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We revisit the predictions for the expected cosmic microwave background bispectrum signal from the

cross-correlation of the primary-lensing-Rees-Sciama signal; we point out that it can be a significant

contaminant to the bispectrum signal from primordial non-Gaussianity of the local type. This non-

Gaussianity, usually parametrized by the non-Gaussian parameter fNL, arises, for example, in multifield

inflation. In particular both signals are frequency-independent, and are maximized for nearly squeezed

configurations. While their detailed scale-dependence and harmonic imprints are different for generic

bispectrum shapes, we show that, if not included in the modeling, the primary-lensing-Rees-Sciama

contribution yields an effective fNL of 10 when using a bispectrum estimator optimized for local non-

Gaussianity. Considering that expected 1-� errors on fNL are <10 from forthcoming experiments, we

conclude that the contribution from this signal must be included in future constraints on fNL from the

cosmic microwave background bispectrum.
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I. INTRODUCTION

The increased sensitivity of the forthcoming cosmic
microwave background (CMB) experiments will open the
possibility to detect higher-order correlations in the CMB
temperature fluctuations beyond the power spectrum. This
means that it would be possible to study in detail eventual
deviations from Gaussian initial conditions and thus gain
an unique insight into the physics of the early universe (see
e.g. [1] for a review). Since gravitationally induced non-
linearities at last scattering are much smaller than in the
late-time universe, the CMB is expected to be the best
probe of the primordial non-Gaussianity (e.g., [2–4]).

Moreover, even in absence of these primordial devia-
tions, measuring the CMB three-point correlation function
or, equivalently its Fourier analogue, the angular bispec-
trum, would be very useful to trace the imprint of the
nonlinear growth of structures on secondary (i.e. late-
time) anisotropies and would open a new window into
the understanding of the evolution and growth of struc-
tures. The expected bispectrum signature of secondary
CMB anisotropies has been studied in e.g., [5–12]. In
addition, nonlinear physics happening between the end of
inflation and the last scattering surface may leave some
imprints in the CMB bispectrum (e.g., [1,13–16] for local-
type non-Gaussianity, which is relevant here).

To clarify the use of our nomenclature, by primary non-
Gaussianity (or primary bispectrum) we refer to the com-
bined effect of primordial non-Gaussianity and of the
physics happening between the end of inflation and the
last scattering surface. This name is chosen accordingly to
the CMB nomenclature of ‘‘primary anisotropies’’ which
are related to the primordial ones but are further processed.
In the literature what we call ‘‘primary’’ non-Gaussianity is

often loosely referred to as ‘‘primordial.’’ Analogously, we
use secondary non-Gaussianity (or secondary bispectrum)
to refer to late-time physics, as it is usually done for
secondaries CMB anisotropies. Note that the integrated
Sachs-Wolfe effect is thus considered a secondary
anisotropy.
After galactic foregrounds, point sources and the

Sunyaev-Zeldovich signature from clusters are expected
to be the dominant source of non-Gaussianity in CMB data.
At ‘ < 1500 the statistical properties of these two contri-
butions is expected to be quite similar: both are expected to
behave as an extra Poisson contribution (see [17] for treat-
ment). In addition, both signals have a well-known fre-
quency dependence that can be used to clean CMB maps
from this contaminating signal.
In [8] it was shown that the leading contribution to the

CMB secondary bispectrum with a blackbody frequency
dependence is that of the primary-lensing-Rees-Sciama
correlation, where by Rees-Sciama we mean the combina-
tion of the linear effect (integrated Sachs-Wolfe) and of the
nonlinear one. Note that in the original paper it was called
primordial-lensing-Rees-Sciama, because of the loose no-
menclature convention explained above. Reference [8] also
computed the expected signal-to-noise for this effect and
found that experiments such a Planck1 or ACT2 should be
able to obtain a high statistical significance detection. This
was then independently confirmed by [18,19]. Note that
there are sources of non-Gaussianity that are not strictly
primordial (inflationary) but they arise between the end of
inflation and the last scattering surface. These may well
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dominate over the inflationary contribution but they are
mostly of equilateral type (e.g., [15,20,21]); as we will see
below, here we concentrate on the local (squeezed) type.

Sparked by a recent study claiming a more than 95%
confidence limit evidence [22] of local non-Gaussianity,
but see [23–26], the subject of primordial non-Gaussianity
has received renewed attention. We are thus motivated to
revisit the predictions for the expected bispectrum signal
from the primary-lensing-Rees-Sciama correlation in light
of new developments since the year 2000: a much better
determined fiducial cosmological model with a lower �8,
improved description of linear and nonlinear evolution of
clustering in the presence of dark energy, optimized esti-
mators for primordial non-Gaussianity via the bispectrum
signal and the tantalizing hint of a possible detection.
Instead of concentrating on the usefulness of the
primary-lensing-Rees-Sciama bispectrum in constraining
dark energy as done so far in the literature, we will explore
whether it could be confused with the primary (or primor-
dial) non-Gaussian signal and examine possible ways to
separate the two.

The rest of the paper is organized as follows: in Sec. II
we review the basics of the primary CMB bispectrum and
of the primary-lensing- Rees-Sciama one. In Sec. III we
present numerical results for the expected signal-to-noise,
the dependence of the signal on bispectrum shape and we
quantify the dependence of the secondary bispectrum sig-
nal on different descriptions for nonlinear evolution of
clustering. In Sec. IV we explore a possible confusion
between the two bispectra and prospects for separating
the signals. Finally we conclude in Sec. V. Useful formulas
are reported in the Appendix.

II. THE PRIMARYAND THE SECONDARY
LENSING-REES-SCIAMA CMB BISPECTRUM

In this section we review the necessary background and
the basic description of the primary CMB angular bispec-
trum and the secondary one arising from the cross corre-
lation among the primary-lensing-Rees-Sciama (L-RS)
contributions. For the primordial non-Gaussianity we
will consider the so-called local type characterized by a
momentum-independent non-Gaussian parameter—fNL—
and refer to [1,7,17]. This is the workhorse model for
testing deviations from Gaussianity both in CMB data
and in large-scale structure data. In reviewing the second-
ary L-RS bispectrum we mainly follow [6,8,18].

A. Primordial non-Gaussanity

In order to study higher-order statistics and model small
deviations from Gaussianity, one can define the 3-point
correlation function of Bardeen’s curvature perturbations3

in momentum space, �ðkÞ, as
h�ðk1Þ�ðk2Þ�ðk3Þi¼ ð2�Þ3�3ðk1þk2þk3ÞFðk1;k2;k3Þ;

(1)

where the function Fðk1; k2; k3Þ describes the correlation
among the modes and depends on the shape of the
ðk1;k2;k3Þ triangle in momentum space. Different models
make different predictions for the function F, depending
on the mechanism of production of such a correlation
[27,28].
There are two main, physically-motivated classes [29]:
(i) Local form (squeezed configurations). This non-

Gaussianity arises from the nonlinear relation be-
tween the light scalar field (different from the infla-
ton) driving the perturbations and the observed�. In
the weak nonlinear coupling case the non-
Gaussianity can be parametrized in real space as in
Eq. (2) with fNL quantifying the ‘‘level’’ of nonline-
arity. Being local in position space, it couples
Fourier modes far outside the horizon. The signal
is maximal for squeezed triangle configurations with
the coupling of one large-scale mode with two small
scale modes. Examples of this class of models can be
the curvaton scenario [30] or the Ekpyrotic model
[31,32].

(ii) Nonlocal form (equilateral configurations). In this
case the correlation among modes is due to higher
derivative operators for single field models with a
nonminimal coupled Lagrangian. Such a correlation
is strong for modes with comparable wavelength so
that the signal is maximal for equilateral configura-
tions. Examples of models of this kind are the ghost
inflation [33] and the Dirac-Born-Infeld (DBI) [34]
models among others.

In the following wewill focus on the first class of models
where non-Gaussianity can be parametrized as

�ðxÞ ¼ �LðxÞ þ fNLð�2
LðxÞ � h�2

LðxÞiÞ; (2)

where �ðxÞ denotes the Bardeen potential, �LðxÞ denotes
the linear Gaussian part of the perturbation and the fNL is a
merely multiplicative constant that quantifies the level of
non-Gaussianity.
The �ðkÞ-field bispectrum will thus have contributions

of the form:

h�Lðk1Þ�Lðk2Þ�NLðk3Þi ¼ 2fNLð2�Þ3P�ðk1ÞP�ðk2Þ
� �3ðk1 þ k2 þ k3Þ þ cyc:;

(3)

(i.e. the function F of Eq. (1) is Fðk1; k2; k3Þ ¼
2fNLPðk1ÞPðk2Þ þ cyc:) where we have used the definition
of the Bardeen’s potential linear power spectrum4 P�ðkÞ:
h�Lðk1Þ�Lðk2Þi ¼ ð2�Þ3P�ðk1Þ�3ðk1 þ k2Þ.

3Note that the Newtonian gravitational potential � has the
opposite sign of Bardeen’s curvature perturbations: � ¼ �� 4Recall that h�2

LðxÞi ¼ ð2�Þ�3
R
d3kP�ðkÞ
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Note that the nonlinearity parameter fNL defines the
non-Gaussianity in the gravitational potential and not in
the CMB temperature fluctuations.

The standard single-field slow-roll inflation model pre-
dicts a non-Gaussianity of the form described by Eq. (2)
[2,17,35,36].

In standard inflation fNL is immeasurably small (less
than 10�6 [37,38]). Within this picture, the 3-point corre-
lation function (or equivalently, the bispectrum) turns out
to be the most sensitive observable to constrain possible
departures from these (nearly Gaussian) initial conditions,
e.g., [2]. Nonlinear physics between the end of inflation
and the last scattering surface may yield further bispectrum
contributions (e.g. Sec. 8 of [1] and references therein and
more recent work [13–16,20,21,39]) which however are
expected to be mostly of equilateral type and below the
detection level for forthcoming CMB experiments. A de-
tection of a nonvanishing CMB bispectrum would be then
the smoking gun of a different scenario describing the
mechanism responsible for the generation of the primordial
density perturbations.

B. The primary CMB bispectrum

Here we summarize the equations that describe how the
second-order perturbations in the gravitational potential
translate into perturbations of the CMB temperature, giv-
ing rise to a nonvanishing contribution to the CMB
bispectrum.

For adiabatic scalar perturbations the primary contribu-
tion to the CMB coefficients can be written as

aPlm ¼ 4�ð�iÞ‘
Z d3k

ð2�Þ3 �ðkÞgT‘ðkÞY�
‘mðn̂Þ; (4)

where gT‘ðkÞ is the radiation transfer function and �ðkÞ is
the primordial curvature perturbation in Fourier space.
From this equation it is clear that, if any, non-Gaussianity
in �ðkÞ will appear in the aPlm. According to Eq. (2), we

can decompose the curvature perturbation into a linear and
nonlinear term: �ðkÞ ¼ �LðkÞ þ�NLðkÞ and, by using
an analogous notation, we will have alm ¼ aLlm þ aNL

lm .

Following the steps outlined in Appendix A, the primary
CMB angular bispectrum takes the form [17]:

Bm1m2m3ðPÞ
l1l2l3

¼ 2Gm1m2m3

l1l2l3

Z 1

0
r2dr½bL‘1ðrÞbL‘2ðrÞbNL

‘3
ðrÞ

þ bL‘1ðrÞbNL
‘2

ðrÞbL‘3ðrÞ þ bNL
‘1

ðrÞbL‘2ðrÞbL‘3ðrÞ�;
where Gm1m2m3

‘1‘2‘3
defines the Gaunt integral (see Eq. (A10))

and

bL‘ ðrÞ �
2

�

Z 1

0
k2dkP�ðkÞgT‘ðkÞjlðkrÞ; (5)

bNL
‘ ðrÞ � 2

�

Z 1

0
k2dkfNLgT‘ðkÞj‘ðkrÞ; (6)

with j‘ðkrÞ being the spherical Bessel functions. It is
important to note that this formula is valid only when
fNL does not depend on the scale and it approximately
applies if such a dependence is weak. Note that for our
present purposes, if extra contributions are summed to the
primordial one, we can reinterpret fNL an effective fNL and
use the same expression (Eq. (5)) for the primary bispec-
trum. Extra contributions are not guaranteed to be scale
independent or to have exactly the local form, making the
effective fNL shape and scale dependent, as we will see
below.
Finally, it is useful to define the primary reduced bispec-

trum factorizing the fNL parameter: bP‘1‘2‘3 ¼ fNLb̂
P
‘1‘2‘3

,

where the quantity b̂P‘1‘2‘3 is the reduced bispectrum for

fNL � 1:

b̂ P
‘1‘2‘3

¼ B
m1m2m3ðPÞ
‘1‘2‘3

jfNL¼1ðGm1m2m3

‘1‘2‘3
Þ�1: (7)

C. Secondary bispectra: the cross correlation between
lensing and the RS effect

The path of the CMB photons traveling from the last
scattering surface can be modified by the gravitational
fluctuations along the line-of-sight in several different
ways. On angular scales much larger than arcminute scale
the photon’s geodesic is deflected by gravitational lensing
and late-time decay of the gravitational potential and non-
linear growth induce secondary anisotropies known, re-
spectively, as the integrated Sachs-Wolfe (ISW) [40] and
the Rees-Sciama (RS) effect [41]. Hereafter by RS we refer
to the combined contribution of linear and nonlinear
growth.
In this work we will concentrate on the cross correlation

of the CMB lensing signal with the secondary anisotropies
arising from both the linear ISW and the Rees-Sciama
effect. We will refer to this as the L-RS bispectrum. A
closely related effect was investigated in [12], where only
the (linear) lSW contribution is included. After galactic
foregrounds, point sources and the Sunyaev-Zeldovich
[42] signature from galaxy clusters are expected to be the
dominant contribution to the CMB bispectrum, but because
of their frequency dependence and their statistical proper-
ties they can be separated out without major loss of infor-
mation [17,43]. The next leading secondary bispectrum
contribution is the L-RS one, which cannot be separated
out by frequency dependence. Both, lensing and the RS
effect are in fact related to the gravitational potential and
thus are correlated, leading to a nonvanishing bispectrum
signal with a blackbody spectrum.
As already pointed out in previous works [6,8,18] the

joined study of these phenomena through the CMB bispec-
trum is a very powerful tool, for example, to better under-
stand linear and nonlinear growth of structures, to break
degeneracies between parameters arising in a power spec-
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trum only analysis, or to possibly constrain dark energy
equation of state or models beyond the standard �CDM.

Following [8], the CMB anisotropy in a direction n̂ can
then be decomposed into

�ðn̂Þ ¼ �Pðn̂Þ þ�Lðn̂Þ þ�RSðn̂Þ (8)

where P denotes primary, L lensing (see Eq. (B1)) and RS
ISWþ Rees-Sciama, which includes both the linear and
the nonlinear contributions. This last term takes the form

�RSðn̂Þ ¼ 2
Z

dr
@

@t
�ðr; n̂rÞ; (9)

where � refers to the gravitational potential perturbation
and r is the conformal distance defined in Eq. (B3).

We can thus write the bispectrum (see Appendix A) as

Bm1m2m3

‘1‘2‘3
� ham1

‘1
am2

‘2
am3

‘3
i

¼ ham1P
‘1

am2L
‘2

a
m3RS
‘3

i þ 5 Permutations: (10)

Following the steps outlined in Appendix B this becomes

Bm1m2m3ðL-RSÞ
‘1‘2‘3

¼ Gm1m2m3

‘1‘2‘3
bL-RS‘1‘2‘3

(11)

where the reduced bispectrum is given by

bðL-RSÞ‘1‘2‘3
¼ ‘1ð‘1 þ 1Þ � ‘2ð‘2 þ 1Þ þ ‘3ð‘3 þ 1Þ

2
CP
‘1
Qð‘3Þ

þ 5 Perm:; (12)

and CP
‘ is the primary angular CMB power spectrum. Here

the quantity that contains physical information about the
late universe is [6,8,44]

Q ð‘Þ � h��m
L‘a

RSm
‘ i

’ 2
Z zls

0

rðzlsÞ � rðzÞ
rðzlsÞrðzÞ3

�
@

@z
PNL
� ðk; zÞ

�
k¼ð‘=rðzÞÞ

dz

(13)

that expresses the statistical expectation of the correlation
between the lensing and the RS effect. Here the Limber
approximation has been used, which we find to be ex-
tremely good (better than 20%) even at low ‘’s. The
accuracy of this equation has been explored in [45]. The
same coefficients can be calculated in the linear case for
the cross correlation lensing-integrated Sachs-Wolfe effect

FIG. 1. Top-left panel: The nonlinear matter power spectrum PNL
� ðkÞ obtained with Halofit (solid line) and by using the Peacock and

Dodds (PD) semianalytical approach (dot-dashed line). The upper curves refer to redshift z ¼ 0:1, while the lower curves to z ¼ 1.
Bottom-left panel: The absolute value of theQð‘Þ L-RS bispectrum coefficients defined in Eq. (13), plotted as a function of the angular
scale ‘. The cusp indicates whereQ changes sign due to the onset of nonlinearities; in linear theoryQ is always positive (dashed line).
The solid line corresponds to the coefficients obtained by using the Halofit nonlinear matter power spectra PNL

� ðk; zÞ, while the dot-

dashed line refers to the Qð‘Þ obtained with the PD semianalytical method to model the nonlinear behavior. The cosmological
parameters used are listed in Table I. Note that the nonlinear transition in the two cases happens at different scales: the Qð‘Þ from
Halofit change sign at ‘ ’ 210, while the ones from the PD at ‘ ’ 300. Bottom-right panel: Signal-to-noise ratio—Eq. (15)—for the
secondary lensing-Rees-Sciama bispectrum as a function of ‘max in the case of an all sky, cosmic-variance limited experiment (solid
line). The dashed line refers to the signal-to-noise for the lensing-linear integrated Sachs-Wolfe bispectrum. Top-right panel: The dot-
dashed line is the �2 between the L-RS bispectra obtained, respectively, with Halofit and with PD, as defined in Eq. (17). The dashed
line represents the same quantity, but now the comparison is between the L-RS (Halofit) and the lensing-linear ISW bispectra. Both
quantities are plotted as a function of the maximum multipole ‘max.
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(ISW) by simply substituting the nonlinear power spectrum
in Eq. (13) with the linear one, PL

�ðk; zÞ.
In the bottom-left panel of Fig. (1) we show the behavior

of the absolute value of these coefficients jQð‘Þj for ‘ up to
1000 (see Sec. III for details). The cusp indicates thatQð‘Þ
changes sign: this is due to the onset of nonlinearities,
which change the sign of @P�=@z. Note that in linear

theory (dashed line) such a derivative never changes sign
giving Qð‘Þ >0 in the �-dominated regime (integrated
Sachs-Wolfe effect) [12]. Therefore this feature is a finger-
print of the nonlinear regime behavior. The scale at which
Qð‘Þ changes sign depends crucially on the scale at which
the nonlinear growth overcomes the linear effect, making
the L-RS bispectrum sensitive to cosmological parameters
governing the growth of structure like �m, w or �8

[8,18,19].

III. BISPECTRUM CALCULATION AND
EXPECTED SIGNAL-TO-NOISE

We assume a fiducial �CDM model in agreement with
the latest observational results [25] with the parameters
listed in Table I. The L-RS bispectrum calculation, Eq. (12)
and (13), requires evaluation of the nonlinear P�ðk; zÞ. The
gravitational potential � is related to the matter density
fluctuation � through the Poisson equation:

P�ðk; zÞ ¼
�
3

2
�m

�
2
�
H0

k

�
4
P�ðk; zÞð1þ zÞ2; (14)

where �m ¼ �b þ�c is the total matter density parame-
ter. There are two approaches to compute the PNL

� ðk; zÞ that
have been extensively tested and used in the literature: the
more recent Halofit [46] model, which is included in
CAMB [47] and the Peacock and Dodds (PD) [48] method
(generalized for dark energy cosmologies by [49]). Here
we use both approaches and compare them. Note that the
literature so far on the L-RS bispectrum [8,18,19] has used
the PD approach to describe nonlinearities.

We perform numerical derivatives to map the function

@PNL
� ðk; zÞ=@z at k ¼ ‘

rðzÞ with ‘ up to 1500. Then, to

compute the Qð‘Þ coefficients (see bottom-left panel of
Fig. (1)), we numerically integrate in 0< z < 2:5; this is
sufficient to account for the dark energy signature and the

nonlinear regime (widening the integration interval does
not change the results). For the primary bispectrum, we
proceed as in [7,17] assuming a �CDM model. We com-
pute the radiation’s transfer functions gT‘ðkÞ with the
CMBFAST code [50], and we perform the k and
r-integrations in the same way [7,17] did.

A. The Lensing-Rees-Sciama bispectrum:
Signal-to-noise ratio

According to [5], the bispectrum signal-to-noise ratio
can be, in general, defined as

�
S

N

�
2 ¼ X

‘1‘2‘3

hB‘1‘2‘3i2
�‘1‘2‘3C‘1C‘2C‘3

; (15)

where �‘1‘2‘3 is a number which takes value 6 for equi-

lateral configurations, 2 for isosceles configurations and 1
otherwise (see [51] for details).
Using Eq. (A12) we can write the signal in the numera-

tor as

hB‘1‘2‘3i2 ¼
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

‘1 ‘2 ‘3

0 0 0

 !
2

� b2‘1‘2‘3 : (16)

In the bottom-right panel of Fig. 1 the solid line shows
the signal-to-noise ratio for the L-RS bispectrum as a
function of the maximum multipole ‘max (‘1, ‘2 and ‘3
are all<‘max). The dashed line refers to the signal-to-noise
for the linear case (L-ISW bispectrum). Note the enhance-
ment due to nonlinearities at high multipoles. We do not
consider ‘max > 1500 because other secondary effects
(e.g., Ostriker-Vishniac or Kinetic SZ [42,52,53]) may start
to dominate. The S/N plotted has been obtained by sum-
ming over all triangle configurations for a full sky, ideal,
cosmic-variance-dominated experiment. The results can be
representative of an experiment with the nominal perform-
ance of Planck, as pointed out in previous works [19,54].
The signal-to-noise ratio increases mainly when the

maximum multipole ‘max reaches few hundred, where the
signal gives the main contribution. As we will explore in
more detail later on, the L-RS bispectrum signal dominates
for squeezed triangle configurations when a large-scale
mode couples with two small-scale modes: 50% of the
signal-to-noise comes from triangles with 2 � ‘min � 10,
in agreement with the findings of [8].

B. Modeling nonlinearities: Peacock and Dodds and the
Halofit model

The two main approaches that can be used to compute
the nonlinear matter power spectrum PNL

� ðkÞ are the com-

monly used semianalytical Peacock and Dodds [48] (PD)
formula, based on the scaling method of [55], and the more
recent Halofit model [46].

TABLE I. �CDM parameters.

Symbol Description Value

H0 Hubble constant 70 Km= sec =Mpc
�b Baryon density 0.044

�c Dark matter density 0.224

�� Dark energy density 0.732

w Dark energy equation of state �1
�8 Fluctuation amplitude at 8h�1 Mpc 0.834

ns Scalar spectral index 1

zls Redshift of decoupling 1090.51
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The first approach is based on the ansatz that the non-
linear evolution induce a change of scale so that the non-
linear power spectrum at wave number k can be
parametrized by a simple function of the linear one eval-
uated at k0. This has been shown to interpolate correctly the
PðkÞ behavior in the intermediate regime between linear
and stable clustering.

The second approach is based on the so-called ‘‘halo
model’’ for the matter power spectrum. In the halo model
the density field is decomposed into a distribution of
clumps of matter with some density profile. The large-scale
behavior is then derived through the correlations between
different haloes, while the nonlinear correlation functions
on small scales are obtained from the convolution of the
density profile of the halo with itself. Halofit has been
also extensively tested on large, high-resolution N-body
simulations.

We estimate that any uncertainty in the description of the
nonlinear clustering should be at or below the level of the
difference between these two approaches.

In the top-left panel of Fig. 1 the nonlinear matter power
spectrum PNL

� ðkÞ is plotted as a function of the wave

number k for Halofit (solid line) and for PD (dot-dashed
line). The upper curves refer to power spectra at redshift
z ¼ 0:1, while the lower curves are the nonlinear matter
power spectra at z ¼ 1. The Halofit power spectrum shows
the baryon acoustic oscillation (BAO) at the typical BAO
scale k ’ 0:1 Mpc. To produce the PD one we started from
a ‘‘no-wiggle’’ linear power spectrum. This is because the
PD approach maps linear scales into nonlinear ones and
thus artificially changes the position of the wiggles; when
taking derivatives this can induce a spurious signal which
does not happen when staring from a ‘‘no-wiggle’’ linear
PðkÞ. Beside the BAO feature, which is irrelevant for our
purpose, the two models are in good agreement although at
higher z the PD power spectrum seems to produce a power
spectrum more nonlinear than Halofit.

The bottom-left panel of Fig. 1 shows the effect of this
difference in the L-RS bispectrum coefficients Qð‘Þ. The
figure shows the absolute value of the coefficients jQð‘Þj
as a function of the angular scale ‘. The solid line corre-
sponds to the coefficients obtained by using Halofit while
the dot-dashed line using PD. The transition to the non-
linear regime (indicated by the cusp where Qð‘Þ changes
sign) happens at smaller ‘ for Halofit ( ’ 200) than for PD
case (‘ ’ 300).

We quantify the difference between the two models by
computing the �2 for the L-RS bispectra obtained, respec-
tively, with Halofit and with PD:

�2
Halofit�P&D ¼ X

‘1‘2‘3

ðBL-RS½Halofit�
‘1‘2‘3

� BL-RS½P&D�
‘1‘2‘3

Þ2
�‘1‘2‘3C‘1C‘2C‘3

: (17)

This is shown in the top-right panel of Fig. 1 (dot-dashed
line) where it is plotted as a function of the maximum
multipole ‘max for our fiducial cosmology. The two models

are compatible within 1-� (��2 < 1) for ‘max < 900. We
conclude that the significance of a detection of this signal
does not depend crucially on the modeling for nonlineari-
ties, however the choice of an incorrect modeling may
introduce significant biases when doing precise analysis,
as [8,18], on key parameters, e.g., w, �8, �m, which are
particularly sensitive to the onset of nonlinearity.
For each of the parameters w, �8, �m we compute the

bias introduced by using Halofit in the bispectrum calcu-
lation in the hypothetical case that PD was a true descrip-
tion of nonlinearities. Around our fiducial model, the
biases are at the level comparable to the 1-� errors (0.3
to 0.6 �). We estimate that, in any practical application,
biases introduced by uncertainties in the description of
nonlinear clustering will be at this level or below.
Moreover, @PNL=@z can be accurately evaluated with the
use of N-body simulations as presented in [56], thus re-
moving this source of bias. Ultimately, in the top-right
panel of Fig. 1 we plotted the �2 from the L-RS and the
linear lensing-ISW bispectra. This is defined as in Eq. (17),
but with the lensing-ISW bispectrum instead of the non-
linear one obtained by using the PD model. At high multi-
poles the linear and the nonlinear cases differ by more than
1-�. The error introduced by the change in modeling
nonlinearities is smaller with respect to the error due to
only considering the linear behavior.

IV. THE SHAPE-DEPENDENCE OF THE
BISPECTRUM SIGNALS: PRIMARY VS L-RS

The signal for the primary bispectrum is dominated by
squeezed and nearly squeezed configurations as shown by
[29,57,58]. We find that the same applies to the L-RS
bispectrum, where 90% of the signal-to-noise comes
form nearly squeezed configurations where ‘2 > 10‘1
and ‘2 < ‘3. This can lead to contamination, i.e. ‘‘confu-
sion,’’ between the two signals. We illustrate this point by
defining an ‘‘effective’’ fNL for the L-RS signal as

ðfL-RSNL Þ‘1‘2‘3 ¼
bL-RS‘1‘2‘3

b̂P‘1‘2‘3
; (18)

which depends on the triangle shape. This is shown in the
left panels of Fig. 2 while the right panels show the
corresponding reduced bispectra (solid for L-RS and
dashed for primary). The top panels are for nearly
squeezed configurations where ‘1 is fixed, ‘1 ¼ 2, ‘2
varies for ‘2 > 40, and ‘3 ¼ ‘2 þ 2 while the bottom
panels are for isosceles squeezed configurations: ‘1 ¼ 2,
‘2 > 40, ‘3 ¼ ‘2. Note that in the right panels the primary
bispectrum has been computed for fNL ¼ �10 for making
it more visible.
The case of the squeezed isosceles configurations

(where ‘2 � ‘1, ‘3 ¼ ‘2 and ‘1 <�150) contributes
with a ’ 5% to the total S=N in both cases, and the two
bispectra have exactly the same shape and they completely
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degenerate for a fNL ’ �17. For nearly squeezed configu-
rations fL-RSNL oscillates but its average is at around fL-RSNL �
10. Nearly squeezed configurations where ‘2 > 10‘1 and
‘2 < ‘3 carry most of the S/N. The L-RS signal always
dominates over the primary one, normalized to fNL ¼ 1,
for all the high signal-to-noise configurations by a factor of
10–20 in absolute value.

However, besides the fact that the two bispectra could be
confused for showing some similar behavior (see bottom
panels of Fig. 2) they can in principle be disentangled since
they have intrinsically different features arising from the
extremely different physics behind them.

For example, looking back at the top-right panel of
Fig. 2, we find that for these configurations the L-RS signal

oscillates, while the primary reduced bispectrum does not.
The L-RS bispectrum of Eq. (12) in fact contains the C‘,
with the typical structure given by the acoustic peaks, and
the coefficient Q‘ which determines the change of sign.
On the other hand, the primary signal, see Eq. (5), is
composed by the coefficients: bL‘ ðrÞ / P�ðkÞgT‘ðkÞ and

bNL
‘ ðrÞ / fNLgT‘ðkÞ so that the changing of sign in this

case is due to the full radiation transfer functions gT‘ðkÞ.
For general configurations, the two bispectra behave differ-
ently: in Fig. 3 we plot the case of equilateral (left panel)
and flattened configurations of the type: ‘1 ¼ 2‘3 and ‘2 ¼
‘3 (right panel). The dashed lines refer to the primary
contribution while the solid lines to the L-RS one. The
two bispectra have different shapes and change sign at

FIG. 2. Effective nonlinear parameter fL-RSNL (Eq. (18), left panels) and corresponding reduced L-RS (solid) and primary (dashed)
bispectra (right panels) for two nearly squeezed configurations: ‘1 ¼ 2, ‘2 > 40, ‘3 ¼ ‘2 þ 2 (top panels) and ‘1 ¼ 2, ‘2 > 40, ‘3 ¼
‘2 (bottom panels). In the right panels the primary bispectrum plotted has fNL ¼ �10 for making it more visible. Note that in the case
illustrated in the bottom panels, the two bispectra have exactly the same shape and they are completely degenerate for a fNL ’ �17.

FIG. 3. Reduced bispectra b‘1‘2‘3 : Primary for fNL ¼ �10 (dashed line) and lensing-Rees-Sciama (solid line). The left plot shows
equilateral triangle configurations ‘ ¼ ‘1 ¼ ‘2 ¼ ‘3, while the right one shows the flattened configurations ‘1 ¼ 2‘3 and ‘2 ¼ ‘3. We
have plotted bL-RSl1l2l3

‘21ð‘1 þ 1Þ21016, which makes the Sachs-Wolfe plateau of the primary reduced bispectrum easily seen at large

angular scales.
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different angular scales. In the case of equilateral configu-
rations, for example, the primary reduced bispectrum
shows the known oscillatory shape, as found in [17], while
the L-RS reduced bispectrum does not. In the case of
flattened configurations both bispectra show oscillations.
Note that in these plots the y-axis has been multiplied by a
factor 1016 (while in Fig. (2) the y-axis has been multiplied
by a factor 1011): these contributions are clearly subdomi-
nant by about 5 orders of magnitude with respect to the
squeezed configurations, which explains why the latter
shapes dominate the signal-to-noise.

In light of these findings we now attempt to interpret
recent constraints on primordial non-Gaussianity from
CMB data e.g., [22,24,25] and consider the implications
for forthcoming measurements.

The fNL estimator used in these works reduces to the one
defined in [59] in the simplest case of temperature-only
anisotropies, cosmic variance dominated, all sky analysis.
This estimator weights the bispectrum of every triplet ‘1,
‘2, ‘3 by the signal-to-noise of the primary bispectrum. We
can thus estimate the contamination that such an estimator
would measure due to the presence of the L-RS signal
defining:

f̂ NL ¼ Ŝ

N
; (19)

where

Ŝ ¼ X
2�‘1‘2‘3

BL-RS
‘1‘2‘3

BP
‘1‘2‘3

C‘1C‘2C‘3

(20)

and

N ¼ X
2�‘1‘2‘3

ðBP
‘1‘2‘3

Þ2
C‘1C‘2C‘3

: (21)

This is plotted as a function of ‘max in Fig. 4, up to

‘max ¼ 1500: the dashed line refers to f̂NL obtained by
summing over all configurations, while the dot-dashed line

refers to f̂NL obtained from only nearly squeezed configu-

rations (
P

10
‘1¼2

P‘max

‘2¼50‘1

P‘max

‘3¼‘2
), which dominate for both

the primary (local type) and the lensing-Rees-Sciama bis-
pectrum. The solid lines indicate where the bias is negative.
This is in qualitative agreement with the effect explored in
[12] where only linear growth was included: the inclusion
of (later-type) nonlinearities enhances the contamination
but, as expected, only for ‘ > 400. For example at ‘�
1500 we estimate an enhancement of roughly 40%.

Using Halofit or PD in the modeling of the L-RS bispec-
trum changes the estimates of the effective fNL by 10%
indicating that this correction is robust to possible residual
uncertainty in the modeling of nonlinearities.

It is also possible to estimate the effective fNL via a
simple �2 analysis: we find the same values as above but
the interpretation of the �2 as a goodness of fit test would

indicate that the local model is not a good fit. This is in
qualitative agreement with the findings of [60] who com-
pute the CMB bispectrum from the second-order fluctua-
tions and find that their effect is separable from the primary
non-Gaussian signal because of the different shape depen-
dence for nonsqueezed (or nearly squeezed) configura-
tions. The agreement cannot be made fully quantitative
as perturbation theory approach may break down: for a
given multipole ‘ the derivative of the gravitational poten-
tial power spectrum is probed at a wide range of scales

kðzÞ ¼ ‘
rðzÞ and therefore highly nonlinear scales can con-

tribute non-negligibly even at relatively low ‘. In practice,
however, it may not always be possible to implement a
goodness of fit test.
The expected error on fNL for forthcoming surveys is

smaller than 10 (for example the Planck surveyor, recently
launched, is expected to yield 1-� error on fNL of order 4
[54]), indicating that the L-RS signal may be a crucial
contaminant in the pursuit of primordial non-Gaussianity,
if not properly taken into account. We have shown here that
its amplitude and configuration dependence is well known;
it is thus not necessary to extract this signal from the CMB
bispectrum and separate it from the primary: it can simply
be included in the modeling of the CMB bispectrum.

V. CONCLUSIONS

We have revisited the predictions for the expected CMB
bispectrum signature of the primary-lensing-Rees-Sciama
(L-RS) correlation. This bispectrum is the leading second-

FIG. 4. The plot shows f̂NL, as defined in Eq. (19), as a
function of ‘max. The dashed line refers to f̂NL obtained by
summing over all configurations, while the dot-dashed line refers
to f̂NL obtained from the nearly squeezed configuration (where
‘1 runs from 2 to 10, ‘2 from 50‘1 to ‘max and ‘3 from ‘2 to
‘max), which dominate for both the primary (local type) and the
lensing-Rees-Sciama bispectrum. The solid lines indicates where
the bias is negative.
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ary contribution on scales much larger than arcminute with
the same frequency dependence as the CMB primary.
Forthcoming experiments like Planck have the statistical
power to detect this signal with a signal-to-noise of order
10. The linear contribution (primary-lensing-ISW bispec-
trum) was considered in [6,9] and in [12]. By including the
nonlinear (RS) description the signal-to-noise increases to
’ 10 to ‘max ¼ 1000. The overall signal depends on the
balance of two competing contributions along the line of
sight: the decaying gravitational potential fluctuations and
the amplification due to nonlinear gravity. For this reason
the effect can be used to place strong constraints on cos-
mological parameters that determine the growth of struc-
tures: �m, dark energy parameters and �8. By comparing
two different semianalytic descriptions of nonlinear clus-
tering, we find that an accurate description of the nonlinear
growth of the matter power spectrum is necessary to obtain
unbiased estimates of these parameters. Approaches based
on numerical simulations (see e.g., [45,56]) will have to be
employed. In general, while the approximations used here
to derive and compute Eq. (13) are extremely good for the
purpose of this paper, a detailed comparison with data will
require the exact numerical evaluations.

Here we have shown that this bispectrum signal can be
confused with the signal from local primordial non-
Gaussianity. Both bispectra signal are maximal for
squeezed or nearly squeezed configurations. For some
configurations (e.g., squeezed isosceles) the two bispectra
are virtually identical, while for generic configurations the
shape dependence of the two bispectra are different in the
details. A bispectrum estimator optimized for constraining
primordial non-Gaussianity of the local type would mea-
sure an effective fNL ¼ 10 for ‘max ¼ 1000 due to the
presence of the primary-lensing-Rees-Sciama correlation.
If not accounted for, this introduces a contamination in the
constraints on primordial non-Gaussianity from the CMB
bispectrum. This is in qualitative agreement with the effect
explored in [12] where only linear growth was included.
For ‘ > 400 the full nonlinear treatment is needed. For
current data, this contamination (effectively bias in the
recovered fNL) is smaller than the 1-� error, however it
can become significant when interpreting the statistical
significance of results that are at the boundary of the 3-�
confidence level. For example if we subtract the effective
value for the L-RS fNL from the central value of the
estimate of [22], we obtain that fNL primordial is consis-
tent to zero at the�2:5� confidence level. For forthcoming
data, however, this bias will be larger than the 1-� error
and thus non-negligible. A more quantitative statement
cannot be made at this stage because the calculations
presented here are done for a cosmic-variance-dominated
experiments while for the current bispectrum analysis from
the Wilkinson Microwave Anisotropy Probe data instru-
mental noise cannot be neglected at ‘� 400, where most
of the contamination is expected to come from.

Techniques to separate out different bispectra shapes
and assess whether a detection of non-Gaussianity is pri-
mordial have been proposed [61] and will be suitable for
this application.
We argue that the bispectrum of the L-RS effect can be

accurately modeled: even with currently available semi-
analytic descriptions for nonlinear clustering, we estimate
the error on the effective fNL to be at the 10% level or
below. We conclude that, in analyzing the CMB bispec-
trum to obtain constraints on primordial non-Gaussianity
for forthcoming data, this contribution must be included in
the modeling.
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APPENDIX A: BISPECTRUM STATISTICS

Deviations form Gaussianity in the CMB are character-
ized by the angular n-points correlation function of the
temperature field in the sky [3]:

h�ðn̂1Þ�ðn̂2Þ . . . �ðn̂nÞi (A1)

where the bracket defines the ensemble average and n̂ the
angular position (i.e. the direction unit vector of the in-
coming photons). In general it is useful to expand the field
in terms of spherical harmonics:

�ðn̂Þ ¼ X1
‘¼0

X‘
m¼�‘

a‘mY‘mðn̂Þ; (A2)

so that, by using the symmetric proprieties of harmonic
transformations and the orthogonality of the spherical
harmonics, we can write the coefficients am‘ as

am‘ ¼
Z

d2n̂�ðn̂ÞY�m
‘ ðn̂Þ: (A3)

The angular CMB bispectrum is defined by three har-
monic transforms satisfying rotational invariance:

Bm1m2m3

‘1‘2‘3
� ha‘1m1

a‘2m2
a‘3m3

i; (A4)

thus the angular averaged bispectrum takes the form

B‘1‘2‘3 ¼
X
all m

‘1 ‘2 ‘3
m1 m2 m3

� �
B
m1m2m3

‘1‘2‘3
: (A5)

Since ‘1, ‘2 and ‘2 form a triangle, this quantity must
satisfy the triangle conditions and parity invariance:

m1 þm2 þm3 ¼ 0; ‘1 þ ‘2 þ ‘3 ¼ even;
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j‘i � ‘jj � ‘k � ‘i þ ‘j (A6)

for all permutations of indices. The matrix appearing in
Eq. (A5) represents the Wigner-3j symbol that describes
the coupling of two angular momenta. Rotational invari-
ance requires the bispectrum amplitude to be independent
from orientation and triangle configuration. The Wigner-3j
symbol, transforming the m’s under rotations, preserves
the triangle configuration thus describing the bispectrum
azimuthal angle dependence. The orthogonality properties
of the Wigner-3j symbols areX

all m

‘1 ‘2 ‘3
m1 m2 m3

� �
2 ¼ 1 (A7)

X
m0

1
m0

2

‘1 ‘2 ‘3
m0

1 m0
2 m0

3

� �
‘1 ‘2 L
m0

1 m0
2 M0

� �
¼ �‘3L�m0

3
M0

2Lþ 1
:

(A8)

By making use again of rotational invariance and of the
symmetry and ortho-normality properties of the 3-j sym-
bols, we can write the bispectrum as:

Bm1m2m3

‘1‘2‘3
¼ Gm1m2m3

‘1‘2‘3
b‘1‘2‘3 (A9)

where Gm1m2m3

‘1‘2‘3
is the Gaunt integral which contains all the

angle dependence and triangle constraint information and
it is defined by

Gm1m2m3

‘1‘2‘3
�
Z

d2n̂Y‘1m1
ðn̂ÞY‘2m2

ðn̂ÞY‘3m3
ðn̂Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s
‘1 ‘2 ‘3

0 0 0

 !

� ‘1 ‘2 ‘3

m1 m2 m3

 !
; (A10)

where b‘1‘2‘3 is called the reduced bispectrum, which is a

very useful quantity since it is an arbitrary symmetric
function of ‘1, ‘2 and ‘3 only and it contains all the
relevant physical information of the bispectrum.

By substituting Eq. (A9) into Eq. (A5) and using the
Gaunt integral property:X

all m

‘1 ‘2 ‘3
m1 m2 m3

� �
Gm1m2m3

‘1‘2‘3

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s
‘1 ‘2 ‘3
0 0 0

� �
;

(A11)

we can finally write:

B‘1‘2‘3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2‘1 þ 1Þð2‘2 þ 1Þð2‘3 þ 1Þ

4�

s
‘1 ‘2 ‘3

0 0 0

 !

� b‘1‘2‘3 : (A12)

For high-‘ the Gosper factorials approximation for the
Wigner 3j symbols can be used:

‘1 ‘2 ‘3

0 0 0

 !
’
�
� L

Lþ 1

�
L=2 1

ð6Lþ 7Þ1=4

�
�
3e

�

3Lþ 1

Lþ 1

�
1=2

�Y3
i¼1

ð6L� 12‘i þ 1Þ1=4
ð3L� 6‘i þ 1Þ1=2 : (A13)

APPENDIX B: WEAK LENSING OF THE CMB

Weak lensing of the CMB remaps the temperature pri-
mary anisotropy according to

�Lðn̂Þ ¼ �Pðn̂þr�Þ
’ �Pðn̂Þ þ ri�ðn̂Þri�Pðn̂Þ þ . . . (B1)

where the label ‘‘L’’ refers to the lensed term while ‘‘P’’ to
the primary contribution. The deflection angle � ¼ r�L is
given by the angular gradient of the gravitational potential
projection along the line of sight:

�Lðn̂Þ ¼ �2
Z rls

0
dr

rðzlsÞ � rðzÞ
rðzÞrðzlsÞ �ðr; n̂rÞ: (B2)

Here r is the comoving conformal distance. Assuming a
flat �CDM universe this can be written as

rðzÞ ¼ c

H0

Z z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0ð1þ z0Þ3 þ��0

p ; (B3)

and thus rls � rðzlsÞ refers to the comoving radius at last
scattering from the observer at z ¼ 0.
As done with the temperature perturbations, we can

expand the lensing potential into multipole moments:

�Lðn̂Þ ¼
X
‘m

�m
L‘Y

m
‘ ðn̂Þ: (B4)

By applying Eq. (A3) into Eq. (B1) and carrying out the
calculations we get an explicit expression for the lensing
aml coefficients:

amL
‘ ¼ amP

‘ þ X
‘0‘00m0m00

ð�1Þmþm0þm00
G�mm0m00

‘‘0‘00
‘0ð‘0 þ 1Þ � ‘ð‘þ 1Þ þ ‘00ð‘00 þ 1Þ

2
am

0P�
‘0 ���m00

L‘00 (B5)

being Gmm0m00
‘‘0‘00 , the Gaunt integral defined in Eq. (A10).
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