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Self-Organized Criticality Induced by Diversity
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We have studied the collective behavior of a population of integrate-and-fire oscillators. We show
that diversity, introduced in terms of a random distribution of natural periods, is the mechanism
that permits one to observe self-organized criticality (SOC) in the long time regime. As diversity
increases the system undergoes several transitions from a supercritical regime to a subcritical one,
crossing the SOC region. Although there are resemblances with percolation, we give proofs that
criticality takes place for a wide range of values of the control parameter instead of a single
value. [S0031-9007(97)02469-1]

PACS numbers: 64.60.Lx, 87.10.+e, 64.60.Ak
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In spite of the great interest received during th
last decade by many systems exhibiting self-organiz
criticality (SOC) [1], it is still an open question to
find necessary or sufficient conditions to observe th
phenomenon, since there is no framework to predi
a priori, whether an arbitrary extended system will be
by its own dynamics and without any parameter tunin
critical in the long time regime.

Nevertheless, there is a set of common trends wh
characterize systems displaying SOC [2]. One of the
concerns the dynamics that drives the elements of
system to a certain threshold. When some unit reach
the threshold, interaction between elements takes pla
triggering a chain process or avalanche that ends wh
all the elements are below the threshold again. Then
power-law distribution of avalanche sizes is the hallma
of SOC. A key point, crucial to observe SOC, is th
separation between the slow time scale associated w
the process that leads the units to the threshold (drivin
and the fast time scale associated with the interacti
(avalanches). Conservation was also believed essen
to obtain SOC. Certainly, for the sandpile model [1
and other randomly driven models it is an indispensab
requirement. A nonconservative dynamics introduc
a characteristic length independent of system size [
However, several continuously driven models propos
later changed the widespread belief [4]. In these mod
SOC is not necessarily destroyed in a nonconservat
regime and the distribution of avalanche sizes follows
power-law decay in a wide region of parameter spac
with exponents depending on the level of dissipation.

Another point not studied so profoundly concerns th
individual features of each element in the system. Up
now, it has been common to assume that all the units
identical. However, if SOC should have any relevance
physics or biology it should be robust in spite of the inhe
ent differences between the members of a population.
other words, diversity should not destroy the critical pro
erties of a given self-organized system. The object of th
paper is to show that diversity not only does not break SO
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but, as a matter of fact, it is the mechanism that enable
one to observe it for certain continuously driven model
which do not exhibit SOC under normal circumstances
The subject has a clear general interest. There are so
collective phenomena such as the mutual synchronizatio
of the members of a biological population [5] which tra-
ditionally have been tackled by assuming that all the unit
are identical. However, this assumption is not a necessa
requirement. Several authors [6,7] have shown that aft
a suitable modeling, a group of nonidentical oscillators
each endowed with its own natural frequency, picked from
a random distribution, may display a coherent temporal a
tivity if the disorder level is below a certain critical value.
A less intuitive opposite behavior has been also reporte
disorder (diversity) can remove chaos and foster synchr
nization in a certain model of oscillators [8]. Uncorrelated
differences between the members of the population trigg
regular spatiotemporal patterns. In this paper we give ev
dence of another related phenomenon. A group of puls
coupled oscillators evolve in a complex manner if they ar
identical, generating avalanches with many characterist
sizes (related with the linear dimension of the system
However, diversity will change the collective properties
of the long time regime and will induce SOC.

Let us consider a population of integrate-and-fire osci
lators. Each oscillator is defined in terms of a state var
ableE which evolves in time as

dEi

dt
­ S 2 gEi , (1)

and when Ei reaches a threshold valueEth, the ith
oscillator relaxes, andEi is redistributed instantaneously
among its neighbors (labeled byn) according to

Ei ! 0

En ! En 1 ´in ,
(2)

and so on for everyEk $ Eth ;k. This process, which
continues untilEk , Eth ;k, constitutes an avalanche
whose sizes is given by the number of relaxations (2). If
© 1997 The American Physical Society
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n ´in # Eth ;i except for at least one element for whic

the inequality is strict, it is guaranteed that avalanch
of infinite size are impossible. Since the relaxing site
reset to zero and a fixed quantitýin is transferred to the
neighbors, the model is intrinsically nonconservative.
is assumedgEth , S and g is a non-negative constan
whose physical meaning depends on the model one
dealing with. For instance, this model mimics a simplifie
version of the dynamics of spiking neurons, idealizing th
cell membrane as anRC circuit [9]. Ei denotes
the membrane potential of a given neuron,g21 ­ RC
the membrane time constant,S (in appropriate units) a
constant current that does act as a driving, and´in the
synaptic coupling strength between neuronsi and n.
Equations (1) and (2) may also model the evolution of th
cardiac pacemaker [10], swarms of flashing fireflies, a
many other biological systems [11,12].

In order to study local connectivity we have considere
the case of a two-dimensional square lattice of line
size L with nearest-neighbor uniform interactions,´in ;
´. Recent studies on integrate-and-fire neurons [13] a
more devoted to lattice models with periodic bounda
conditions. However, the assumption of open bounda
conditions breaks the homogeneous connectivity allowi
the boundary units to be connected with less neighbo
than the bulk units. This assumption will be present
the rest of the paper and makes the model also interes
in other fields. Forg ­ 0 it reduces to a coupled map
lattice proposed by Feder and Feder as a stick-slip mo
of earthquakes [14].

In addition, we have introduced diversity in terms o
a random distribution of intrinsic periods. The period o
each oscillator is given by

T ­
1
g

ln

µ
S

S 2 gEth

∂
. (3)

There are different ways to introduce such types
quenched disorder in the model. One possibility is
assume a distribution ofR and C. Another option is to
consider a distribution of input currentsS. Both situations
are plausible from a realistic point of view, but we hav
considered the latter. Let us mention that the most us
way to introduce diversity in this sort of model is by
assuming a quenched random distribution of thresho
[15,16]. Although the distribution of thresholds als
implies diversity in the intrinsic periods, it has influence i
both the slow and the fast time scale, while our approa
affects only the slow dynamics. This difference is cruci
as we will see later.

When all the oscillators are identical the model de
scribed by (1) and (2) does not display SOC for any val
of g $ 0 and 0 , ´ # 0.25. Starting with uniformly
distributed random initial conditions,Ei [ f0, Eth ; 1g,
for g ­ 0 and integer ratioEthy´ only large avalanches
take place because many units reach the threshold sim
taneously [17,18]. If the ratioEthy´ is not an integer,
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avalanches of all sizes are observed, but they are n
power-law distributed [18]. Forg . 0 (convex driving)
the model exhibits a complex behavior which, dependin
on the particular values ofg and´ ranges from synchro-
nization (in the sense that all the avalanches are exactly
sizeL2) to events of all sizes distributed in a complicated
way, as Fig. 1 illustrates. Here we observe that the prob
ability densityPssd for an avalanche of sizes presents a
series of peaks at positions that are proportional to the lin
ear size of the systemL. This is a clear effect of the open
boundaries. Moreover, the large peak of orderL2 confirms
the tendency to synchronization forg . 0, which, how-
ever, in this case, the system is not able to sustain [19].

The situation changes completely for nonidentical oscil
lators. For simplicity we have considered a uniform dis
tribution of periods. The widthD, expressed as the length
of the symmetric intervalsT 2 Dy2, T 1 Dy2d centered
without loss of generality aroundT ­ 1, is a measure of
disorder or diversity. In Fig. 2 we plot the distribution
of avalanche sizes for different values ofD for the same
g and ´ as in Fig. 1. We observe several stages. Firs
of all, the sequence of peaks displayed in Fig. 1 typi
cal of identical oscillators continuously disappears whe
diversity increases. Then the distribution of avalanche
becomes smoother, without intermediate peaks, but st
maintaining the large one corresponding to avalanche
of almost the size of the systemsL2d, as displayed for
D ­ 0.15 in Fig. 2 where this trend towards synchro-
nization can be seen clearly. The behavior is supercrit
cal, because there are many events able to span t
system. More interesting transitions take place as disord
increases. For a larger width, the system self-organizes
a critical state, without any spatial characteristic scale, a
the power-law distribution of avalanche sizes in the curv
with D ­ 0.5 of Fig. 2 indicates. The effect of the dif-
ferent periods is to reduce the probability of having large
avalanches. Then, for very wide distributions of period

FIG. 1. Log-log plot of the stationary distribution of
avalanche sizesPssd versuss for the model without diversity.
1493
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FIG. 2. Same as Fig. 1 for different degrees of diversity.

one could expect a strong decay ofPssd. In fact, this
is what happens whenD $ 1.5 for the case of Fig. 2,
as exemplified by the curve withD ­ 2: a characteris-
tic scale independent of the system size appears an
responsible for the exponential decay. This means
for large diversity avalanches are localized and the s
tem is subcritical. These transitions are not sharp, and
reported values ofD can change with́ and g. In par-
ticular the loss of criticality and the appearance of a fin
correlation length have been found difficult to charact
ize. Notice the resemblance between the three curve
Fig. 2 and those found in percolation, where the critic
region is restricted to a single point of the control param
ter [20]. However, our model shows a finite region
criticality instead of an infinitesimal one, as we are goi
to show below. This kind of behavior is, for the best
our knowledge, the first case where SOC is found betw
a supercritical region and a subcritical one in this cla
of models.

Let us pay some attention to the region where t
power-law decay ofPssd is reported. We have performe
a finite-size scaling analysis for different widthsD. The
results are shown in Fig. 3. A data collapse for differe
system sizesL is obtained when plottingLbPss, Ld
against the rescaled variablesyLn . The increment of
system size does not show any deviation from the sca
for separate enough values of the control parameterD,
supporting our statement of a critical region instead
a critical point. As a complement we plot in Fig. 4 th
mean size of the avalanches as a function of sys
size, for different values of diversity. The behaviorksl ,
L2n2b (consequence of the scaling ansatz) even for la
L confirms the scaling in the critical region. In additio
we have released the restriction of identical coupli
strengths, introducing randomness in space (´ij quenched
random variable) or in space and time [´ijstd annealed],
by means of a uniform random distribution around t
mean valué . We have verified that SOC is robust und
1494
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FIG. 3. Finite-size scaling analysis of the distribution of
avalanche sizes for the critical region. ForD ­ 0.3 we obtain
n ­ 2.0 andb ­ 3.15 (this curve has been shifted one decade
upwards for clarity sake), whereas forD ­ 0.6, n ­ 1.8 and
b ­ 2.85 are used.

this perturbation and hence identical couplings are no
a necessary condition to obtain criticality. This feature
could be relevant in realistic models of spiking neurons.

The results shown so far are not characteristic of
particular value of the parameters which describe th
system. In fact there is a region in thesg, ´d space where
diversity induces SOC and it corresponds to large value
of ´ and smallg. It would be very interesting to have
knowledge of the complete phase diagram of the mode

FIG. 4. Mean size of the avalanches as a function of th
system size for different values of diversity usingg ­
0.5, ´ ­ 0.24. For identical unitsksl scales asL2. This
exponent decreases continuously with increasing diversity
the supercritical region. Notice the accumulation of data point
for a wide range ofD values (starting forD $ 0.3) in a narrow
interval of mean avalanche sizes, corresponding to the critic
region. Here the data fit the scalingL2n2b . It is difficult to
predict up to which values the scaling holds, but whenD $ 1.5
the growth ofksl with L is clearly logarithmic, in agreement
with a subcritical region.
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However, taking into account that three parameters a
involved, g, ´, and the widthD, and different system
sizes are needed, a complete sweep of the phase sp
would require an enormous effort, which is beyond ou
possibilities. Nevertheless, let us mention that for larg
g there exists a range of́ values which give complete
synchronization, in the sense previously explained, n
matter the width of the distribution of periods.

Our results also have sense in the context of ear
quakes if we imagine the Feder and Feder model
a rough version of the Burridge-Knopoff spring-block
model [21]. The different intrinsic periods of each uni
will be caused by different elastic constants in the sprin
connecting the blocks with the driving plate. Whe
g . 0 a nonlinearity in the elastic response of thes
springs is introduced. With the same goal in mind w
have examined our disordered model replacing (2) by t
Olami et al. (OFC) rules [4,19], and we have found tha
the SOC region is robust in spite of a very large dis
order, although eventually it can give rise to localize
avalanches. These results contrast with the studies p
formed in Refs. [15,16] where a distribution of threshold
was considered. It was found that while disorder is i
relevant in the conservative regime, it destroys criticali
for the dissipative case, leading to an exponential dist
bution of avalanche sizes [15]. A similar change in th
collective properties of the disordered system has be
used to claim the lack of robustness of OFC as a mod
of earthquakes [16]. Other authors [22] have consider
the influence of defects in the model. The main resu
was to observe that SOC is robust even for a large nu
ber of defects. Notice that for the same model random
ness included in different parameters leads to differe
behaviors.

Finally, let us remark on the effect that different type
of noise may have on the collective features of the mod
The original properties of the Feder and Feder mod
(with g ­ 0) are not robust to noise, e.g., altering th
relaxation rule (2) by adding a small random number
any reset unit changes the cooperative behavior of t
system [17,18]. It does not tend to form a few group
of elements with the same phase, but it goes towards
SOC state. Note that this type of noise has a complete
different nature than the quenched source of divers
considered in this paper. While the first can be triggere
by internal fluctuations, the second is an inherent featu
of each member of the population. Furthermore, whi
the dynamic noise only induces SOC in the linear regim
sg ­ 0d, and for very small noise intensities, diversity
induces SOC in a wide region of the parameter space.

In summary, we give an example showing that dive
sity is a new mechanism for the emergence of SOC a
that criticality in nonequilibrium systems is not just a sin
gularity in parameter space, as it happens in equilibrium
Our results have interest for models of integrate-and-fi
neurons as well as for earthquakes.
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Note added.—Just after submitting this paper we
became aware of Ref. [23] where disorder is introduced i
the couplings for the OFC model (withg ­ 0), attaining
a collective behavior in agreement with our results.
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