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We derive the effects of a nonzero cosmological constant � on gravitational wave propagation in the

linearized approximation of general relativity. In this approximation, we consider the situation where the

metric can be written as g�� ¼ ��� þ h��� þ hW��, h
�;W
�� � 1, where h��� is the background perturbation

and hW�� is a modification interpretable as a gravitational wave. For � � 0, this linearization of Einstein

equations is self-consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-

Walker coordinates do not belong to this class and the derived linearized solutions have to be reinterpreted

in a coordinate system that is homogeneous and isotropic to make contact with observations. Plane waves

in the linear theory acquire modifications of order
ffiffiffiffi
�

p
, both in the amplitude and the phase, when

considered in Friedmann-Robertson-Walker coordinates. In the linearization process for h��, we have also

included terms of order Oð�h��Þ. For the background perturbation h���, the difference is very small, but

when the term hW��� is retained the equations of motion can be interpreted as describing massive spin-2

particles. However, the extra degrees of freedom can be approximately gauged away, coupling to matter

sources with a strength proportional to the cosmological constant itself. Finally, we discuss the viability

of detecting the modifications caused by the cosmological constant on the amplitude and phase of

gravitational waves. In some cases, the distortion with respect to gravitational waves propagating in

Minkowski space-time is considerable. The effect of � could have a detectable impact on pulsar timing

arrays.

DOI: 10.1103/PhysRevD.84.063523 PACS numbers: 04.30.�w, 98.80.Es

I. INTRODUCTION

The smallness of the cosmological constant obtained
from fits to the current �CDM cosmological models [1]
(� ’ 10�52 m�2) may lead us to believe that it is totally
unobservable except at the largest distances. However, the
issue of the relevance of the cosmological constant in local
measurements (meaning measurements that involve sub-
cosmological scales, such as with galaxy clusters) has
received growing attention [2,3]. One interesting possibil-
ity is assessing the influence of � on the bending of light
from distant objects. At present there are rather diverging
results on the subject giving rather different results con-
cerning the relevance of � ranging from zero [4] or very
small [5] to appreciable ones [6]. The effect of � on the
photon propagation, including frequency shift, Shapiro
time delay, and deflection of light, is currently under
consideration [7].

The importance of these studies cannot be overempha-
sized. The presence of a nonzero cosmological constant
contributing around 70% to the energy and matter budget
of the Universe, seemingly making the Universe globally a
de Sitter space-time, is one of the intriguing puzzles of
physics in our time. Observations capable of confirming or
refuting the relevance of � at redshift z < 1 are clearly of
the utmost importance.

The studies of what has been termed ‘‘local gravity with
a cosmological constant’’ rely on an approximate solution,
valid at first order in �, obtained after linearizing Einstein
equations. These solutions have recently been studied in
detail by one of the authors [3] using different gauge
choices. It has been found that in the Lorenz gauge one
can in addition require time independence of the metric
solutions. After an additional coordinate transformation,
these solutions correspond to the linearized version of the
Schwarzschild-de Sitter exact solution of Einstein equa-
tions. The modification to the Newtonian limit in such
coordinates was also discussed in detail [3]. There are
some subtleties related to the physical interpretation of
the different coordinate systems that we shall review
below.

Here we propose to study a different problem. Namely,

how � influences the properties of gravitational waves

(GW). As of today, gravitational waves are an unambigu-

ous prediction of general relativity that has not been tested

directly. They are ‘‘observed’’ indirectly as they are the

missing ingredient needed to restore the energy balance of

some astrophysical binary systems [8]. There are three

types of experiments potentially capable of yielding a

nonzero signal in the coming years. Let us summarize their
physical and astrophysical reach here:
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Ground-based GW detectors such as LIGO [9] can reach
sensitivities down to�10�23 with optimal sensitivity in the
region between 10 Hz and 103 Hz. The space mission
LISA [10] will reach a similar sensitivity in the range
10�2 Hz to 10�3 Hz but will actually be able to set relevant
bounds on a more extended range of frequencies. Finally,
the International Pulsar Timing Array project [11] or the
Square Kilometer Array project [12] are sensitive to lower
frequencies � < 10�4 Hz but reach only a sensitivity of
�10�10 going up to �10�15 for �� 10�10 Hz. These
sensitivity ranges are targeted to specific astrophysical
phenomena and are expected to provide detectable signals
and confirm the existence of GW in the coming decades.

Given the present difficulties in asserting the very ex-
istence of GW, it may seem academic to try to find mod-
ifications due to the presence of a cosmological constant
that is small. However, it should be borne in mind that in
the inflationary epoch the value of � was much larger than
at present, so these effects might be of relevance for
primordial GW. As we will discuss in this work, the effect
of � could be of some relevance for GW traveling very
long distances and for pulsar timing array projects. On the
other hand, some of the results presented here we believe
are of interest to understand the issue of the gauge choice in
the presence of � for the linear theory. Finally, it seems
interesting in its own right to attempt to understand wave
propagation in de Sitter space-time if � is indeed a funda-
mental parameter of nature. Our approach corresponds to a
‘‘local gravity’’ discussion, assuming, even in the presence
of �, the gravitational field as a linear perturbation
around Minkowski’s space-time. This expansion applies
to a region of distances smaller than the de Sitter horizon

l �
ffiffiffi
3
�

q
. We will argue that this linearization is consistent

in some coordinate systems but not in others.
This paper is organized as follows. In Sec. II, we

discuss the linearization of Einstein equations, including
a discussion on different gauges and how they affect the
wave equation for the gravitational field h��. In Sec. III,

we discuss different coordinate realizations of de Sitter
space-time and their relation. In Sec. IV, we construct
background solutions retaining terms of order �h��. This

discussion is extended in Sec. V to include GW solutions
that ‘‘feel’’ the presence of �. In Sec. VI, we analyze the
detectability of the effects previously calculated. In
Sec. VII, we summarize the conclusions of this study.

Some of the subjects discussed here appear to have
received little attention in the past although there is exten-
sive literature on gravitational waves [13]. The effect of �
on GW has been considered in [14,15] and, in certain
gauges, linear perturbations on the Friedmann-Robertson-
Walker (FRW) backgrounds have been considered [16].
Physical consequences appear to have been extracted in the
context of primordial gravitational waves [17] and only
indirectly in what concerns the evolution of the modes and
the power spectrum.

II. LINEARIZATION IN THE PRESENCE OF �

Einstein equations, derived from the Einstein-Hilbert
action, read

R�� � 1

2
g��Rþ�g�� ¼ ��T��; (1)

where R�� is the Ricci tensor for g��, �> 0 is the cos-

mological constant, and �T�� is the source term. T�� is the

usual stress-energy tensor of matter in the gravitational
field generated by g�� and � is the dimensionful constant

coupling matter and gravity. However, throughout this
work we will consider T�� ¼ 0 unless otherwise specified.

The inclusion of the cosmological constant term leads to
curvature even in the absence of any source

R ¼ 4�: (2)

We consider the linearized theory where the metric is
written as

g�� ¼ ��� þ h��; (3)

��� being the Minkowski metric and h�� � 1. The Ricci

tensor to first order in the small perturbation h�� reads

R�� ¼ 1

2
ðhh�� þ h;�� � h��;�� � h��;��Þ; (4)

indices being lowered and raised with ��� and h ¼
���h��. The theory is invariant under coordinate

transformations x� ! x� þ ��ðxÞ. For infinitesimal trans-
formations, the perturbation metric h�� transforms as

h�� ! h0�� ¼ h�� þ @��� þ @���. A gauge choice is

possible, amounting to selecting a particular class of coor-
dinates, and in fact such a choice is necessary if the
perturbation h�� is to be quantized. In order to discuss

GW, two different gauge choices are particularly
appropriate.

A. Lorenz gauge

In order to describe perturbations around flat space-time,
it is customary to employ the Lorenz gauge.

@�h
�
� ¼ 1

2
@�h; (5)

or

@� ~h
�
� ¼ 0; (6)

where

~h �� ¼ h�� � 1

2
���h (7)

is the trace reversed version of h��.

In this gauge, expression (4) is simplified to

R�� ¼ 1

2
h��; (8)
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and we obtain the equation of motion

h

�
h�� � 1

2
���h

�
þ 2�h�� ¼ �2����; (9)

which must always be considered together with the Lorenz
gauge condition (5).

Whether the term of order Oðh�Þ has to be considered
depends on the relative magnitude of h and �. There will
be situations when the inclusion of this term is justified and
may lead to observable consequences. We shall postpone
the rest of the discussion on this issue until sections IV
and V. Note, nonetheless, that if the �h�� term on the

left-hand side is omitted (and only in this case), there is a
residual gauge freedom within the Lorenz gauge. If we
perform a linear coordinate transformation

x� ! x0� ¼ x� þ ��; (10)

Equation (5) is fulfilled as long as �� is an harmonic
function, i.e., h�� ¼ 0. These residual coordinate trans-
formations are sometimes termed ‘‘coordinate waves’’ for
rather obvious reasons. Note also that whether this is a
symmetry of the equations of motion depends on the
terms retained in the linearization; the term �h�� breaks

this residual coordinate invariance.

B. � gauge

It will be useful to consider an alternative gauge choice
[18], which we will term � gauge. This is given by the
gauge condition

@� ~h
�
� ¼ �����x

�: (11)

In this gauge, the linearized equations of motion look
slightly different

h

�
h�� � 1

2
���h

�
� 2�h�� ¼ 0: (12)

In particular, we note that the term independent of h��

on the right-hand side of (9) is absent. There is a set of
coordinate transformations that can be performed with-
out leaving the gauge orbit (11); these are transforma-
tions x0� ¼ x� þ �� with

h�� ¼ ����: (13)

However, in the � gauge these residual coordinate
transformations are not a symmetry of the equations
of motion regardless of the terms retained in the linea-
rization and therefore cannot be used to remove degrees
of freedom. Generally speaking, linearization leaves
global Lorentz transformations as the only symmetry
of the equations of motion. The Lorenz gauge is in a
way special as some additional freedom to perform
local coordinate transformations remains if the term
�h�� is neglected. The situation in the � gauge, where

there is no residual symmetry, is, on the contrary, the
generic one.
The connection between the two gauge choices in the

linear theory is easily made when the terms �h�� are

omitted. It is implemented via the following change of
coordinates

x� ! x0� ¼ x� þ �� ¼
�
1� �

12
x2
�
x�: (14)

This change of coordinates transforms a solution of

h~h�� ¼ 0 in the � gauge (coordinates x) to a solution of

h~h�� ¼ �2���� in Lorenz gauge (coordinates x0). Note
the simplicity of the equation for linear perturbations in the
� gauge if the term of order�h�� is omitted. All reference

to the cosmological constant is eliminated.
The previous discussion of the � gauge reminds us that

in general, in the linearized approximation, the perturba-
tion metric h�� is expected to have up to six full degrees of

freedom. Only in certain cases a residual gauge freedom
can be used to further reduce the number of degrees of
freedom.
Let us elaborate a bit more on this issue as it is concep-

tually important. In the Lorenz gauge, with the term �h��

omitted, the residual symmetry (10) allows us to move
freely between different coordinate systems, say x0 and
y0, which are not trivially related by Lorentz transforma-
tions and yet preserve the form of the equations of motion.
On the contrary, if we undo transformation (14) we get two
coordinate systems x and y in which the� gauge condition
is fulfilled but at best only one of these gauge-transformed
coordinate systems obeys the linearized equations of mo-
tion in the� gauge; the other one is off shell. That is to say,
the number of independent degrees of freedom seems to be
larger in the� gauge. However, since this is purely due to a
gauge choice, the additional apparent degrees of freedom
cannot correspond to physical ones.
If the term of order �h�� is retained, i.e., in the Lorenz

gauge the term 2�h�� on the left-hand side of (9) or the

analogous �2�h�� in the � gauge are kept, there is no

residual symmetry whatsoever. Let us take for example (9)
in the Lorenz gauge; as we will see in detail in Sec. V, this
generates a genuine mass term and therefore more physical
degrees of freedom appear associated to h��. This is not a

gauge artifact.

III. DE SITTER SPACE-TIME

De Sitter space-time can be described by many coordi-
nate systems. A convenient choice of coordinates is
Schwarzschild-de Sitter (SdS). These provide a time-
independent metric in a gauge that is none of the two
previously discussed

ds2 ¼
�
1��

3
r̂2
�
dt̂2 �

�
1��

3
r̂2
��1

r̂2 þ r̂2d�2 (15)
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and clearly shows the presence of the de Sitter horizon.
We note that this metric admits an expansion in integer
powers of �. Note also that in this metric the spatial part
does not quite correspond to spherical coordinates.

At the opposite extreme, one can select a metric that
depends only on time and is position independent. It is the
Friedmann-Robertson-Walker (FRW) metric

ds2 ¼ dT2 � exp

0
@2

ffiffiffiffi
�

3

s
T

1
Ad ~X2: (16)

This metric incorporates the physical principles of cosmo-
logical homogeneity and isotropy as it does not depend on
the position. The coordinates Xi have a clear physical
meaning: they are comoving coordinates anchored in space
that expand with the universe. These are the natural coor-
dinates where our world appears homogeneous and iso-
tropic. It is easy to see that the FRW metric does not fulfill
any linearized Einstein equation, even for very early times

t � 1=
ffiffiffiffi
�

p
when it is very close to the Minkowski metric.

In fact, no metric that depends only on time can be a
solution of the linearized Einstein equations; incompatibil-
ities appear immediately for any gauge choice.

One should therefore accept that the linearized Einstein
equations in the presence of � cannot be imposed in the
physically relevant comoving coordinate system. This, of
course, has implications on GW as the very concept of
‘‘wave’’ does require a wave equation, which is just im-
possible in FRW coordinates. On the other hand, the wave

equationh~h�� ¼ 0 found in the � gauge is expressed in a

set of coordinates whose meaning is yet to be interpreted.
Therefore, the simplicity of this equation is deceiving.

We will argue in the next section that the coordinates
implied by the choice of the � gauge or of the Lorenz
gauge are closely related to SdS coordinates. Then the way
to proceed is to find a solution for GW in the Lorenz gauge,
a coordinate system where linearization of the Einstein
equations is consistent, and then transform the solution
to FRW coordinates in order to extract observable
consequences.

Both the SdS metric and the FRW metric are valid (but
rather different) descriptions of de Sitter geometry. One
can work out the exact transformation between the two
coordinate systems

r̂ ¼ eT
ffiffiffiffiffiffiffi
�=3

p
R t̂ ¼

ffiffiffiffi
3

�

s
log

0
@ ffiffiffi

3
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3��e2T

ffiffiffiffiffiffiffi
�=3

p
R2

q
1
Aþ T;

(17)

where T and R are, respectively, the cosmological time
and comoving coordinates whose physical realization is
clear. This transformation is valid inside the cosmological
horizon, i.e., R< 1ffiffiffi

�
p . Applying (17) to (15), we obtain

ds2 ¼ dT2 � exp

0
@2

ffiffiffiffi
�

3

s
T

1
Ad ~X2: (18)

Now it is immediate to see that the FRW metric does not

fulfill any linearized Einstein equation, even if t � 1=
ffiffiffiffi
�

p
as it is not expandable in integer powers of �. The same
transformations for the linearized version of the metrics
gives

ds2 ¼
�
1��

3
r̂2
�
dt̂2 �

�
1þ�

3
r̂2
�
r̂2 þ r̂2d�2 !

ds2 ¼ dT2 �
�
1þ 2

ffiffiffiffi
�

3

s
T þ 2

�

3
T2

�
ðdR2 þ R2d�2Þ;

(19)

which will only reasonably approximate the expansion of
FRW for values of R� T � 1ffiffiffi

�
p . Note that, although the

last metric in (19) is linearized, it does not fulfill any
linearized Einstein equations.
The previous transformation provides the relationship

between a framework where the Einstein equations can be
consistently linearized and the actual coordinate system in
which we observe. The solutions easily found in the line-
arized theory have to be transformed to the physically
meaningful coordinate system in order to make predic-
tions. It is at this point that nontrivial effects related to �
will appear. They are discussed in Sec. V. Of course, given
the current value of �, these effects will be small. We
believe, nonetheless, that these corrections are conceptu-

ally important. Note also that (17) involves
ffiffiffiffi
�

p
and not �,

yielding corrections that are potentially much more rele-
vant for observation than those of the order Oð�Þ.
Equation (16) is just one of the many possible cosmo-

logical FRW metrics. Other possibilities such as a power-
law cosmological scale factor do not correspond to a de
Sitter space-time and therefore there is no obvious change
of coordinates that allows us to reexpress a GW, i.e., a
solution to a wave equation, in that physically meaningful
coordinate system.

IV. BACKGROUND SOLUTIONS

We shall work consistently in the linearized approxi-
mation both for the background modification h��� and

for gravitational wave perturbations hW��. Namely, the

metric can be written as g�� ¼ ��� þ h��� þ hW��, where

h�;W
�� � 1. To keep the notation simple, we shall only use

the superscript � when confusion with wave perturbations
hW�� is possible. In this section, we will be concerned with

background linearized solutions when the cosmological
constant � is present.
The value of the cosmological constant has presumably

not been the same throughout the history of the universe. In
early epochs, perhaps following an inflationary period, its
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value is believed to have been much larger [19]. This fact
suggests that it may be necessary in some circumstances to
retain the term �h���. Likewise, it will be necessary for

consistency to keep terms of order�hW�� as the magnitudes

of hW�� and � are unrelated.

In what follows, we proceed without making any as-
sumptions on the value of �; we will just assume that the
perturbation that induces on the background metric h�� is

small enough for the linearized approximation to be
meaningful.

A. Lowest order solutions

First, we turn to the lowest order solutions already
discussed in [3], which correspond to neglecting terms of
Oð�h��Þ. In the Lorenz gauge, this amounts to solving the

following equation,

h~h�� ¼ �2���� @� ~h
�
� ¼ 0: (20)

Linearization limits the validity of the solution to values of
the coordinates such that x2 � 1=�.

Before discussing the solutions to (20), we take a look at
the equations in the � gauge

h~h�� ¼ 0 @� ~h
�
� ¼ �����x

�: (21)

Note once more that the linearized equations are not in-
variant under gauge transformations. In the Lorenz gauge,
the cosmological constant is regarded as a gravitational
source, it appears in the equations of motion, whereas in
the� gauge all dependency in the cosmological constant at
this order appears through the gauge condition only and in
a way it can be interpreted as a consequence of the coor-
dinate choice.1 The connection between the two gauge
choices in the linear theory has already been discussed.

We can easily solve Eqs. (21) to find the traceless
solution

~h �� ¼ � �

18
ð4x�x� � ���x

2Þ: (22)

If we require that the solution is proportional to � and
involves only the coordinates x�, this is the unique solu-
tion. In addition, (22) is the only one that is Lorentz-
covariant (note that ��� is the underlying metric and there

is no other four-vector at our disposal).
It is worth noticing that since there is no residual free-

dom in this gauge, no transformation can turn this solution
into a static metric: The � gauge is explicitly incompatible
with the solutions being static.

We now transform the solution back to the Lorenz gauge
using (14). We find

h�� ¼ �

9
ðx�x� þ 2���x

2Þ: (23)

Without the �h�� term, the equation of motion is actually

invariant under residual transformations. The number of
physical degrees of freedom therefore is reduced to two.
This is the only covariant-looking solution in the Lorenz
gauge but only one of the infinite number of solutions
reachable by noncovariant residual transformations. The
most general form of such transformations is

�0� ¼

Aðt2 þ r2Þt
ðB1t

2 þ B2x
2 þ B3ðy2 þ z2ÞÞx

ðB1t
2 þ B2y

2 þ B3ðx2 þ z2ÞÞy
ðB1t

2 þ B2z
2 þ B3ðx2 þ y2ÞÞz

0
BBBBB@

1
CCCCCA; (24)

where 2B1 � 6B2 � 4B3 ¼ 0. In particular, we find the
values of these constants that allow us to reproduce the
static solution of [3],

A ¼ � �

18
; B1 ¼ ��

9
;

B2 ¼ � �

18
; B3 ¼ �

36
;

(25)

one should ask at this point what are these coordinates. We
already know that they cannot correspond to cosmological
coordinates. In fact, the resulting metric is neither homo-
geneous nor isotropic although it preserves the symmetry
among the three axes. The answer becomes obvious once
one discovers that one of the possible residual gauge trans-
formations eliminates the time dependence of the metric. A
generalization of Birkhoff’s theorem [20] states that there
is a unique static solution with spherical symmetry which
is the Schwarzschild-de Sitter metric previously discussed,
or more precisely the first order of it in the � expansion.
Since Schwarzschild-de Sitter does not fulfill the Lorenz
gauge condition, a time-independent coordinate transfor-
mation must also be involved. Let us explicitly show this
point using a succession of coordinate transformations
linear in �.
The first step is to transform (23) to a static solution.

We start from

ds2 ¼
�
1þ�

9
ð3t2 � 2r2Þ

�
dt2

�
�
1��

9
ð�2t2 þ 2r2 þ xi

2Þ
�
dxi

2

� 2�

9
txidtdxi þ 2�

9
xixjdxidxj; (26)

where i ¼ 1; 2; 3 and i � j. After the following change of
coordinates,

1This, of course, does not mean that the consequences of �
can be removed by a wise coordinate transformation, but it does
mean that it disappears from the equations of motion themselves.
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x ¼ x0 þ�

9

�
�t02 � x02

2
þ ðy02 þ z02Þ

4

�
x0

y ¼ y0 þ�

9

�
�t02 � y02

2
þ ðx02 þ z02Þ

4

�
y0

z ¼ z0 þ�

9

�
�t02 � z02

2
þ ðx02 þ y02Þ

4

�
z0

t ¼ t0 � �

18
ðt02 þ r02Þt0;

(27)

the metric transforms into the static solution to order �
found in [3],

ds2 ¼
�
1��

3
r02

�
dt02 �

�
1��

6
ðr02 þ 3x02i Þ

�
dx02i : (28)

Note that this solution is still in the Lorenz gauge; we
only performed a residual gauge transformation that is
allowed in this gauge. Since our starting solution is only
valid to order �, in any change of coordinates, either
exact or linear, we only keep terms linear in the cosmo-
logical constant. We can further transform (28) to obtain a
fully spherically-symmetric solution. Under the following
change,

x0 ¼ x00 þ �

12
x003 y0 ¼ y00 þ �

12
y003

z0 ¼ z00 þ �

12
z003 t0 ¼ t00;

(29)

we obtain

ds2 ¼
�
1��

3
r002

�
dt002 �

�
1��

6
r002

�
ðdr002 þ r002d�2Þ;

(30)

which does not obey (20) anymore. We can now perform
another coordinate transformation to obtain the SdS met-
ric to order �

r00 ¼ r̂þ �

12
r̂3 t00 ¼ t̂ (31)

ds2 ¼
�
1��

3
r̂2
�
dt̂2 �

�
1þ�

3
r̂2
�
dr̂2 þ r̂2d�2: (32)

This is the linearized Schwarzschild-de Sitter metric.
Essentially, the background solution (23) is the SdS
metric in a set of coordinates related to SdS by time-
independent transformations.

B. Next-order solutions

Let us now relax the approximation of the previous
section and retain terms proportional to �h��. In particu-

lar, we will be interested later in terms of order �hW�� that

will influence the propagation of gravitational waves.
In the Lorenz gauge, this requires the simultaneous

fulfillment of the two sets of Eqs. (5) and (9). We note

that because of the dimensionality of�, any solution of the
previous equations containing � and constructed with the
only available (Lorentz-)covariant vector x� must neces-
sarily be even under a change of sign of all coordinates
x� ! �x�. Solutions odd in x� exist, but they require the
involvement of parameters other than the coordinates and
� (a wave vector, for instance; see Sec. IV).
The most general solution of this equation can be written

as a superposition of both complex and real exponentials

h�� ¼
Z d4k

ð2�Þ4 �ðk
2 � 2�Þ

�
E�� coskxþD�� sinkx

þ ���

4
ðA coshkxþ B sinhkxÞ

�
� ���; (33)

with E�� and D�� traceless, i.e., E�
� ¼ D�

� ¼ 0. In the

previous expression, E��,D��, A, and B are in principle all

independent functions of k provided that the two following
gauge conditions are met,

Z d4k

ð2�Þ4 �ðk
2 � 2�Þ

�
k�E

�
� sinkxþ k�

4
A sinhkx

�
¼ 0

(34)

Z d4k

ð2�Þ4 �ðk
2 � 2�Þ

�
k�D

�
� coskx� k�

4
B coshkx

�
¼ 0:

(35)

Clearly, the integrands involved have to fall off sufficiently
fast for large values of k for the integrals to exist.
This solution has 10 degrees of freedom to start with.

Nine come from E�� and D�� after removal of the trace.

Another one comes from the coefficients A, B. Note that
both A andB are needed to provide a full degree of freedom
and likewise for E�� and D��. Using the gauge condition,

we can eliminate four of them, leaving six independent
degrees of freedom. Unlike (23), the above solution does
not admit any residual gauge transformation to further
eliminate degrees of freedom. Any attempt to perform a
residual gauge transformation would take the solution ‘‘off
shell,’’ i.e., the equations of motion would not be obeyed.
On the other hand, we have to ensure that h�� � 1.

However, in general this does not eliminate any degree of
freedom; it is just a requirement of the linearized theory.
This translates in requiring the first term in the expansion
of the hyperbolic cosine to cancel the ���� piece in (33),

or in other words

Z d4k

ð2�Þ4 �ðk
2 � 2�ÞAðkÞ ¼ 4: (36)

Since (33) is the most general solution to the equations,
we must be able to recover the solutions in the previous
section by performing an expansion in�. To do so, we only
have to choose the right form for E��ðkÞ, D��ðkÞ, AðkÞ,
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and BðkÞ. As mentioned previously, to reach a Lorentz-
covariant formulation such as (23) in the Lorenz gauge,
we can safely assume that D�� and B are zero as the

resulting metric must satisfy h��ðxÞ ¼ h��ð�xÞ, as dis-

cussed. In addition, AðkÞ can only be a constant on

Lorentz covariance grounds. We will take it to be AðkÞ �
A0
k2
¼ A0

2� . Also, E�� needs to be a (traceless) Lorentz-

covariant tensor, namely E��ðkÞ � E
2� ðk�k� � ���

2 �Þ.
The proportionality coefficient between E and A0 comes
from the gauge condition (34). Finally, as also indicated
previously, the integrals require a finite support to be well-
defined, and this should be implemented in a Lorentz-
invariant way too; a sharp cutoff will be used below,
although this is not crucial at all. Expanding (33),

h�� ¼
Z d4k

ð2�Þ4 �ðk
2 � 2�Þ

�
E��ðkÞ coskxþ

���

4
AðkÞ coshkx

�
� ���

¼
Z d4k

ð2�Þ4 �ðk
2 � 2�Þ

�
E��ðkÞ

�
1� ðk � xÞ2

2
þ . . .

�
þ ���

4
AðkÞ

�
1þ ðk � xÞ2

2
þ . . .

��
� ���; (37)

and using the definitions given above,

h�� ’
Z d3 ~k

ð2�Þ3
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ ~k2

p �
E

2�

�
k�k� �

���

2
�

��
1� ðk � xÞ2

2

�
þ ���

4

A0

2�

�
1þ ðk � xÞ2

2

��
� ���: (38)

Now we introduce the cutoff,
ffiffiffiffiffiffiffi
2�

p
. Already condition (36) dictates the value for A0 ¼ 32�2

C , where

C ¼ 1
�

R ffiffiffiffiffi
2�

p
0 dj ~kj ~k2ffiffiffiffiffiffiffiffiffiffiffi

2�þ ~k2
p . Then the solution reads

h�� ’
Z ffiffiffiffiffi

2�
p

0

dj ~kj
2�2

~k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ ~k2

p �
� E

2�

�
k�k� �

���

2
�

� ðk � xÞ2
2

þ ���

4

16�2

�C

ðk � xÞ2
2

�

¼
Z ffiffiffiffiffi

2�
p

0

dj ~kj
2�2

~k2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�þ ~k2

p �
�E

�
�

24
ð���x

2 þ 2x�x�Þ � �

16
���x

2

�
þ ���x

2 �
2

C

�

¼ �C

4�2

�
�E

�
�

24
ð���x

2 þ 2x�x�Þ � �

16
���x

2

�
þ ���x

2 �
2

C

�
: (39)

The value of E is fixed via the gauge condition (34) to
E ¼ � 16�2

3C� , leaving the perturbation in the form

h�� ’ �

9
ðx�x� þ 2���x

2Þ; (40)

which is precisely (23).

V. WAVELIKE SOLUTIONS

In this section, we will finally investigate the effects of
the cosmological constant in the propagation of GW in the
appropriate coordinate system.

A. Lowest order solutions

We write h�� ¼ h��� þ hW��. The term h��� is the solu-

tion we just found; hW�� will be a perturbation on the metric

induced by some source of GW. The same decomposition

holds for the trace-reversed metric ~h��. Waves are usually

considered in the transverse traceless gauge [21]

~h
W�
� ¼ h

W�
� ¼ 0; @�h

W�
� ¼ @� ~h

W�
� ¼ 0: (41)

This is compatible with the � gauge condition as the
right-hand side of (11) is unchanged when considering
~h��� þ ~hW�� provided that (11) is fulfilled by h���. This also

makes clear that, at this order, the gauge condition in-
volves the perturbation associated to the background and
not the metric perturbation associated to a gravitational
wave.
Since the proper equations of motion in the Lorenz

gauge at this order, neglecting Oð�h��Þ, are just hh�� ¼
h��� þhhW�� ¼ 0, being the latter an independent pertur-

bation, it is obvious that

hhW�� ¼ 0; (42)

and the gravitational wave solutions are in these coordinate
systems functionally identical to those existing in flat
space.
Note that because the �h��� has been neglected, the

remaining residual gauge invariance allows for a removal
of 4 of the 6 degrees of freedom in hW��, and the analogy

with wave propagation in Minkowski space is complete.
In the case of the lowest order equations, the full solu-

tion of (20) is
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h�� ¼ h��� þ hW��

¼ �

9
ðx�x� þ 2���x

2Þ þ EW
�� coskxþDW

�� sinkx;

(43)

whereEW ¼ DW ¼ 0, k�E
�W
� ¼ k�D

�W
� ¼ 0, and k2 ¼ 0.

Now we want to see what plane waves such as the
ones in (43) look like in the new coordinate system.
Transformation (17) acts both on the polarization tensors
and on the arguments of the sine and cosine. For the
polarization tensors, we can always cut the expansion in
� and keep terms only up to a certain order. However, the
transformation on the arguments yields terms of the type

Z3w�, which in general can be relevant. The sine and
cosine cannot be expanded; we have to transform the argu-
ment exactly. We shall later evaluate the error caused by
retaining only the lowest order terms in the arguments.
For the polarization tensors, since we transform them

independently of the arguments, it is easy to see qualita-
tively what the corrections to the polarization tensors will
be. On dimensional grounds alone, all corrections will be

of the order Oð ffiffiffiffi
�

p
ZÞ or at most Oð�Z2Þ, being that these

quantities in the region of validity of the approximation are
very small.
Nonetheless, the transformed wavelike solution to

order
ffiffiffiffi
�

p
is

hWFRW
�� ¼

0 0 0 0

0 E11

�
1þ 2

ffiffiffi
�
3

q
T

�
E12

�
1þ 2

ffiffiffi
�
3

q
T

�
0

0 E12

�
1þ 2

ffiffiffi
�
3

q
T

�
�E11

�
1þ 2

ffiffiffi
�
3

q
T

�
0

0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
� cos

0
@wðT � ZÞ þ w

ffiffiffiffi
�

3

s �
Z2

2
� TZ

�
þOð�Þ

1
AþOð�Þ

þ

0 0 0 0

0 D11

�
1þ

ffiffiffi
�
3

q
T

�
D12

�
1þ

ffiffiffi
�
3

q
T

�
0

0 D12

�
1þ

ffiffiffi
�
3

q
T

�
�D11

�
1þ

ffiffiffi
�
3

q
T

�
0

0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
� sin

0
@wðT � ZÞ þ w

ffiffiffiffi
�

3

s �
Z2

2
� TZ

�
þOð�Þ

1
AþOð�Þ:

(44)

The term wðT � ZÞ dominates the argument of the trigonometric functions, and it can be checked numerically that the
error made by omitting terms of order � or higher is < 10�3 for the purposes of the next section.

B. Next-order solutions

As we have argued before, it is not justified to neglect the term of order �hW�� in this case. As unlike for the case of the

background, the magnitude of the two quantities is unrelated. We can add a wavelike piece to the solution (33)

h�� ¼ h��� þ hW��

¼
Z d4k

ð2�Þ4 �ðk
2 � 2�Þ

�
E�� coskxþD�� sinkxþ

���

4
ðA coshkxþ B sinhkxÞ

�
� ��� þ EW

�� coskxþDW
�� sinkx:

(45)

This will always be a solution of (5) and (9) as long as EW ¼ DW ¼ 0, k�E
W�
� ¼ k�D

W�
� ¼ 0, and k2 ¼ 2�. However,

now we are not allowed to perform any gauge transformation, at least at the next-order level. We can still use the gauge
condition and the traceless condition to eliminate 5 degrees of freedom from the wave. We are left with a massive wave
with 5 degrees of freedom. The polarization vectors of which, for a wave propagating in the z direction (k1 ¼ k2 ¼ 0), can
be written as

EW
�� ¼

E00

ffiffiffiffiffiffiffiffiffiffiffiffi
w2�2�

p
w E13

ffiffiffiffiffiffiffiffiffiffiffiffi
w2�2�

p
w E23

wffiffiffiffiffiffiffiffiffiffiffiffi
w2�2�

p E00ffiffiffiffiffiffiffiffiffiffiffiffi
w2�2�

p
w E13 E11 E12 E13ffiffiffiffiffiffiffiffiffiffiffiffi

w2�2�
p

w E23 E12 �E11 � E00
2�

w2�2�
E23

wffiffiffiffiffiffiffiffiffiffiffiffi
w2�2�

p E00 E13 E23
w2

w2�2�
E00

0
BBBBBBBB@

1
CCCCCCCCA
: (46)
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And there is a similar expression for DW
��. At the exact

level, this is as far as one can go, but in order to understand
the meaning of these massive waves, we turn again to an
expansion in powers of �. We will proceed in two steps.
First, we expand the solution in powers of � and collect
terms order by order. Then, using the same reasoning in the
equations of motion, we can use an approximate residual
invariance to rewrite the polarization tensors as the usual
GW in Minkowski space-time plus an order� contribution
with the extra degrees of freedom.

The polarization vectors (46) can then be written as

EW
�� ¼

E00 E13 E23 E00

E13 E11 E12 E13

E23 E12 �E11 E23

E00 E13 E23 E00

0
BBBBB@

1
CCCCCA

þ

0 � �
w2E13 � �

w2E23
�
w2E00

� �
w2E13 0 0 0

� �
w2E23 0 �E00

2�
w2 0

�
w2E00 0 0 2�

w2 E00

0
BBBBBBB@

1
CCCCCCCAþOð�2Þ

�Eð0Þ
��þEð1Þ

��þOð�2Þ: (47)

The same decomposition applies to DW
��. This expansion

makes explicit the contributions of � at a given order. We
want to expand

hW�� ¼ hð0Þ�� þ hð1Þ�� þOð�2Þ; (48)

where the superscript refers to the order in �. The func-
tions sine and cosine can also be expanded around a
massless wave with coordinate-dependent amplitudes [15]

hW�� ¼ EW
�� coskxþDW

�� sinkx

’
��

EW
�� ��z

w
DW

��

�
coswðt� zÞ

þ
�
DW

�� þ�z

w
EW
��

�
sinwðt� zÞ

�
(49)

or what is tantamount,

hW�� ¼
��

Eð0Þ
�� þ Eð1Þ

�� ��z

w
Dð0Þ

��

�
coswðt� zÞ

þ
�
Dð0Þ

�� þDð1Þ
�� þ�z

w
Eð0Þ
��

�
sinwðt� zÞ

�
þOð�2Þ:

(50)

We see that the massive wave we started with can be
written at linear order in the cosmological constant in
terms of a massless wave where all dependency in �
appears only through the polarization tensors

hW�� ¼ EW
�� coswðt� zÞ þDW

�� sinwðt� zÞ þOð�2Þ;
(51)

where EW
�� and DW

�� can be read from (50). The above is a

valid solution of hhW�� þ 2�hW�� ¼ 0 only to order �

(included), which means we can expand the equations of
motion to the same order without loss of validity,

hhð0Þ�� þhhð1Þ�� þ 2�hð0Þ�� þOð�2Þ ¼ 0: (52)

Now we can split the problem and solve order by order,

hhð0Þ�� ¼ 0 hhð1Þ�� þ 2�hð0Þ�� ¼ 0: (53)

Because of the fact that (52) is not exact, the solution to it
can admit a residual gauge transformation that will take the
solution off shell some order beyond the order we consider.
The transformed solution is

hh0ð0Þ�� ¼ 0 hh0ð1Þ�� þ 2�h0ð0Þ�� ¼ 0: (54)

The first equation in (54) is analogous to (42), i.e., residual

transformations on hð0Þ�� are not restricted. To order zero, we
obtain GW analogous to the ones in flat space (in the
present set of coordinates, that is). But, in this case, the
transformation propagates to the following order through
the second equation in (54), making it necessary to find the

transformed h0ð1Þ�� .
It is not difficult to see that the following polarization

tensor fulfills the necessary requirements of tracelessness

as well as the gauge condition (k�E
W�
� ¼ k�D

W�
� ¼ 0)

EW
��¼

�
w2E00 � �

w2E13 � �
w2E23

�
w2E00

� �
w2E13 E11��z

w D11 E12��z
w D12 � �

w2E13

� �
w2E23 E12��z

w D12 �E11þ�z
w D11 � �

w2E23

�
w2E00 � �

w2E13 � �
w2E23

�
w2E00

0
BBBBBBB@

1
CCCCCCCA:

(55)

D�� is similarly obtained from (50). Notice the presence of

the usual components (of Oð1Þ) in the polarization tensor
in the x, y entries of the metric.
To this order in �, we obtain massless waves with

coordinate-dependent modified amplitudes, which depend
on �. We can see that the extra degrees of freedom due to
the form of the linearized equations of motion for nonzero
� will only couple to matter fields proportionally to �
thanks to the coupling hW��T

�� and thus will be irrelevant

in practice.

C. Transformed next-order solutions

Now we are ready to apply the series of coordinate
transformations (27), (29), (31), and (17) to the wavelike
solution (51) that we found in the previous subsection in
order to obtain a physical expression in FRW coordinates.
Recall the waves in the general Lorenz gauge read

hW�� ¼ EW
��ð�; zÞ coswðt� zÞ þDW

��ð�; zÞ sinwðt� zÞ;
(56)
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where EW
�� can be read off from (55). From (56), it is clear the only modification with respect to the plane waves of the

lower order is in the polarization tensors, being already of order �. This suggests that all the new modifications to order �
of the next-order waves are due to the change of coordinates. Explicitly, the transformed waves to order � read

hWFRW
��

2
66666666664
¼

�
w2 E00 � �

w2 E13 � �
w2 E23

�
w2 E00

� �
w2 E13 E11 � �Z

w D11 E12 � �Z
w D12 � �

w2 E13

� �
w2 E23 E12 � �Z

w D12 �E11 þ �Z
w D11 � �

w2 E23

�
w2 E00 � �

w2 E13 � �
w2 E23

�
w2 E00

0
BBBBBBB@

1
CCCCCCCA

þ

0 0 0 0

0 E11

�
2

ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2

�
E12

�
2

ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2

�
0

0 E12

�
2

ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2

�
�E11

�
2

ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2

�
0

0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
þOð�3=2Þ

3
77777777775

� cos

�
wðT � ZÞ þ w

ffiffiffiffi
�

3

s �
Z2

2
� TZ

�
� 1

18
w�ðT3 þ T2Z� 5TZ2 þ 2Z3Þ þOð�3=2Þ

�

þ

2
666666664

�
w2 D00 � �

w2 D13 � �
w2 D23

�
w2 D00

� �
w2 D13 D11 þ �Z

w E11 D12 þ �Z
w E12 � �

w2 D13

� �
w2 D23 D12 þ �Z

w E12 �D11 � �Z
w E11 � �

w2 D23

�
w2 D00 � �

w2 D13 � �
w2 D23

�
w2 D00

0
BBBBBBB@

1
CCCCCCCA

þ

0 0 0 0

0 D11ð2
ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2Þ D12ð2
ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2Þ 0

0 D12ð2
ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2Þ �D11ð2
ffiffiffi
�
3

q
T þ 2�

9 T2 þ 5�
18 Z

2Þ 0

0 0 0 0

0
BBBBBBB@

1
CCCCCCCAþOð�3=2Þ

3
777777775

� sin

�
wðT � ZÞ þ w

ffiffiffiffi
�

3

s �
Z2

2
� TZ

�
� 1

18
w�ðT3 þ T2Z� 5TZ2 þ 2Z3Þ þOð�3=2Þ

�
: (57)

VI. DETECTABILITY

Let us now do some order-of magnitude estimates to
evaluate the effect of the corrections induced by � � 0 on
the propagation of gravitational waves.

For the polarization tensors, we have not attempted
to derive the �-order corrections in full detail,
although this is possible, because already the most

relevant correction, i.e.,
ffiffiffiffi
�

p
ZEð0Þ

��, has to be some

orders of magnitude smaller than Eð0Þ
�� for the approxi-

mation to be valid. For example, for a coordinate value
of the order of a typical distance to a supernova,

1023 m, the quantity
ffiffiffiffi
�

p
Z� 10�3 (�� 10�52 m�2 �

10�35 s�2). This already means a small correction to
an amplitude that has so far escaped detection and
which presumably will not be measured with sufficient
precision to discern the effect of the �-order effects in
the foreseeable future. However, conceptually it is an
interesting result.
It is more interesting to work out the corrections to

the dispersion relation for (44). As previously, let us
consider waves that propagate in the Z direction and are
monochromatic. The maxima of the wave will be
reached when
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wðT � ZÞ þ w

ffiffiffiffi
�

3

s �
Z2

2
� TZ

�
¼ n�; (58)

or

Zmaxðn; TÞ ¼ T � n�

w
� T2

2

ffiffiffiffi
�

3

s
þ n2�2

2w2

ffiffiffiffi
�

3

s
: (59)

From (59), we can also calculate the phase velocity of
the wave which is defined as

vpðTÞ � dZmax

dT
¼ 1� T

ffiffiffiffi
�

3

s
þOð�Þ: (60)

We see that in comoving coordinates the phase velocity
is smaller than 1. This does not mean that the waves
slow down. We can calculate the velocity in ‘‘ruler’’
distance. For a fixed time, we have

�dl2 ¼ �
0
@1þ T

ffiffiffiffi
�

3

s 1
AdZ2

dl

dT
¼ d

dT

2
4
0
@1þ T

ffiffiffiffi
�

3

s 1
AdZmax

3
5 ¼ 1: (61)

It is also interesting to rewrite the trigonometric func-

tions of the wave defining weffðZÞ � wð1� Z
ffiffiffi
�
3

q
Þ

cos

2
4Tw

0
@1� Z

ffiffiffiffi
�

3

s 1
A� Zw

0
@1� Z

ffiffiffiffi
�

3

s 1
A
3
5

¼ cosweffðT � ZÞ: (62)

Note that the transformed wave corresponds to a usual
wave with an effective frequency dependent on the coor-
dinate Z. The wave becomes redshifted as it propagates
away from the source.

To see explicitly the effect of � in the propagation of a
wave described in comoving coordinates, we plot (Fig. 1)
one of the hþþ components of the wave for a given instant
(T ¼ 0 for simplicity). A wave with a physical frequency
ranging 103 Hz<w< 10�10 Hz cannot be practically
plotted in the relevant Z range. To see the effect in a few
cycles, we take w ¼ 4 � 10�16 Hz, which does not affect
the overall magnitude of the correction. We plot the wave
for � ¼ 10�52 m�2 and for � ¼ 10�51 m�2 to assess the
influence of � on the wave propagation. Then we plot

hþþ � ð1þ 5
9�Z2Þ cos½�Zwð1� Z

ffiffiffi
�
3

q
Þ�.

From these results, we can already draw some conclu-
sions. The genuine corrections due to the masslike term in
(9) remain unchanged in the transformed waves if we cut
the expansion to order Oð�Þ. Moreover, they are of order
�Z
w , which is in practice irrelevant unless the value of � is

much greater than the current value. However, transforma-
tion (17) induces modifications to the wave, both in the

amplitude and the phase, of order
ffiffiffiffi
�

p
and �. These

modifications result in a simultaneous increase of the
wavelength and of the amplitude with the coordinate Z.
As shown in Fig. 1, the most interesting region for detec-
tion would be that of events (supernovae and pulsars, for
example) happening at a distance Z� 1023 � 1025 m

away, for which the correction
ffiffiffi
�
3

q
Z� 10�1 � 10�3 is

not negligible and is well within the validity range of the
approximation. In fact, to take this type of correction into
account seems probably essential to properly accounting
for the measurements of this type of phenomena in pulsar
arrays.

VII. SUMMARY

The purpose of this work was to investigate the effect
of the cosmological constant in the propagation of gravi-
tational waves in a linearized theory of gravity. The
presence of � leads unavoidably to the curvature of the
background space-time in which the waves propagate.
Within the linearized approximation, in which the wave
description corresponds to perturbation solutions of an
harmonic wave equation, this leads to a decomposition
g�� ’ ��� þ h��� þ hW��, including a modification of the

background (corresponding to the curvature) and a wave-
like perturbation.
To see the way the propagation of the waves is affected,

first one has to understand the implications that the differ-
ent coordinate choices (gauge choices) have in the resolu-
tion of the equations of motion as well as the importance of
the terms of different order retained in the linearization.
One is free to choose any particular gauge to solve the
equations, however, since the linearized Einstein equations
are not invariant under general coordinate transformations,

4 1024 6 1024 8 1024 1 1025

1.5

1.0

0.5

0.5

1.0

h

FIG. 1 (color online). Dependency of the amplitude and wave-
length on the coordinate distance Z (expressed in meters) for
a constant value of T and for different values of �: The
dashed line corresponds to � ¼ 0, the dotted line corresponds
to � ¼ 10�52 m�2, and the solid line corresponds to
� ¼ 10�51 m�2.
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their form will depend on the gauge choice. We argue that
the above procedure of linearization is consistent in some
coordinate systems but not in others. In particular, it is
inconsistent to linearize the equations in the familiar
Friedmann-Robertson-Walker cosmological coordinates
(the metric only depends on time).

Einstein equations can, however, be consistently linear-
ized in Schwarzschild-de Sitter coordinates; then h���

corresponds to a linearized version of the SdS metric,
expanded to the first order in �. This metric can be easily
modified to fulfill the Lorenz gauge condition. In this
particular gauge, i.e., in this particular choice of coordi-
nates, the analysis of gravitational waves follows a pattern
very similar to the one in Minkowski space-time. In the
case where the �h�� term is dropped, the residual gauge

freedom of the Lorenz gauge allows for the removal of 4
additional degrees of freedom in the general solution,
leaving the wavelike component with the usual 2 physical
degrees of freedom of waves propagating in flat space-
time.

On the contrary, if the term �h�� is retained in the

equations of motion, the situation changes. Even in the
Lorenz gauge, the invariance under residual gauge trans-
formations is lost. Again, it is not hard to find the most
general solution to the linearized equations composed of a
background and wavelike components. We prove the back-
ground solution to be consistent with the result previously
found if � is small. Since there is no residual invariance,
the wavelike solution has to be interpreted as a massive
wave with 5 degrees of freedom (the gauge condition and
the trace condition amount to five constraints). However,

we can make use of the approximate residual invariance at
the leading order in � to rewrite the solution as massless
gravitational waves with position-dependent modified am-
plitudes that change very slowly given the current values of
�. There are only two Oð1Þ polarizations; the remaining
degrees of freedom (up to the five independent ones re-
quired for a massive spin two wave) are of Oð�Þ and
couple extremely weakly to matter sources.
Finally, one has to transform these solutions to the

physically significant FRW coordinates in order to extract
observable consequences. At this point, modifications of

Oð ffiffiffiffi
�

p Þ appear. Numerically, these can be quite relevant for
certain gravitational waves traveling from far away
sources, and the effect of � can absolutely have a detect-
able impact on pulsar timing arrays. Waves are modified
both in the phase and the amplitude; in cosmological
coordinates, they are redshifted in a prescribed way, and
the amplitude of plane waves grows as they move away
from the source.
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