics of Eq. (11), i.e., the potentials must have
similar location of maxima and minima. In Fig. 3(b) we
have represented the SNR corresponding to the previo
function f0sxd as a function of the logarithm of the noise
level. Figure 3(b) clearly displays two maxima, one mor
pronounced than the other. Depending on the values of
parameters the second maximum may disappear [Fig. 3(
or it can become more pronounced [Fig. 3(d)].

As a specific physical situation in which stochasti
multiresonance could be observed, we will discuss t
motion of a Brownian particle in a fluid under the action
2884
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FIG. 3. (a) Potential V0sxd corresponding to the force
2f0sxdx with parameter valuesk1 ­ 20, k2 ­ 280, k3 ­ 20,
k4 ­ 280, k5 ­ 0, c1 ­ 1, c2 ­ 1.73, c3 ­ 3.16, and
c4 ­ 4.47. (b) SNR corresponding tofsx, td given through
Eq. (10). The parameter values forf0sxd are the same as
in (a). Moreoverb ­ 121, a ­ 100, and v0y2p ­ 1. (c)
Same situation as in (b), exceptk5 ­ 20. (d) Same situation
as in (b), exceptc4 ­ 7.75.

of a time-dependent harmonic force [20]. When inertia
effects can be neglected, the equation of motion is
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FIG. 4. SNR corresponding to Eq. (12) withb ­ 10, a ­ 5,
and v0y2p ­ 1. The parameter values off0sxd [Eq. (11)]
arek1 ­ 10, k2 ­ 0.1, k3 ­ 10, k4 ­ 0.1, k5 ­ 10, c1 ­ 0.32,
c2 ­ 1, c3 ­ 6.32, andc4 ­ 14.14.

dx
dt

­ 2
1
h

fb 1 a sinsv0tdgx 1

s
D
h

jstd , (12)

whereh is the friction coefficient, given by Stokes’s law,
and D ­ 2kBT , with kB the Boltzmann constant andT
the temperature. Let us consider the case in whichh

varies with the position, which corresponds, for instanc
to the motion of the particle through a heterogeneo
stratified fluid. For the sake of simplicity we will assume
an abrupt separation of phases which is described
hsxd ­ f0sxd [see Eq. (11)]. The SNR corresponding to
particular values of the parameters is depicted in Fig.
and exhibits two maxima.

In summary, we have found, for the first time, a
class of systems for which the response to a period
force is enhanced, not only with the addition of a
optimized amount of noise, but also at multiple value
of the noise level. Thus, the SNR exhibits a serie
of maxima distributed periodically, as a function of th
logarithm of the noise level. This feature has been foun
to be even more general since any number of maxim
may be present. Among others, an applied aspect
be emphasized concerns the possibility for the design
devices for which the enhancement of an external sign
may occur at different values of the noise and not on
at one particular value. Our findings, then, contribu
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to a wider understanding of the phenomenon of SR
extending its scope and perspectives, thereby embrac
new situations that have not been considered up to now
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