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A cold relic axion condensate resulting from vacuum misalignment in the early Universe oscillates with

a frequency m, where m is the axion mass. We determine the properties of photons propagating in a

simplified version of such a background where the sinusoidal variation is replaced by a square wave

profile. We prove that previous results, which indicated that charged particles moving fast in such a

background radiate (originally derived assuming that all momenta involved were much larger than m),

hold for long wavelengths, too. We also analyze in detail how the introduction of a magnetic field changes

the properties of photon propagation in such a medium. We briefly comment on possible astrophysical

implications of these results.
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I. INTRODUCTION

Axions, originally introduced to solve the strong CP
problem [1], are to this date a viable candidate to constitute
the dark matter of the Universe [2]. Their contribution to
the mass density results from the energy stored in the
collective oscillations around the minimum of the axion
potential

aðtÞ ¼ a0 cosðmtÞ; (1)

with a frequency that is given by the axion mass m. We
know that this mass must be somewhere in the range [3]

1 eV>m> 10�6 eV: (2)

The coupling of axions to photons takes place through the
universal term1

L a�� ¼ ga��
�

2�

a

fa
F��

~F��; (3)

where ~F�� ¼ 1
2 �

����F�� is the dual electromagnetic

tensor. The dimensionful quantity fa is the axion decay
constant—the equivalent of f� as axions are assumed to be
the pseudo-Goldstone bosons associated with the breaking
of the Peccei-Quinn symmetry UPQð1Þ [1]. On fa, we have
a range of bounds: fa > 104 GeV coming from direct
experimental searches of axions coupling directly to matter
[5]; fa > 107 GeV from (somewhat weaker) astrophysical
constraints [6], largely mass independent; or fa > 107 for
0:02 eV<m< 0:4 eV coming from phase II of the CAST
experiment [7]. For some reviews of the experimental/
observational search for axions, see Ref. [3].

The constant ga�� is model-dependent, but it is typically

of order 1 in most axion models [8]. The axion, being a
pseudo-Goldstone boson, satisfies the relation fam ’
constant ’ f�m�, thus constraining the basic parameters
of the theory. However, the results presented below apply
also to other light pseudoscalar particles, sometimes
termed axionlike particles (ALP). The coupling between
ALP and photons could in principle be stronger, since it is
not related to their mass.
Integrating by parts, we can write the term coupling

axions or ALP to photons like

L a�� ¼ 1
2��A�

~F��; (4)

with

�� ¼ �ðtÞ	�0; �ðtÞ ¼ �0 sinmt: (5)

The Lagrangian for a photon in the cold axion background
is then

L ¼ �1
4F

��F�� þ 1
2��A�

~F��; (6)

and the relevant quantity to determine the physical effect of
this coupling is

�0 ¼ 2ga��
�

�

a0m

fa
: (7)

Now, we can proceed to quantizing the photon field in
such a background. This has been previously done in
Ref. [9] in the case where �ðtÞ is assumed to be a constant,
�ðtÞ ¼ �0. It was found that in this case, the two physical
photon polarizations get their dispersion relations modified
in the following way:

!� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 � �0j ~kj

q
: (8)

As a consequence, processes that are forbidden on Lorentz-
invariance grounds, such as � ! eþe� or e ! e�, have a
nonvanishing probability if certain kinematical constraints
are fulfilled. The interested reader can see Ref. [10] for

1This term is often written as LA�� ¼ GA��

4 F��
~F��
A, where


A is the axion field [4]. Both GA�� and ga�� are used inter-
changeably in the axion literature as coupling constants having
dimensions E�1. The constant ga�� used here is, however,
dimensionless, and it should not be confused with the latter.
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possible observable consequences. If measured, these ef-
fects would constitute prima facie evidence that not only
axions or ALP exist but they do constitute the primary
ingredient of the dark matter of the Universe.

It was argued in Refs. [10,11] that taking �ðtÞ as a
constant was a good approximation if the momenta of all
particles involved in the process were larger than m, the
period of oscillations. However, if the wavelength of some
of the particles are comparable or lower than the period
of oscillation, one must necessarily deal with a time-
dependent external potential. Thus, it seems to us quite
important to establish the basic principles of photon propa-
gation in a time-dependent axion background. For this
reason, in this paper, we solve the problem of photon
propagation in an oscillatory, but spatially constant, axion
background exactly. We shall also include an external
magnetic field to see how the combined effect modifies
the properties of photons moving in such an environment.
We will discuss at the end of the paper some possible
physical consequences.

To keep the paper technically simple, we have approxi-
mated the sinusoidal time dependence of the background
by a square wave with the same period. A sinusoidal wave
involves Mathieu special functions complicating the cal-
culation enormously. We base this approximation on the
similarity of the present effect with the emergence of the
band structure in periodic potentials [12], exchanging time
and space and momenta and energies. It is well-known in
solid state physics that even such a simple model fully
captures the essentials of metallic conductors and semi-
conductors. Therefore, we firmly believe that the physics
of the problem being discussed remains unaltered by our
technical simplification.

II. SOLVING FOR THE EIGENMODES
AND EIGENVALUES

We introduce a Fourier transform with respect to the
spatial coordinates only and write the photon field as

A�ðt; ~xÞ ¼
Z d3k

ð2�Þ3 e
i ~k� ~xÂ�ðt; ~kÞ: (9)

The equation for Â�ðt; ~kÞ is
½g��ð@2t þ ~k2Þ � i�������k��Â�ðt; ~kÞ ¼ 0: (10)

We now define

S�� ¼ �������k�����
�
�k
; (11)

which can also be written as

S�� ¼ ½ð� � kÞ2 � �2k2�g�� þ k2���� (12)

þ �2k�k� � ð� � kÞð��k� þ ��k�Þ; (13)

and

P��
� ¼ S��

S
� iffiffiffiffiffiffi

2S
p �������k�; S ¼ S�� ¼ 2�2 ~k2:

(14)

The properties of these quantities are discussed in
Ref. [9]. Note that the time dependence [due to �ðtÞ] in
P
��
� cancels. With the help of these projectors, we can

write Eq. (10) as2
4g��ð@2t þ ~k2Þ þ

ffiffiffi
S

2

s
ðP��

þ � P��� Þ
3
5Â�ðt; ~kÞ ¼ 0: (15)

To solve the equations of motion, we introduce the polar-
ization vectors defined in Ref. [9] and write2

Â �ðt; ~kÞ ¼
X

�¼þ;�
f�ðtÞ"�ð ~k; �Þ: (16)

These vectors satisfy

P��
� "�ð ~k;�Þ ¼ "�ð ~k;�Þ; P��

� "�ð ~k;�Þ ¼ 0 (17)

and do not depend on t, so

½@2t þ ~k2 � �ðtÞj ~kj�f�ðtÞ ¼ 0: (18)

As mentioned, we will approximate the sine function in
�ðtÞ by a square wave function:

�ðtÞ ¼
�þ�0 2nT < t < ð2nþ 1ÞT
��0 ð2nþ 1ÞT < t < 2nT

: (19)

The relevant parameters are

�0 ¼ 2ga��
�

�

a0m

fa
; T ¼ �

m
: (20)

There is an equation for each polarization. However, they
are related. To recover one from the other, we can just
make the replacement �0 ! ��0. Also, because �ðtÞ
changes sign after a time T in the square wave approxima-
tion, one solution is a time-shifted copy of the other:
f�ðtÞ ¼ fþðtþ TÞ. In what follows, we will work in the
case � ¼ þ. It is obvious that the conclusions also apply to
the other physical polarization, � ¼ �.
Since �ðtÞ is piecewise-defined, we will solve the equa-

tion in two regions:
(i) Region 1: 0< t < T, �ðtÞ ¼ �0

d2f1ðtÞ
dt2

þ ð ~k2 þ �0j ~kjÞf1ðtÞ ¼ 0; (21)

f1ðtÞ ¼ A0ei�t þ Ae�i�t; �2 ¼ ~k2 þ �0j ~kj:
(22)

2When �� only has a temporal component, these polarization
vectors actually reduce to the usual ones.
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(ii) Region 2: �T < t < 0, �ðtÞ ¼ ��0

d2f2ðtÞ
dt2

þ ð ~k2 � �0j ~kjÞf2ðtÞ ¼ 0; (23)

f2ðtÞ ¼ B0ei�t þ Be�i�t; �2 ¼ ~k2 � �0j ~kj:
(24)

We impose that both functions coincide at t ¼ 0, and we do
the same for their derivatives

f1ð0Þ ¼ f2ð0Þ; f01ð0Þ ¼ f02ð0Þ: (25)

We now write fðtÞ ¼ e�i!tgðtÞ and demand that gðtÞ have
the same periodicity as �ðtÞ:
g1ðtÞ ¼ ei!tf1ðtÞ ¼ A0eið!þ�Þt þ Aeið!��Þt;

g2ðtÞ ¼ ei!tf2ðtÞ ¼ B0eið!þ�Þt þ Beið!��Þt;

g1ðTÞ ¼ g2ð�TÞ; g01ðTÞ ¼ g02ð�TÞ:
(26)

For these conditions to be fulfilled, the coefficients have to
solve the linear system

A0 þ A ¼ B0 þ B; �A0 � �A ¼ �B0 � �B;

eið!þ�ÞTA0 þ eið!��ÞTA¼ e�ið!þ�ÞTB0 þ e�ið!��ÞTB;

ð!þ �Þeið!þ�ÞTA0 þ ð!� �Þeið!��ÞTA

¼ ð!þ �Þe�ið!þ�ÞTB0 þ ð!� �Þe�ið!��ÞT: (27)

The linear system can be expressed as

M̂

A0

A

B0

B

0
BBBBB@

1
CCCCCA ¼

0

0

0

0

0
BBBBB@

1
CCCCCA; (28)

with

M̂T ¼

1 � eið!þ�ÞT ð!þ �Þeið!þ�ÞT

1 �� eið!��ÞT ð!� �Þeið!��ÞT

�1 �� �e�ið!þ�ÞT �ð!þ �Þe�ið!þ�ÞT

�1 � �e�ið!��ÞT �ð!� �Þe�ið!��ÞT

0
BBBBB@

1
CCCCCA:

(29)

The problem being discussed here is formally similar to
the solution of the Kronig-Penney [12] one-dimensional
periodic potential, except the periodicity is now in time
rather than in space.

In order to find a nontrivial solution, one has to demand

the condition of vanishing determinant of M̂, which is

cosð2!TÞ ¼ cosð�TÞ cosð�TÞ

� �2 þ �2

2��
sinð�TÞ sinð�TÞ; (30)

with � and � given by Eqs. (22) and (24), respectively. In
order to get analytical expressions, we will work in the

limit of long wavelengths j ~kjT � 1, which is just the one
that is potentially problematic as discussed in the introduc-
tion. Expanding both sides,

!2� 1
3!

4T2þ . . .¼ ~k2�ð13 ~k4� 1
12�

2
0
~k2ÞT2þ . . . ; (31)

which means

!2 �
�
1þ �2

0T
2

12

�
~k2: (32)

If the determinant vanishes, the system to solve is

1 1 �1

0 1 � 1
2

�
1� �

�

�
0 0 1

0
BBB@

1
CCCA

A0

A

B0

0
BB@

1
CCA ¼

1

1
2

�
1þ �

�

�
hð�;�; TÞ

0
BBB@

1
CCCAB; (33)

where

hð�;�; TÞ ¼ ��� �

�þ �

ei�T � e�i2!Tei�T

ei�T � e�i2!Te�i�T
; (34)

leading to

A0

B
¼

�
1� �� �

�þ �

ei�Tei2!T � ei�T

ei�Tei2!T � e�i�T
� 1

2

�
1þ �

�

�

þ 1

2

�
1� �

�

�
�� �

�þ �

ei�Tei2!T � ei�T

ei�Tei2!T � e�i�T

�
A

B
¼

�
1

2

�
1þ �

�

�
� 1

2

�
1� �

�

�
�� �

�þ �

� ei�Tei2!T � ei�T

ei�Tei2!T � e�i�T

�
B0

B
¼

�
��� �

�þ �

ei�Tei2!T � ei�T

ei�Tei2!T � e�i�T

�
: (35)

In the limit �0 � j ~kj, j ~kjT � 1,

A0

B
� �B0

B
� 1

4

�0

j ~kj ;
A

B
� 1� �0

2j ~kj : (36)

Finally, imposing the usual normalization,

Z
fkðtÞf	k0 ðtÞ ¼ 2�	ðj ~kj � j ~k0jÞ; (37)

we get
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B ¼
2
64

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 þ �0j ~kj

q
2j ~kj þ �0

���������A

B

��������2þ
��������A

0

B

��������2
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 � �0j ~kj

q
2j ~kj � �0

�
1þ

��������B
0

B

��������2
�375

�1=2

�
�
1þ �0

4j ~kj
�
: (38)

This completes the determination of the eigenvectors.

A. Exact determination of the eigenvalues

We can also solve Eq. (30) exactly, without having to
assume the long-wavelength limit as above, but this can be
done only numerically. The solution only depends on �0

and m through the dimensionless combination �0T. There
are values of k for which there is no solution, as seen in
Fig. 1. However, these gaps get narrower when the product
�0T decreases. In practice, the largest possible physical
value for this quantity is �0T ¼ 10�14, and then the gaps
are practically nonexistent and certainly totally irrelevant
for the purposes of the present paper.

It is interesting to investigate whether complex solutions
exist for ! in the forbidden narrow bands. We note that the
right-hand side of Eq. (30) is necessarily real, thus ! must
be purely real or purely imaginary. In the latter case, the
left-hand side is replaced by a cosh, having as argument
the imaginary part of 2!T. For this to have a solution, the
right-hand side must be positive and larger than 1.
Inspection of this term reveals that it is larger than one in

the forbidden zones but actually alternates sign. Therefore,
not even an imaginary solution exists for the first, third,
etc., forbidden regions.

B. Calculation of the transition e ! e�

In order to make the photon field Hermitian, we add
Eq. (9) and its conjugate. Introducing creation and annihi-
lation operators for each one of the proper modes, we get
(both polarizations are included)

A�ðt; ~xÞ ¼
Z d3k

ð2�Þ3
X
�

½að ~k; �Þgðt; ~k; �Þ"�ð ~k; �Þe�ikx

þ ayð ~k; �Þg	ðt; ~k; �Þ"	�ð ~k; �Þeikx�; (39)

where kx 
 !t� ~k � ~x. Now, we want to compute hfjSjii
for an initial state of one electron of momentum p and a
final state of an electron of momentum q and a photon of
momentum k ¼ p� q.

hfjSjii ¼ ie"	�ð ~k; �Þ �uq��upð2�Þ3	ð3Þð ~kþ ~q� ~pÞ
�

Z
dtg	ðt; ~k; �Þeið!þEq�EpÞt: (40)

If we take �ðtÞ constant, gðt; ~k; �Þ ¼ 1, and we have

hfjSjii ¼ ie"	�ð ~k; �Þ �uq��upð2�Þ4	ð4Þðkþ q� pÞ: (41)

In the square wave approximation (19), the time integration
yields

FIG. 1. Plots of the solution for �0T ¼ 1 and �0T ¼ 10�14. In the �0T ! 0 limit, the solutions correspond to the straight lines

!� j ~kj (plus their periodic repetitions). Small gaps develop, but they become only physically significant when �0T ¼ Oð1Þ. The
physical region corresponds to the white area; the gray areas are just periodic repetitions.
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hfjSjii ¼ ie �uq�
�up"

	
�ð ~k; �Þð2�Þ3	ð ~kþ ~q� ~pÞ

� �fA	ð�þ Eq � EpÞ þ B	ð�þ Eq � EpÞ
þ A0	ð��þ Eq � EpÞ � B0	ð��þ Eq � EpÞg

(42)

� ie �uq�
�up"

	
�ð ~k; �Þ

�
1þ �0

4j ~kj
�
ð2�Þ3	ð ~kþ ~q� ~pÞ

� �

��
1� �0

2j ~kj
�
	ð�þ Eq � EpÞ þ 	ð�þ Eq � EpÞ

þ �0

4j ~kj ½	ð��þ Eq � EpÞ þ 	ð��þ Eq � EpÞ�
�
:

(43)

Equation (42) holds for any value of j ~kj. The � symbol
indicates the use of Eq. (36). It turns out that at the leading
order in the �0 expansion, this expression agrees exactly
with the one obtained in Ref. [11] assuming that �ðtÞ was
constant except for the fact that for each value of the
polarization, only one of the two delta functions that are

not suppressed by terms of the form �0=j ~kj can be simul-
taneously satisfied; namely, the one that implies that� or�

equals

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~k2 � j�0jj ~kj

q
, contributing with a factor 1=2 with

respect to what is found for constant � to the amplitude.
Thus, in the reduced matrix element iM,
one gets for each polarization exactly one-half of what is
obtained if �ðtÞ is constant. But in the present case, both
polarizations contribute, so finally we get ð1=2Þ2 þ
ð1=2Þ2 ¼ 1=2 of the result obtained with constant �ðtÞ.

As a consequence, the predictions concerning the radia-
tion yield of a high-energy charged particle propagating in
the cold axion background [10] are confirmed.

III. PROPAGATION IN A MAGNETIC FIELD

We will now compute the propagator of the photon field
with two backgrounds: a cold axion background and a
constant magnetic field. To do so, we take Eq. (3) and
write the axion and photon fields as a background term plus
a dynamical field. We get two relevant terms:

L a�� ! 1

2
�������A�@�A� þ 2ga���

�fa
a@�A�

~F��;

(44)

where a is the axion field, A� is the photon field and ~F��

corresponds to a magnetic field: ~F0i ¼ Bi, ~Fij ¼ 0. The
first term is just Eq. (4). Here, we will take �ðtÞ to be
constant; therefore, the results that follow are valid only if
the distance travelled by the photon, l, verifies l < 2�=m.

The vertices and Feynman rules corresponding to these
terms are shown in Fig. 2. With the first vertex, we can
compute the propagator in an axion background; see Fig. 3.

The successive interactions with the axion background can
be summed up and the result is the propagator

D�� ¼ �i

�
g�� � X��

k2
þ P

��
þ

k2 � �0j ~kj
þ P���

k2 þ �0j ~kj
�
:

(45)

The physical polarizations, projected out by P
��
� , exhibit

poles at !2 ¼ ~k2 � �0j ~kj as expected. The projectors are
defined in Eq. (14) and X�� ¼ S��

�2
0
j ~kj2 . Of course, the same

result can be obtained by direct inversion of the photon
equation of motion (10).
We now compute the propagator in the presence of a

magnetic field, using the second term in Eq. (44). In order
to do that, we use the propagator just found, represented by
a double-wavy line, and include the interactions with the
external magnetic field (see Fig. 4. The dashed line corre-
sponds to the axion propagator. Summing all the diagrams,
we get

D �� ¼ D�� þ f�h�
�ig2

k2 �m2 þ ig2K
; (46)

where

f� ¼ D��
~F��k�; h� ¼ ~F

k
D
�; (47)

g ¼ 2ga���

�fa
; K ¼ ~F��k�D��

~F��k�: (48)

In order to simplify the result, we shall assume that
~k � ~B ¼ 0, which may correspond to an experimentally
relevant situation. Then, we get

f� ¼ ik0g
i
�

k2Bi � i�0ð ~B� ~kÞi
ðk2 � �0j ~kjÞðk2 þ �0j ~kjÞ

; (49)

h� ¼ ik0g
j
�

k2Bj þ i�0ð ~B� ~kÞj
ðk2 � �0j ~kjÞðk2 þ �0j ~kjÞ

; (50)

FIG. 2. The two relevant vertices. The corresponding Feynman
rules are shown.

FIG. 3. Propagator in the axion background.
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K ¼ ik20
~B2 k2

ðk2 � �0j ~kjÞðk2 þ �0j ~kjÞ
; (51)

and, finally, defining ~b 
 g ~B,

D�� ¼ D�� þ ik20g
j
�gl�

8<
: bjbl

ðk4 � �2
0
~k2Þðk2 �m2Þ � k20k

2 ~b2

þ i�0k
2½bjð ~b� ~kÞl � blð ~b� ~kÞj� � �2

0
~b2 ~k2Xjl

ðk4 � �2
0
~k2Þ½ðk4 � �2

0
~k2Þðk2 �m2Þ � k20k

2 ~b2�

9=
;:

(52)

Particular case: no axion background

As a relevant particular case, we now set �0 ¼ 0 in the
previous expression, i.e. we consider only the influence of
the magnetic background, and get

D �� ¼ D�� þ ik20g
j
�gl�

bjbl

k4ðk2 �m2Þ � k20k
2 ~b2

; (53)

where now D�� stands for the usual photon propagator,

obtained after setting �0 ¼ 0 in Eq. (45).

This propagator has poles when k20 ¼ ~k2 and also for

k20 ¼ 1
2

�
2 ~k2 þm2 þ ~b2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ ~b4 þ 2m2 ~b2 þ 4 ~b2 ~k2

q �
:

(54)

If we assume that j ~bj is a small parameter and expand in
powers of it, these poles in the frequency plane lie at

k20 ’ ~k2
�
1þ

~b2

m2

�
þm2 þ ~b2; k20 ’ ~k2

�
1�

~b2

m2

�
:

(55)

Physically, this pole structure corresponds to the perpen-
dicular polarization vector �? propagating unchanged,
while the parallel polarization �k and the would-be longi-

tudinal polarization change their propagation.3

For completeness, we give the full propagator without

the assumption ~k � ~B ¼ 0:

D �� ¼ D�� þ f�h�
i

k2 �m2 þ K
; (56)

where D�� ¼ �ig��=k
2 is the usual photon propagator

and

f� ¼ h� ¼ 1

k2
ðg�0

~b � ~kþ g�jb
jk0Þ; (57)

K ¼ 1

k2
½ð ~b � ~kÞ2 � ~b2k20�: (58)

Let us now restore the condition ~k � ~B ¼ 0 that is helpful
in simplifying the formulae. In order to write the propa-
gator in a more compact form, we introduce a four-vector

b� ¼ ð0; ~b ¼ g ~BÞ:

D ��ðkÞ ¼
�ig��

k2
þ ik20b�b�

k2½k2ðk2 �m2Þ � k20
~b2� : (59)

Note the rather involved structure of the dispersion relation
implied by Eq. (53). We consider the propagation of plane
waves of well-defined frequency! ¼ k0 and moving in the
x̂ direction. The Fourier transform with respect to the
spatial component will describe the space evolution of a
photon state emitted at x ¼ 0 with polarization given by
the vector �0. We decompose

1

k2½k2ðk2 �m2Þ � k20
~b2� ¼ A

~k2 � k20
þ B

~k2 � F
þ C

~k2 �G
;

(60)

where F and G are the roots of the denominator

G ¼ k20 �
m2

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ 4k20

~b2
q

�
�
1�

~b2

m2

�
k20 �m2;

F ¼ k20 �
m2

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ 4k20

~b2
q

�
�
1þ

~b2

m2

�
k20; (61)

in agreement with Eq. (55), and

A ¼ 1

k20 � F

1

k20 �G
� � 1

k20
~b2
; (62)

B ¼ � 1

k20 � F

1

F�G
� 1

k20
~b2
; (63)

C ¼ 1

k20 �G

1

F�G
� 1

m4 þ 3k20
~b2

� 1

m4
: (64)

Even for the largest magnetic fields conceivable, the prod-
uct b ¼ gB is rather small compared to the range of
acceptable values of the axion mass, and it appears justified
to neglectC. The space Fourier transform of the propagator
is then

FIG. 4. Full propagator after resummation of the interactions
with the external ~B field.

3The labels ? and k refer to directions perpendicular and
parallel to the electric field, respectively, in the plane orthogonal
to the propagation.
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D��ðk0; xÞ ¼ �g��

2k0
eik0jxj � k0b�b�

2
Aeik0jxj

� k20b�b�

2

Bffiffiffiffi
F

p ei
ffiffiffi
F

p jxj: (65)

Let us now contract the propagator with the initial and final
polarization vectors:

��D��ðk0; xÞ��0 � ~� � ~�0
2k0

eik0jxj þ ð ~� � b̂Þð ~�0 � b̂Þ
2k0

eik0jxj

� ð ~� � b̂Þð ~�0 � b̂Þ
2k0

eik0jxjeið ~b
2=2m2Þk0jxj;

(66)

where b̂ ¼ ~b=j ~bj. Its squared modulus is

j��D��ðk0; xÞ��0 j2

¼ 1

4k20

�
E2
1 þ 4ðE1E2 þ E2

2Þsin2
� ~b2

4m2
k0jxj

��
; (67)

where

E1 ¼ ~� � ~�0; E2 ¼ ð ~� � b̂Þð ~�0 � b̂Þ: (68)

This quantity, once properly normalized, describes the
quantum mechanical probability of measuring the polar-
ization represented by the vector � at a distance jxj
from the origin, where it was created with a polarization
represented by �0. Since we restrict ourselves to the case
~k � ~B ¼ 0 and assume that the polarization vectors are
orthogonal to the direction of propagation, we can write

k̂ ¼ x̂; b̂ ¼ ŷ; ~� ¼ cos�ŷþ sin�ẑ;

~�0 ¼ cos�ŷþ sin�ẑ;
(69)

so that

E1 ¼ cosð�� �Þ; E2 ¼ cos� cos�: (70)

The extrema of Eq. (67), for a given initial angle �, are at

tan2�ðxÞ ¼ ½1þ 2fðxÞ� sin2�
4fðxÞ þ ½1þ 4fðxÞ� cos2� ; (71)

where

fðxÞ ¼ sin2
� ~b2

4m2
k0jxj

�
; (72)

corresponding to the values of the angle where the proba-
bility of finding the polarization vector is maximum or
minimum. The mean value of the angle is

��ðxÞ ¼ � 1

2

½1þ 2fðxÞ� sin2�
½1þ 4fðxÞ� þ 4fðxÞ cos2� : (73)

If the electric field is initially parallel to the magnetic field,
it remains parallel, i.e. �ðxÞ ¼ 0. Otherwise, a rotation in
the plane of polarization appears.
The parameter characterizing the evolution is

k0jxj ~b2=2m2. Usually, [13] mixing is treated via the clas-
sical evolution equation2

6664!2 þ @2x þ
0 0 0

0 0 !b

0 !b �m2

0
BB@

1
CCA
3
7775

!�?
!�k
a

0
BB@

1
CCA ¼ 0: (74)

Note that the contribution from the Euler-Heisenberg
Lagrangian induced by the virtual contribution of electrons
[14] has not been included. It is not difficult to verify that
both methods lead to the same dispersion relations in the
case where �0 ¼ 0.

IV. INFLUENCE OF THE AXION BACKGROUND

Now, we return to the case with the axion background.
In the limit where there is no magnetic field, we recover
the pole structure already discussed in the first section,

!2� ¼ ~k2 � j�0jj ~kj, whose implications in an astrophysi-
cal context were discussed in Refs. [9–11].
When the magnetic field is present, in addition to these

poles, we have three additional poles manifest in the third
term in Eq. (52), which in the limit �0 ! 0, correspond to
the ones described following Eq. (53). Taking into account
that �0 is a very small quantity, we shall disregard terms
proportional to �2

0 in what follows. Then, these three poles

exactly agree with the ones discussed in the previous
section.
It is certainly of interest to consider how the simulta-

neous presence of the magnetic field and the cold axion
background influences the kinematics. If we consider the
processes e ! e� or p ! p� discussed in the introduc-
tion, in the presence of both the cold axion background and
the magnetic field, the kinematical restrictions change. We
defer this analysis to a separate publication.
In order to consider the rotation of the polarization

plane, we note once again that �0 is a rather small
parameter. We shall neglect in the propagator all terms
quadratic in �0; then Eq. (52) becomes

D ��ðkÞ ¼
�ig��

k2
þ ik20b�b�

k2½k2ðk2 �m2Þ � k20
~b2�

� gj�gl�
�0k

2
0½bjð ~b� ~kÞl � blð ~b� ~kÞj�
k4½k2ðk2 �m2Þ � k20

~b2� :

(75)

Now, we contract with the polarization vectors:
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��D��ðkÞ��0 ¼ iE1

k2
þ iE2k

2
0
~b2

k2½k2ðk2 �m2Þ � k20
~b2�

� E3�0k
2
0
~b2k1

k4½k2ðk2 �m2Þ � k20
~b2� ; (76)

where E1 and E2 are given in Eqs. (68) and (70), and

E3 ¼ ð ~� � b̂Þ½ ~�0 � ðb̂� k̂Þ� � ð ~�0 � b̂Þ½ ~� � ðb̂� k̂Þ�
¼ sinð�� �Þ: (77)

We implement for the piece proportional to �0 a de-
composition similar to the one described in the previous
section:

1

k4½k2ðk2 �m2Þ � k20
~b2�

¼
~A

~k2 � k20
þ ~B

~k2 � F
þ

~C

~k2 �G
þ ~D

ð ~k2 � k20Þ2
: (78)

F and G have been derived before. The new (tilded)
coefficients are

~B ¼ 1

ðk20 � FÞ2ðF�GÞ �
m2

k40
~b4
; (79)

~C ¼ � 1

ðk20 �GÞðF�GÞ �
1

m6
; (80)

~D ¼ 1

ðk20 � FÞðk20 �GÞ � � 1

k20
~b2
; (81)

~A ¼ � ~B� ~C � � m2

k40
~b4
: (82)

We will again consider the propagation of an electromag-
netic plane wave of frequency ! ¼ k0 in the x̂ direction,
perpendicular to the magnetic field. We have

��D��ðk0; k1Þ��0
¼ �iE1

k21� k20
þ iE2k

2
0
~b2
�

A

k21� k20
þ B

k21�F
þ C

k21�G

�

�E3�0k
2
0
~b2
� ~Ak1
k21� k20

þ ~Bk1
k21�F

þ
~Ck1

k21�G
þ ~Dk1
ðk21� k20Þ2

�
:

(83)

Then,

��D��ðk0; xÞ��0
� E1

2k0
eik0jxj þ E2

eik0jxj

2k0
ð1� eið ~b

2=2m2Þk0jxjÞ

þ iE3

�0m
2

2k20
~b2
eik0jxj

�
1� eið ~b

2=2m2Þk0jxj � i
k0jxj ~b2
m2

�
:

(84)

For small values of k0jxj ~b2=m2, its square reduces to

j��D��ðk0; xÞ��0 j2

� 1

4k20

�
E2
1þ

� ~b2

2m2
k0jxj

�
2ðE1E2þE2

2Þþ 3�0jxjE1E3

�
;

(85)

where terms of order �2
0 have been neglected.

The extrema of Eq. (85) are at

tan2�ðxÞ ¼ ½1þ 2fðxÞ� sin2�þ 3�0jxj cos2�
4fðxÞ þ ½1þ 4fðxÞ� cos2�� 3�0jxj sin2� ;

(86)

where

fðxÞ ¼
~b4

16m4
k20jxj2; (87)

and the mean value of the angle

�� ¼ � 1

2

½1þ 2fðxÞ� sin2�þ 3�0jxj cos2�
½1þ 4fðxÞ� þ 4fðxÞ cos2� : (88)

V. PHYSICAL IMPLICATIONS

In this paper, we have seen that high-energy charged
particles moving in a spatially constant but time-varying
axion background with frequency m radiate at a rate that
agrees with the one computed in Refs. [10,11], where the
approximation !, k � m was assumed. It was seen in
Refs. [10,11] that the effect increases as the wave number
of the emitted photons decreases, and its possible detection
(if at all) is likely to occur in theMHz range of radio waves.
In this region, k � m and, therefore, the heuristic
arguments used in Refs. [10,11] could be questioned.
The calculation presented here settles the issue. The
effect under discussion is quite real and to the best of our
knowledge would constitute the clearest (perhaps even the
only4) observational evidence that axions or ALP consti-
tute the bulk of the dark matter component of the Universe.

4A possible exception would be the confirmation of Ref. [15]
that axions or ALP form Bose-Einstein condensates and caustics
appear as a consequence in the galactic structures.
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The so-called direct observation experiments, such as
ADMX, CAST or analogous ones may find evidence for
the existence of a particle with the properties of the axion
or ALP but this would not prove (although it would cer-
tainly be a tremendous hint) that axions or ALP constitute
the missing mass of the Universe.

It is of course unfortunate that the amount of radiation
predicted by the effect discussed here is very small; it is
possibly within the sensitivity of long-wave radio antennae
being commissioned or already deployed but around 6
orders of magnitude below the average value of the
Galaxy synchrotron radiation background for the best
value of �0. The effect approximately scales as
�0ð�0=kÞ1:5. We expect this parameter to be �0 <
10�20 eV, given the current bound for fa and the matter
density (assumed to be due to cold axions).

In principle, observations in regions of low magnetic
field could increase the signal/background ratio by several
orders of magnitude as the synchrotron radiation is pro-

portional to ~B2, assuming that the flux of cosmic rays
stays at the average value in galactic regions of low
magnetic field. It should be noted that the assumption
for the electron flux (electrons radiate most in the present
mechanism [10]) was taken very conservatively to be the
value measured by satellites, likely to be a gross under-
estimate of the value in inner parts of the Galaxy. On the
contrary, the background quoted is the observed value. In
view of these considerations, we believe that is important
to refine the estimates before concluding whether this
axion-induced bremsstrahlung could be measurable or
not, or used to place relevant bounds for �0 and hence
on fa. Note that photons radiated via this effect are
circularly polarized, while synchrotron light is polarized
in the plane of motion; measuring polarization may there-
fore help in the detection of the effect.

In any case, it should be said that the effects under
discussion could be considerably enhanced for ALP mod-
els (assuming that the corresponding ALP particle conden-
sates similarly to axions proper) because some constraints
are evaded by these models. This is certainly something to
have in mind and worthy of further investigation.

Another remarkable consequence of the presence of a
slowly varying axion or ALP background is the fact that
some wavelengths (actually very narrow bands, see Fig. 1
and its caption) are forbidden in the Universe (or at least
where there are substantial concentrations of cold dark
matter, if this is constituted by cold axions or ALP). This
opens of course a door for another line of experiments that
could potentially probe these forbidden wavelengths. The
viability of these experiments, which appear very difficult

unless the axion or ALP mass is known beforehand, de-
serves further investigation too.
We have also studied the effect on the polarization of

photons propagating in this oscillatory pseudoscalar back-
ground. We assume that �ðtÞ ¼ �0 provides a good guid-
ance. The results presented here have to be considered as
exploratory, and a more detailed account will be presented
elsewhere. The relevant quantity that governs the change in

the plane of polarization is the ratio !x ~b2=2m2. The value

of j ~bj ranges from 10�15 eV for magnetic fields of 10 T
(such as the ones employed in CAST) to 10�6 eV for
magnetar-strength fields, assuming that fa � 107 GeV.
Taking m� 0:1 eV as a reference value for the axion
mass, this corresponds to the following approximate range:

10�28 <
~b2

m2
< 10�10: (89)

We qualitatively reproduce previous results [13] in the case
where only the magnetic field is considered. However,
since we have derived the complete quantum propagator
when photons propagate through an oscillating cold axion
coherent background, we can examine the modifications
due to it. We find that, quite remarkably, the modification
in the ellipticity is independent of the light wavelength and
also of the axion mass. It is probably even more notable
that it is also independent of the magnetic field itself, even
if one needs to introduce one to begin with. We should
warn the reader that because the results on the polarization
are derived for constant �, they are strictly valid for very
short distances (< 2�=m) only. The astrophysical conse-
quences of the results presented here are yet to be fully
explored. Note that to provide more realistic results, other
medium effects (such as an effective photon mass or the
Euler-Heisenberg effective Lagrangian) should be consid-
ered, too.
Clearly, the presence of the cold axion background

modifies the properties of photon propagation in rather
interesting ways. The modifications are tiny, but some of
them may perhaps be experimentally or observationally
explored. This could possibly shed some light on the nature
of dark matter.
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