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The recent weak-lensing measurement of the dark matter mass of the high-redshift galaxy cluster

XMMUJ2235.3-2557 of ð8:5� 1:7Þ � 1014M� at z ¼ 1:4, indicates that, if the cluster is assumed to be

the result of the collapse of dark matter in a primordial Gaussian field in the standard lambda cold dark

matter model, then its abundance should be <2� 10�3 clusters in the observed area. Here we investigate

how to boost the probability of XMMUJ2235.3-2557, in particular, resorting to deviations from Gaussian

initial conditions. We show that this abundance can be boosted by factors >3–10 if the non-Gaussianity

parameter flocalNL is in the range 150–200. This value is comparable to the limit for fNL obtained by current

constraints from the cosmic microwave background. We conclude that mass determination of high-

redshift, massive clusters can offer a complementary probe of primordial non-Gaussianity.
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I. INTRODUCTION

It has been recognized for almost a decade that the
abundance of the most massive and/or high-redshift col-
lapsed objects could be used to constraint the nature of the
primordial fluctuation field [1–4]. The subject has recently
received renewed attention [5–9] possibly sparked by a
claimed detection of deviations from Gaussianity on cos-
mic microwave background (CMB) maps [10]. Depending
on the sign of the non-Gaussian perturbation, the abun-
dance of rare objects will be enhanced or depleted. In [1]
we developed the necessary theoretical tools to interpret
any enhancement (depletion) in the abundance of rare-peak
objects over the Gaussian initial conditions case. Working
with ratios of non-Gausian over the Gaussian case makes
the theoretical predictions more robust. Later on, Ref. [5]
generalized the procedure to more modern mass functions
and type of non-Gaussianity including scale dependence.
The validity of the analytical formulas developed in [1] has
been recently confirmed by detailed N-body numerical
simulations with non-Gaussian initial conditions [7].
These authors have shown that the analytical findings in
[1] provide an excellent fit to the non-Gaussian mass
function found in N-body simulations with a simple ‘‘cali-
bration’’ procedure.

The authors of Reference [11] have recently reported a
weak-lensing analysis of the z ¼ 1:4 galaxy cluster
XMMU J2235.3-2557 based in Hubble Space Telescope
(advance camera survey) images. Assuming a Navarro-
Frenk-White [12] dark matter profile for the cluster, they
estimate a projected mass within 1 Mpc of ð8:5� 1:7Þ �
1014M�, therefore the total mass will be larger. Adopting a
lambda cold dark matter cosmology with cosmological

parameters given by WMAP 5 yr data ([13]) and assuming
Gaussian initial conditions, they estimate that in the sur-
veyed 11 sq. deg. there should be 0.005 clusters above that
mass. Therefore, the observed cluster is unlikely at the 3�
level. In this paper we explore which level of non-
Gaussianity is required to boost this abundance by a factor
�10 and how this relates to the available constraints
obtained from the CMB. We show that with flocalNL in the
range 150–200 it is possible to significantly enhance the
abundance expected for such a massive cluster. This value
of fNL is comparable with current limits from the CMB
[13], [10].

II. HIGH REDSHIFT AND/OR MASSIVE OBJECTS

While there are in principle infinite types of possible
deviations from Gaussianity, it is common to parameterize
these deviations in terms of the dimensionless parameter
fNL (e.g., [1,14–16]).

� ¼ �þ flocalNL ð�2 � h�2iÞ; (1)

where� denotes the primordialBardeen potential [17] and
� denotes a Gaussian random field. With this convention a
positive value of flocalNL will yield to a positive skewness in
the density field and an enhancement in the number of rare,
collapsed objects.
Although not fully general, this model (called local

type) may be considered as the lowest-order terms in
Taylor expansions of more general fields. Local non-
Gaussianity arises in standard slow roll inflation (although
in this case flocalNL is unnmeasurably small), and in multifield
models (e.g., [18–21]). For other types of non-Gaussianity
(as we will see below) an ‘‘effective’’ fNL can be defined
and related to this model.
The abundance of rare events (high redshift and/or

massive objects) is determined by the form of the high-
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density tail of the primordial density distribution function.
A probability distribution function (PDF) that produces a
larger number of >3� peaks than a Gaussian distribution
will lead to a larger abundance of rare events. Since small
deviations from Gaussianity have deep impact on those
statistics that probe the tail of the distribution (e.g. [1,22]),
rare events should be powerful probes of primordial non-
Gaussianity. The non-Gaussianity parameter fNL is effec-
tively a ‘‘tail enhancement’’ parameter (cf., [1]).

In addition, high-redshift clusters are sensitive to the
primordial skewness, and not too sensitive to the shape
of non-Gaussianity as long as it yields the same skewness.
CMB bispectrum is directly sensitive to the shapes of non-
Gaussianity (thus has widely different error bars depending
on the non-Gaussian shape), while halo bias is totally blind
to some shapes and exponentially sensitive to others.
Determining the shapes of non-Gaussianity would deter-
mine the physics behind deviations from the simplest
single field, Bunch-Davies vacuum, slow roll inflation.
When deviating from a simple local non-Gaussian model,
the combination of different observables will be crucial in
determining the non-Gaussian shapes.

As shown in [4,5,7] when using an analytical approach
to compute the mass function a robust quantity to use is the
fractional non-Gaussian correction to the Gaussian mass
function RNGðM; zÞ. This quantity was calibrated on non-
Gaussian N-body simulations in [7]. For our purpose here
we want to compute a closely related quantity: the non-
Gaussianity enhancement, i.e. ratio of the non-Gaussian to
Gaussian abundance of halos above a mass threshold [4].
As the mass function is exponentially steep for rare events
here we can safely make the identification of the non-
Gaussianity enhancement with RNG.

To understand the effect of non-Gaussianity on halo
abundance let us recall that to first order the non-
Gaussianity enhancement is given by [5,7]

R NGðM; zÞ � 1þ S3;M
�0
cðzÞ3
6�2

M

; (2)

where S3;M denotes the skewness of the density field line-

arly extrapolated at z ¼ 0 and smoothed on a scale R
corresponding to the comoving Lagrangian radius of the
halo of mass M, �M denotes the rms if the –linearly
extrapolated at z ¼ 0– density field also smoothed on the
same scale R; �0

cðzfÞ ¼ ffiffiffi

q
p

�cðzfÞ and �cðzfÞ denotes criti-
cal collapse density at the formation redshift of the cluster
zf. Note that �cðzÞ ¼ �cDðz ¼ 0Þ=DðzÞ with DðzÞ denot-
ing the linear growth factor and �c is a quantity slightly
dependent on redshift and on cosmology, which only for an
Einstein-de Sitter universe is constant �c ¼ 1:68. The
constant q ’ 0:75 (which we will call ‘‘barrier factor’’)
can be physically understood as the effect of nonspherical
collapse [23,24] lowering the critical collapse threshold of
a diffusing barrier [25], see also [26], and has been cali-
brated on N-body simulations in Ref. [7]. The full expres-

sion for RNG is (cf. Eqs. 6 and 7 in Ref. [7])
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Let us reiterate that in principle the enhancement factor
should be computed by integrating the mass function
nðM; z; fNLÞ between the minimum and the maximum
mass and for redshifts above the observed one [4]:

R̂ NG ¼
R

nðM; z; fNLÞdMdz
R

nðM; z; fNL � 0ÞdMdz
(4)

but since the mass function, in the regime we are interested

in, is exponentially steep, we can identify R̂NG ¼ RNG.
The mass function of Ref. [5] applies to lower �=� than the
regime we explore here. For high �=� the Matarrese-
Verde-Jimenez mass function is much better suited. This
consideration based on the approximations made in deriv-
ing the mass function are supported by N-body simulation
results [7].
Small deviations from Gaussian initial conditions will

lead to a nonzero skewness and, in particular, for local non-
Gaussianity S3;M ¼ flocalNL S13;M, where S13;M denotes the

skewness produced by flocalNL ¼ 1. Since non-Gaussianity
comes in the expression for RNG only through the skew-
ness, the same expression can be used for other types of
non-Gaussianity such as the equilateral type (see e.g.
Refs. [5,6] for an example of applications). For example,

at the scales of interest R ¼ 13 Mpc=h, S1;local3;R ¼ 3:4S1;equil3;R

thus when working on these scales to obtain the same non-
Gaussian enhancement as a local model, an equilateral
model needs a higher effective fNL: we can make the

identification f
equil
NL ¼ 3:4flocalNL .

Here, we will use the full [1] expression, corrected for
the ‘‘barrier factor,’’ for the non-Gaussian mass function to
compute the non-Gaussianity enhancement. Note that the
estimated mass and redshift of XMMUJ2235.3-2557, pla-
ces it just outside the range where the mass function
expressions of [1,5] have been directly reliably tested
with non-Gaussian N-body simulations. Simulations
seem to indicate that the [1] expression is a better fit than
[5] at high masses/redshift and large fNL; this is also
supported by theoretical considerations [7].

III. RESULTS

Figure 1 shows the enhancement factor RNG as a
function of the mass of the galaxy cluster for different
values of flocalNL and the redshift of collapse. The shaded
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area shows the error band for the mass determination of
XMMUJ2235.3-2557 from Ref. [11] and the different lines
have been computed using the [1] mass function, with the
‘‘barrier factor’’ correction. Reference [7] show that it fits
very well the N-body numerical simulations for the case of
rare peaks, which is the one we are concerned with. The
solid lines correspond to fNL ¼ 260, the lower one is for a
cluster collapse redshift of zf ¼ 1:4 (i.e. assuming that the

cluster forms at the observed redshift) and the upper one
for zf ¼ 2. The two dashed lines also depict the mentioned

collapse redshifts but for fNL ¼ 150. An extended Press-
Schecter approach shows that the likely redshift of forma-
tion for such an object is zf ¼ 1:6 with some distribution

around it extending from a sharp lower limit of zf equal to

the observation redshift of 1.4 and extending up to zf ¼ 2.

We see that the galaxy cluster abundance can be enhanced
by a factor up to 10. In the mass range of interest, the same
enhancement factor can be obtained for an equilateral-type

non-Gaussianity for f
equil
NL ¼ 884 and 510, respectively.

The dependence of this result on the adopted value of �8

is small, from the range 0:77<�8 < 0:84, fNL changes by
less than 10%.

We should bear in mind that XMMUJ2235.3-2557 is an
extremely rare object, sampling the tail of the mass func-

tion which may not be well known and may be strongly
affected by cosmology. Using the [27] mass function we
estimate that in the WMAP5 lambda cold dark matter
model [28] one should find 7 galaxy clusters in the whole
sky with mass greater or equal than the lower mass esti-
mate of XMMUJ2235.3-2557 M ¼ 5� 1014M� and z >
1:4 corresponding to a probability of 0.002 for the 11 deg2

of the survey. This should be compared with the reported
number of 0.005 obtained by [11] for a different cosmology
and different mass function. Thus the effects of cosmology
and uncertainty in the mass function can account for a
factor �2 uncertainty in the predicted halo abundance.
Note that in all our calculations we have used a con-

servative lower limit for the mass of the cluster. If instead
we use the central or upper value for the mass, using the
WMAP5 cosmology and the [27] mass function we expect
to find zero such clusters in the whole sky, which will make
our conclusions even stronger.
The survey area used in Ref. [11] is 11 deg2, but the

XMM serendipitous survey in 2006 covered 168 deg2, and
today covers �400 deg2. Below, we report the Ref. [11]
numbers and in parenthesis the numbers we obtain. The
probability of finding XMMUJ2235.3-2557 is thus 0.005
(0.002) if using 11 deg2; to avoid as much as possible
biases due to a posteriori statistics one could use
168 deg2 obtaining a probability of 0.07 (0.03), or, as a
limiting case, even 0.17 (0.07) if using 400 deg2. Note that
it is likely that there are more clusters as massive in the
survey area [29] and therefore these numbers are conser-
vative. If we use from Fig. 1 the factor 3 to 10 enhance-
ment, we find that it would help boost the probability to�1
in the surveyed areas.
The latest WMAP compilation [13] reports �9<

flocalNL < 111 and �151< fequilNL < 253 at 95% confidence,
[10] reports 27< flocalNL < 147. The CMB however probes
much larger scales (R> 120 Mpc=h) than those probed by
clusters such as XMMUJ2235.3-2557 R� 13 Mpc=h: a
scale-dependent fNL with k��0:3 can yield an effective
fNL on dependence XMMUJ2235.3-2557 scales that is
larger than the CMB one by a factor of 3.
The flocalNL values needed to accomodate the observed

cluster at z ¼ 1:4 is in the range 150 to 260. This is
comparable to the limits quoted by Refs. [10,13], but
slightly above Ref. [30], although we emphasize the fact
that we are measuring fNL at different scales than the
CMB.

IV. CONCLUSIONS

Accurate masses of high-redshift clusters are now be-
coming available through weak-lensing analysis of deep
images. As already discussed in previous papers [1,5], their
abundance can be used to put constraints on primordial
non-Gaussianity. flocalNL in the range 150–260 can boost the
expected number of massive (> 5� 1014M�) high-
redshift (z > 1:4) clusters by factors of 3 to 10. Such large

FIG. 1. Enhancement factorRNG of the number of rare objects
for different values of the dark matter mass of the galaxy cluster.
The lines correspond to different values of fNL. The upper lines
are for a collapse redshift of zf ¼ 2 and the lower lines for zf ¼
1:4. The shaded area is the range for the weak-lensing mass
estimate of the clusters XMMUJ2235.3-2557. Note that for the
quoted values of flocalNL it is possible to obtain enhancements of

order 10 in the cluster number abundance. This enhancement
brings the expected abundance of such massive clusters in better
agreement with the observations. Note that for masses above the
estimated central value (8:5� 1014M�) one expects to find zero
such objects in the whole sky (one expects 7 objects in the whole
sky at the lowest value of the mass estimate) which emphasizes
the need of an enhancement as the one provided by primordial
non-Gaussianity studied here.
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numbers would help make clusters like XMMUJ2235.3-
2557 much more probable. The scales probed by clusters
are smaller than the CMB scales, and in principle non-
Gaussianity may be scale-dependent, making this a com-
plementary approach, in fact some inflation models like
Dirac-Born-Infeld predict scale-dependent fNL [5].

The adopted error range in the mass determination of
XMMUJ2235.3-2557 is 100%; even with such a large mass
uncertainty and considering the pessimistic estimate of 7
such objects expected in the entire sky with a Poisson error

of �2:6, if the entire sky could be covered, flocalNL � 150
could be detected at >4� level.
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