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Self-Organized Criticality Induced by Diversity
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We have studied the collective behavior of a population of integrate-and-fire oscillators. We show
that diversity, introduced in terms of a random distribution of natural periods, is the mechanism
that permits one to observe self-organized criticality (SOC) in the long time regime. As diversity
increases the system undergoes several transitions from a supercritical regime to a subcritical one,
crossing the SOC region. Although there are resemblances with percolation, we give proofs that
criticality takes place for a wide range of values of the control parameter instead of a single
value. [S0031-9007(97)02469-1]

PACS numbers: 64.60.Lx, 87.10.+e, 64.60.Ak

In spite of the great interest received during thebut, as a matter of fact, it is the mechanism that enables
last decade by many systems exhibiting self-organizedne to observe it for certain continuously driven models
criticality (SOC) [1], it is still an open question to which do not exhibit SOC under normal circumstances.
find necessary or sufficient conditions to observe thisThe subject has a clear general interest. There are some
phenomenon, since there is no framework to predictcollective phenomena such as the mutual synchronization
a priori, whether an arbitrary extended system will be,of the members of a biological population [5] which tra-
by its own dynamics and without any parameter tuningditionally have been tackled by assuming that all the units
critical in the long time regime. are identical. However, this assumption is not a necessary

Nevertheless, there is a set of common trends whichequirement. Several authors [6,7] have shown that after
characterize systems displaying SOC [2]. One of thena suitable modeling, a group of nonidentical oscillators,
concerns the dynamics that drives the elements of theach endowed with its own natural frequency, picked from
system to a certain threshold. When some unit reachesrandom distribution, may display a coherent temporal ac-
the threshold, interaction between elements takes plactyity if the disorder level is below a certain critical value.
triggering a chain process or avalanche that ends wheA less intuitive opposite behavior has been also reported:
all the elements are below the threshold again. Then, disorder (diversity) can remove chaos and foster synchro-
power-law distribution of avalanche sizes is the hallmarknization in a certain model of oscillators [8]. Uncorrelated
of SOC. A key point, crucial to observe SOC, is thedifferences between the members of the population trigger
separation between the slow time scale associated wittegular spatiotemporal patterns. In this paper we give evi-
the process that leads the units to the threshold (drivingdence of another related phenomenon. A group of pulse-
and the fast time scale associated with the interactiomoupled oscillators evolve in a complex manner if they are
(avalanches). Conservation was also believed essenti@lentical, generating avalanches with many characteristic
to obtain SOC. Certainly, for the sandpile model [1]sizes (related with the linear dimension of the system).
and other randomly driven models it is an indispensablédowever, diversity will change the collective properties
requirement. A nonconservative dynamics introduce®f the long time regime and will induce SOC.

a characteristic length independent of system size [3]. Let us consider a population of integrate-and-fire oscil-
However, several continuously driven models proposedators. Each oscillator is defined in terms of a state vari-
later changed the widespread belief [4]. In these modelable E which evolves in time as
SOC is not necessarily destroyed in a nonconservative

. o : dE;
regime and the distribution of avalanche sizes follows a —L =5 — yE;, 1)
power-law decay in a wide region of parameter space, di

with exponents depending on the level of dissipation. 544 when E; reaches a threshold valuBg, the ith

~ Another point not studied so profoundly concerns theggcillator relaxes, and; is redistributed instantaneously
individual features of each element in the system. Up t%mong its neighbors (labeled ly according to
now, it has been common to assume that all the units are

identical. However, if SOC should have any relevance in E;—0
physics or biology it should be robust in spite of the inher- E —E + &
ent differences between the members of a population. In " " "
other words, diversity should not destroy the critical prop-and so on for evenfE, = Ey, Vk. This process, which
erties of a given self-organized system. The object of thigontinues untilE, < Ey, Yk, constitutes an avalanche
paper is to show that diversity not only does not break SO@vhose size is given by the number of relaxations (2). If

(2)
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>, ein = Ey Vi except for at least one element for which avalanches of all sizes are observed, but they are not
the inequality is strict, it is guaranteed that avalanchepower-law distributed [18]. Fot > 0 (convex driving)
of infinite size are impossible. Since the relaxing site isthe model exhibits a complex behavior which, depending
reset to zero and a fixed quantity, is transferred to the on the particular values of and e ranges from synchro-
neighbors, the model is intrinsically nonconservative. Itnization (in the sense that all the avalanches are exactly of
is assumedyEy;, < S and y is a non-negative constant sizeL?) to events of all sizes distributed in a complicated
whose physical meaning depends on the model one iway, as Fig. 1 illustrates. Here we observe that the prob-
dealing with. For instance, this model mimics a simplifiedability density P(s) for an avalanche of size presents a
version of the dynamics of spiking neurons, idealizing theseries of peaks at positions that are proportional to the lin-
cell membrane as amRC circuit [9]. E; denotes ear size of the systeth. This is a clear effect of the open
the membrane potential of a given neuron,! = RC  boundaries. Moreover, the large peak of ortieconfirms
the membrane time constarft, (in appropriate units) a the tendency to synchronization fer > 0, which, how-
constant current that does act as a driving, apdthe  ever, in this case, the system is not able to sustain [19].
synaptic coupling strength between neuransand n. The situation changes completely for nonidentical oscil-
Equations (1) and (2) may also model the evolution of thdators. For simplicity we have considered a uniform dis-
cardiac pacemaker [10], swarms of flashing fireflies, andribution of periods. The widtl\, expressed as the length
many other biological systems [11,12]. of the symmetric intervalT — A/2,T + A/2) centered

In order to study local connectivity we have consideredwithout loss of generality arountl = 1, is a measure of
the case of a two-dimensional square lattice of lineadisorder or diversity. In Fig. 2 we plot the distribution
size L with nearest-neighbor uniform interactions, = of avalanche sizes for different values dffor the same
e. Recent studies on integrate-and-fire neurons [13] arg and ¢ as in Fig. 1. We observe several stages. First
more devoted to lattice models with periodic boundaryof all, the sequence of peaks displayed in Fig. 1 typi-
conditions. However, the assumption of open boundargal of identical oscillators continuously disappears when
conditions breaks the homogeneous connectivity allowingliversity increases. Then the distribution of avalanches
the boundary units to be connected with less neighborsecomes smoother, without intermediate peaks, but still
than the bulk units. This assumption will be present inmaintaining the large one corresponding to avalanches
the rest of the paper and makes the model also interestiraf almost the size of the systefi?), as displayed for
in other fields. Fory = 0 it reduces to a coupled map A = 0.15 in Fig. 2 where this trend towards synchro-
lattice proposed by Feder and Feder as a stick-slip modelization can be seen clearly. The behavior is supercriti-
of earthquakes [14]. cal, because there are many events able to span the

In addition, we have introduced diversity in terms of system. More interesting transitions take place as disorder
a random distribution of intrinsic periods. The period of increases. For a larger width, the system self-organizes in

each oscillator is given by a critical state, without any spatial characteristic scale, as
1 S the power-law distribution of avalanche sizes in the curve
T=— In<S7E>. (3) with A = 0.5 of Fig. 2 indicates. The effect of the dif-
Y — YEw

ferent periods is to reduce the probability of having large
There are different ways to introduce such types ofavalanches. Then, for very wide distributions of periods
quenched disorder in the model. One possibility is to

assume a distribution a8 and C. Another option is to

consider a distribution of input currenfs Both situations 1 : : :
are plausible from a realistic point of view, but we have A=0—
considered the latter. Let us mention that the most usual TIAN ]
way to introduce diversity in this sort of model is by AN
assuming a quenched random distribution of thresholds 3 ool \ i
[15,16]. Although the distribution of thresholds also o
implies diversity in the intrinsic periods, it has influence in -~ & o001 [ ]
both the slow and the fast time scale, while our approach w
affects only the slow dynamics. This difference is crucial 0.0001 L ]
as we will see later.

When all the oscillators are identical the model de- w5 [ =64 ]
scribed by (1) and (2) does not display SOC for any value v =0.5,6 =0.24
of y =0 and 0 < & = 0.25. Starting with uniformly 1606 . s s
distributed random initial conditionsy; € [0, Ey, = 1], ! 1o 100 1000 10000
for y = 0 and integer raticE, /e only large avalanches s

take place because many units reach the threshold simytG. 1. Log-log plot of the stationary distribution of
taneously [17,18]. If the ratidy, /e is not an integer, avalanche sizeB(s) versuss for the model without diversity.
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FIG. 2. Same as Fig. 1 for different degrees of diversity. |G, 3, Finite-size scaling analysis of the distribution of
avalanche sizes for the critical region. Fdr= 0.3 we obtain
v = 2.0 and 8 = 3.15 (this curve has been shifted one decade
upwards for clarity sake), whereas far= 0.6, » = 1.8 and

one could expect a strong decay Bfs). In fact, this 5 = 2.85 are used.

is what happens whed = 1.5 for the case of Fig. 2,

as exemplified by the curve with = 2: a characteris- ) ) ) ) ]
tic scale independent of the system size appears and this perturbation and hence identical couplings are not

responsible for the exponential decay. This means thft Necessary cono!ition to _obtain criticality.' This feature
for large diversity avalanches are localized and the syseould be relevant in realistic models of spiking neurons.
tem is subcritical. These transitions are not sharp, and the The results shown so far are not characteristic of a
reported values of can change witke and y. In par- particular value of the parameters which describe the
ticular the loss of criticality and the appearance of a finiteSystem. In fact there is a region in thg, £) space where
correlation length have been found difficult to character-diversity induces SOC and it corresponds to large values
ize. Notice the resemblance between the three curves ff € and smally. It would be very interesting to have
Fig. 2 and those found in percolation, where the criticaknowledge of the complete phase diagram of the model.
region is restricted to a single point of the control parame-

ter [20]. However, our model shows a finite region of 1000

criticality instead of an infinitesimal one, as we are going Ao ]
to show below. This kind of behavior is, for the best of | Azl
our knowledge, the first case where SOC is found between A=03%
a supercritical region and a subcritical one in this class Vv ﬁfgig:-
of models. S A=0.7
Let us pay some attention to the region where the 2 ' £ A0
power-law decay of(s) is reported. We have performed S Azt e
a finite-size scaling analysis for different widtlhs The é A=l20 ]
results are shown in Fig. 3. A data collapse for different 3 Nl
system sizesL is obtained when plottingL? P (s, L) g A=164-|
against the rescaled variabl/L”. The increment of = 0 A=18- ]
system size does not show any deviation from the scaling AZiye ]

for separate enough values of the control paramater
suppc_)rting our statement of a critical regic_)n ir_15tead of Linear size of the system L

a critical point. As a complement we plot in Fig. 4 the _ ]

mean size of the avalanches as a function of systerﬁ'G- 4. Mean size of the avalanches as a function of the

size, for different values of diversity. The behav{ey ~ g?gstesm: S(;.Z2e4. folrzofl 'fifc‘féﬁgéaﬁﬂﬁ:&f Sgggf'gilz{sm%hi:s

L¥~F .(consequenc'e Of the sca'li.ng anS{itZ) even f0_|' _|argéxponent decreases continuously with increasing diversity in
L confirms the scaling in the critical region. In addition, the supercritical region. Notice the accumulation of data points
we have released the restriction of identical couplingor a wide range ofA values (starting foA = 0.3) in a narrow

strengths, introducing randomness in spagg guenched interval of mean avalanche sizes, corresponding to the critical

d bl ) d i led region. Here the data fit the scalidg” #. It is difficult to
random variable) or in space and time;[1) annealed], ,aqict up to which values the scaling holds, but whee 1.5

by means of a uniform random distribution around thethe growth of(s) with L is clearly logarithmic, in agreement
mean values. We have verified that SOC is robust underwith a subcritical region.

1000
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synchronization, in the sense previously explained, no Note added—Just after submitting this paper we

matter the width of the distribution of periods. became aware of Ref. [23] where disorder is introduced in
Our results also have sense in the context of earththe couplings for the OFC model (with = 0), attaining

guakes if we imagine the Feder and Feder model aa collective behavior in agreement with our results.
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model [21]. The different intrinsic periods of each unit
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