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We generalize the previously proposed running vacuum energy model by including a term propor-

tional to _H, in addition to the existing H2 term. We show that the added degree of freedom is very

constrained if both low redshift and high redshift data are taken into account. Best-fit models are

undistinguishable from �CDM at the present time, but could be distinguished in the future with very

accurate data at both low and high redshifts. We stress the formal analogy at the phenomenological level

of the running vacuum models with recently proposed dark energy models based on the holographic or

entropic point of view, where a combination of _H and H2 term is also present. However those particular

entropic formulations which do not have a constant term in the Friedmann equations are not viable. The

presence of this term is necessary in order to allow for a transition from a decelerated to an accelerated

expansion. In contrast, the running vacuum models, both the original and the generalized one introduced

here contain this constant term in a more natural way. Finally, important conceptual issues common to

all these models are emphasized.
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I. INTRODUCTION

The longstanding dark energy (DE) problem was origi-
nally presented in the form of the cosmological constant
(CC) problem [1]. Whichever way it is formulated, the CC
problem appears as a tough polyhedric conundrum which
involves many faces: not only the problem of understand-
ing the tiny current value of the DE density �DE in the
context of quantum field theory (QFT) or string theory, but
also the cosmic coincidence problem, i.e., why the density
of matter �m is now so close to �DE. Dynamical DE models
are helpful in order to improve the situation. They can
appear in different formulations of fundamental physics.
Popular possibilities are, among others, quintessence and
phantom energy in its various forms [2], and scalar-tensor
models [3]. Furthermore, modified gravity is another very
interesting option, which has been intensively explored in
the recent literature; see e.g., Refs. [4–6].

But a class of cosmic accelerating models which we
wish to explore in this paper is that of dynamical vacuum
energy models. They have been proposed since long ago—
see e.g., Refs. [7–9] and references therein. Some of these
‘‘running’’ vacuum models are a possible clue for tackling
one or more aspects of the CC problem. Despite the various

phenomenological existing studies of time evolving vac-
uum models [10], some of them are expected on more
fundamental grounds e.g., within the context of QFT in
curved space-time [8,9]. In fact, it is difficult to conceive
an expanding universe with a strictly constant value of the
vacuum energy density �� ¼ �=ð8�GÞ, namely one that
has remained unchanged since the origin of time. It is much
more natural to expect that the vacuum energy is a dynami-
cal quantity as the Universe itself, and thereby sensitive to
time evolving functions such as the Hubble rate H ¼ HðtÞ
or the scale factor a ¼ aðtÞ ¼ ð1þ zÞ�1 (a0 ¼ 1). In these
models, the need for scalars is obviated and nevertheless a
phenomenologically viable description for the dynamical
nature of the vacuum energy is achieved. Not only so, some
of these models have been successfully tested against
the latest cosmological data; see e.g., the recent studies
[11,12]. Remarkably, some particular formulations of them
have been used to improve both the cosmic coincidence
problem [13] and the tough ‘‘old CC problem’’, i.e., the
fine-tuning problem—see e.g., the recent attempts within
the context of modified gravity [6].
More recently, Verlinde [14] proposed that the gravita-

tional field equations can be derived from the second law of
thermodynamics in a way that would render the gravity
force quite literally as a kind of ‘‘entropic force’’ (which
is certainly not the case in e.g., Jacobson’s [15] and
Padmanabhan’s approaches [16], in which the entropic
formulation is much more general). When Verlinde’s
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entropic version is applied to cosmology, the DE does not
exist anymore as such, but is mimicked in an effective way
by the acceleration associated to the entropic force acting
outwards the cosmic horizon. It is this particular formula-
tion that can be called ‘‘entropic-force cosmology’’ which
was first explored in Refs. [17,18] and later on by various
authors—see e.g., Refs. [19–21]. We emphasize that these
models seem to lead to the same effective Friedmann
equations as the aforementioned running vacuum models
[7–9] with the notable difference that some of these
entropic-force models, but not necessarily all of its ver-
sions, do not yield a constant term in their Friedmann
equations.

The plan of the paper is as follows. In Sec. II we review
the running vacuum model followed by a comparative
discussion with the entropic-force models, and we empha-
size the analogy at the level of the equations of motion.
In Sec. III we present the background cosmology for
these models. We show that the entropic-force cosmology
appears as a particular case of the generalized running
vacuum model. After comparing and fitting them to the
data in Sec. IV, we provide our discussion and final con-
clusions in Sec. V.

II. RUNNING VACUUM ENERGYAND
ENTROPIC-FORCE MODELS

As mentioned in Sec. I, dynamical dark energy is an
attractive possibility in order to explain certain aspects of
the cosmological constant problem. In this section we
review the idea of running vacuum energy, which was
suggested in the literature long ago [22], and we take
opportunity to compare it with the more recent notion of
entropic dark energy, specially some recent formulations of
it [17,18]. They are formally similar but present also
important differences which lead to significant phenome-
nological implications. The latter will be analyzed in sub-
sequent sections.

A. Running vacuum energy as
dynamical dark energy

The running vacuum energy in QFT in curved space-
time derives from the renormalization group (RG) equation
suggested in the literature for �� (see Ref. [7] and refer-
ences therein):
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dln�2

¼ 1

ð4�Þ2
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where Mi are the masses of the particles contributing in
the loops, and Bi; Ci; . . . are dimensionless parameters.
The Eq. (2.1.1) gives the rate of change of the quantum
effects on the CC as a function of the scale �. Only the
‘‘soft-decoupling’’ terms of the form �M2

i �
2 remain in

practice, as theM4
i ones would trigger a too fast running of

the cosmological term.1 The approximate integrated form
of (2.1.1) is very simple:

��ðHÞ ¼ n0 þ n2H
2 þOðH4Þ; (2.1.2)

where, following the aforesaid works, we have set � ¼ H
as the characteristic mass scale for Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW)-like universes, and we will
neglect the (much) smaller higher-order powers of H.
Indeed, notice that only even powers are allowed by the
general covariance, and hence no other H2n-terms beyond
H2 (not even H4) can contribute significantly on the rhs of
Eq. (2.1.2) at any stage of the cosmological history below
the GUT scale MX & MP, so that we omit them. The
additive constant term n0 in (2.1.2) appears in a natural
way in this framework upon integrating the RG equation.
It will play a fundamental role in our discussion. Both n0
and n1 become related by the boundary condition
��ðH0Þ ¼ �0

�, which is to be satisfied by (2.1.2) at present,

H0 ¼ Hðt0Þ. As a result these coefficients can be conven-
iently rewritten as follows:
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� � 3�
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2
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where from (2.1.1) we have defined the important dimen-
sionless parameter

� ¼ 1

6�
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: (2.1.4)

This parameter provides the main coefficient of the
�-function for the running of the vacuum energy. The
coefficients Bi in (2.1.4) can be computed from the quan-
tum loop contributions of fields with massesMi, and hence
� is naturally expected to be nonvanishing and small
(j�j � 1). For instance, for GUT fields with masses
Mi near MX � 1016 GeV, a natural estimate lies in the
approximate range � ¼ 10�5–10�3 [8]. As a result we
also expect a mild running of ��, hence a dynamical DE
framework which is healthfully close to the well tested
concordance �CDM model in which �� is strictly con-
stant. This particular situation is retrieved only for � ¼ 0,
for which �� ¼ �0

� at all times. However, there is no

obvious reason for � to be strictly vanishing in QFT in
curved space-time. Therefore in the general case we should
have a time evolution law for the vacuum energy (2.1.2),
whose leading contribution can be presented as follows:

1The main contribution to the running of �� clearly comes
from the heaviest fields in a typical grand unified theory (GUT)
near the Planck scale, i.e., those with masses Mi �MX & MP.
See e.g., Ref. [8] for a specific scenario within this class of
models, where the one-loop contribution for the Bi coefficients is
explicitly given.
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��ðHÞ ¼ �0
� þ 3�

8�
M2

PðH2 �H2
0Þ: (2.1.5)

Substituting (2.1.5) in the general acceleration law for a
FLRW-like universe in the presence of a vacuum energy
density ��, we find

€a

a
¼ � 4�G

3
ð�m þ 3pm � 2��Þ

¼ � 4�G

3
ð1þ 3!mÞ�m þ C0 þ �H2; (2.1.6)

with

C0¼8�G

3
�0
���H2

0 ¼
�

3
��H2

0 ¼H2
0ð�0

���Þ: (2.1.7)

Here !m ¼ pm=�m is the equation of state for a generic
component of matter (!m ¼ 0 and 1=3 for nonrelativistic
and relativistic matter, respectively), and �0

� ¼ �=ð3H2
0Þ

is the cosmological CC parameter whose observational
value is �0

� ’ 0:73. We note the presence of the constant

term C0 / n0. As warned before, this term will play an
important role in our study.

B. Entropic-force models and effective dark energy

It is interesting that an effective dynamical dark energy
component similar to the one derived in the previous
section can also be motivated within the context of the
entropic models. In a particular version of this framework,
called the entropic-force models [14], the holographic
screen is thought to induce a force F ¼ TrS on a test
particle near the screen, where T is the temperature of the
screen and rS is the change of entropy associated with the
information contained in it [which involves a large number
of degrees of freedom (d.o.f.)]. The screen is supposed to
increase its entropy when the test particle approaches it.
Therefore, rS and the normal n on the screen (pointing
towards the particle, located in the inner volume bounded
by the screen) have opposite signs. Since the force is
directed towards the screen we have F ¼ �TdS=dr, with
dr the distance of the nearby particle to the screen. When
applied to cosmology [17], the entropy of the Hubble
horizon RH ¼ c=H is obtained from Bekenstein’s formula
SH ¼ AHkB=4l

2
P, where AH ¼ 4�R2

H is the area of the
horizon and l2P ¼ Gℏ=c3 is the Planck’s length squared.2

The change of entropy when the radius of the horizon
increases by dr is simply dSH ¼ 2�ðRHkB=l

2
PÞdr.

Inserting it in the formula for the pressure exerted
by the entropic force on the cosmological expansion,

P ¼ F=A ¼ �ðT=AÞdSH=dr, and estimating that the
horizon temperature is T ¼ ðℏ=kBÞðH=2�Þ (proportional
to the de Sitter temperature)[17], one finally obtains
P ¼ �ð2=3Þ�cc

2, where �c ¼ 3H2=ð8�GÞ is the critical
density. The minus sign in the pressure is of course the
characteristic feature of the accelerated expansion in this
entropic version. Apart from some coefficients that depend
on the estimations made, and which are not essential for
the argument, the basic result is that P / ��entr

DE , where

�entr
DE �H2M2

P (with MP ¼ G�1=2) is the quantity that
plays the role of effective DE in this entropic model.
This framework suggests that the entropic force leads to
an effective DE density which is dynamical: it specifically
evolves as the square of the Hubble rate.3 By Friedmann’s
equation, it immediately follows that at the present time the
value of �entr

DE would be predicted in the ballpark of the
measured vacuum energy density: �entr

DE ðt0Þ �H2
0M

2
P �

�0
� � 10�47 GeV4, where �0

� ¼ �=ð8�GÞ.
Since the previous (entropic inspired) result is essen-

tially a surface effect from the horizon, one may think of
fully generalizing it by considering the gravitational action
for space-times with boundaries [25]. This is achieved by
adding the boundary action term IB to the standard
Einstein-Hilbert action, IEH, namely:

IEH þ IB ¼ 1

16�G

Z
M

d4x
ffiffiffiffiffiffi
jgj

q
Rþ 1

8�G

Z
@M

d3y
ffiffiffiffiffiffi
jhj

p
K:

(2.2.1)

Here h is the determinant of the metric hab on the boundary
@M, induced by the bulk metric g�� ofM, and ya are the

coordinates on @M. Furthermore, K is the trace of the
second fundamental form (or extrinsic curvature); if n�

is the normal on the boundary, it can be written as
K ¼ r�n

�. The complete action is I ¼ IEH þ IB þ Im,

where Im represents the ordinary matter contribution. As
a mere technicality, let us point out that the precise defini-
tion of the boundary term IB should actually include an
overall sign, which is plus or minus depending on whether
the hypersurface @M is space-like (n�n� ¼ þ1) or time-

like (n�n� ¼ �1), respectively. We exclude null surfaces

for this consideration. Notice that the precise coefficient in
front of the boundary integral IB is chosen in such a way
that the surface terms generated from the metric variation
of IEH are exactly canceled by the metric variation of IB,
provided the variation �g�� is performed in such a way
that it vanishes on @M, i.e., provided the induced metric
hab on the boundary is held fixed. It follows that, in the
presence of IB, the standard form of Einstein’s equations is
preserved even if the space-time has boundaries.

2Note that for the sake of better clarity, we keep ℏ and c in this
section, but natural units ℏ ¼ 1 ¼ c for the rest.

3Apart from the running vacuum model of Sec. II A, other
frameworks involving the dynamical term �H2 (treated as the
full DE density or as a component of it) were suggested in
Ref. [23] and more recently in Ref. [24], all of them involving
the idea of vacuum fluctuations.
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The authors of Ref. [17] presumably used the above
interpretation of IB as a way to generalize the entropic
force argument given before, in the following way. As the
surface terms emerging from the variation of IEH are
canceled by �IB, they assumed that if the total action
would not contain IB the contribution of the aforemen-
tioned surface terms to the field equations would be of the
order of the effect induced on them by IB, estimated as R
times the prefactor 1=ð8�GÞ in IB, i.e., ð12H2 þ 6 _HÞ=
ð8�GÞ—evaluated in the FLRW metric, in which
H ¼ _a=a and _H ¼ dH=dt. However, since this is probably
just a rough estimate of the effect, they finally proposed to
generalize the corresponding acceleration equation for the
scale factor in the form:

€a

a
¼ � 4�G

3
ð1þ 3!mÞ�m þ CHH

2 þ C _H
_H: (2.2.2)

However not all of the models considered in Ref. [17] are
of this type.4 The new ingredients are CH and C _H, which
are certain (presumably small) dimensionless coefficients
to be fitted to the observational data. Let us also mention
that there can be higher-order quantum corrections on the
rhs of Eq. (2.2.2)—cf. [18]. We have neglected these effects
for the present discussion because they have no impact for
virtually any time in the history of the Universe after
inflation. This is in line with our approximation of ignoring
theOðH4Þ quantum corrections also in the running vacuum
model discussed before.

Let us point out that the field Eq. (2.2.2) is not necessary
derived from a fundamental action. Let us recall that in the
most general entropic-holographic formulations, gravity is
conceived as an emergent phenomenon [16], and in this
sense the gravitational field equations need not necessarily
be deducible from a fundamental action at the present
macroscopic level of description, even though the field
equations themselves may provide a fully satisfactory
account of all the basic phenomena known to date. From
this point of view, the ultimate origin of gravity may lie in
some fundamental degrees of freedom quite different from
the metric variables, namely degrees of freedom which
are completely unknown to us at present [16]. If so, the
field equations under discussion in this paper could just
be effective field equations falling in this category and
therefore no fundamental action to derive them would be
needed. A detailed discussion on this point goes beyond the
scope of the present work.

The quantities _H and H2 appearing on the rhs of (2.2.2)
are related through _H ¼ �ðqþ 1ÞH2 where q is the de-
celeration parameter. During some stages of the cosmic
evolution when q is roughly constant, _H and H2 are
approximately proportional. For example, q ’ 1 for the
radiation dominated epoch, and q ’ 1=2 for the matter
dominated epoch. Hence _H ’ �2H2 deep in the radiation

dominated era and _H ’ �ð3=2ÞH2 deep in the matter
dominated epoch. When we compare the entropic
Eq. (2.2.2) with the corresponding Eq. (2.1.6) in the
running vacuum model, we see that deep in the matter
dominated epoch we can set the correspondence � $
CH � 3C _H=2 between the two models. However this is
not valid at low redshifts when the Universe goes over
from matter domination to accelerated expansion. In
this interval where type Ia supernovae (SNIa) data are
located, q experiences a sharp model-dependent variation.
Therefore the addition of the term C _H

_H is a genuine
extension of the original running vacuum energy model.
In view of the close analogy between these models, in

the next section we consider a generalization of the running
vacuummodel with the inclusion of a term _H together with
the H2 one.

III. BACKGROUND SOLUTION OF THE
COSMOLOGICAL FIELD EQUATIONS

In this section we consider the solution of the cosmo-
logical field equations for both the generalized running
vacuum model and the entropic-force model. We discuss
in detail the underlying local conservation laws of matter
and radiation in interaction with a dynamical vacuum
energy component and we show that this leads to important
conceptual issues. Finally, we emphasize the crucial
importance of a constant term which rules out some of
the entropic-force models lacking this term.

A. The generic cosmological framework

The cosmological equations of both the running vacuum
models and the entropic-force models can be solved in a
common framework. We will consider spatially flat FRLW
cosmologies

ds2 ¼ dt2 � a2ðtÞdx2: (3.1.1)

Hence the (expansion) dynamics are fully encoded in the
time evolution of the scale factor aðtÞ. Instead of obeying
the usual Friedmann equations of general relativity, our
models obey modified Friedmann equations, viz.�

_a

a

�
2 ¼ 8�G

3

X
i

�i þ C0 þ CHH
2 þ C _H

_H; (3.1.2)

€a

a
¼�4�G

3

X
i

ð�iþ3piÞþC0þCHH
2þC _H

_H; (3.1.3)

where the remaining sum is over the matter components
only. For realistic cosmologies, we take as usual two
components, namely nonrelativistic (dustlike) matter with
pm ¼ wm�m ¼ 0 and radiation with pr ¼ wr�r ¼ 1

3�r.

These equations can be viewed formally as resulting
from the presence of a time-dependent component ��ðtÞ ¼
��ðHðtÞ; _HðtÞÞ satisfying4G. Smoot (private communication).
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��ðH; _HÞ ¼ 3

8�G
ðC0 þ CHH

2 þ C _H
_HÞ ¼ �p�ðH; _HÞ:

(3.1.4)

We will call this dynamical component a ‘‘generalized
running vacuum energy’’ (GRVE) density since its equa-
tion of state satisfies w� ¼ p�=�� ¼ �1 as in the case of
a strictly constant vacuum energy.5 By the same token we
will call the class of these models with C0 � 0 the gener-
alized running vacuum models. In the particular case
C _H ¼ 0 we recover the original running vacuum model
discussed in Sec. II A. Formally, the generalization of
the model being proposed here implies that the scale �2

in Eq. (2.1.1), which is to be eventually associated with a
physical quantity according to the RG procedure, should in
general be a linear combination of H2 and _H rather than
just the H2 component, as these two terms represent inde-
pendent d.o.f. with the same dimension. Finally, let us
emphasize that the particular case C0 ¼ 0 is not to be
included within the class of GRVE models because the
integration of the RG Eq. (2.1.1) always involves an addi-
tive term leading to C0 � 0. The case C0 ¼ 0 seems to
appear in some of the entropic-force models [17] briefly
addressed in the previous subsection. While this setting can
be derived as a particular case of our general analysis of the
system (3.1.2) and (3.1.3), we stress that C0 ¼ 0 leads to a
qualitatively new situation, which we will comment in
subsequent sections and that is not expected from the
conceptual point of view of the running vacuum model
framework. With these provisos in mind we are now going
to solve the background cosmology of the entire class of
models (3.1.2) and (3.1.3).

B. Discussion of the local conservation laws

Once the metric (3.1.1) is given, a comoving
perfect fluid with energy-momentum tensor T�� ¼
ð�i þ piÞu�u� � pig�� will satisfy the conservation equa-

tion _�i ¼ �3Hð�i þ piÞ, with �i and pi appearing in
Eqs. (3.1.2) and (3.1.3) provided �� is constant. This
applies of course for nonflat FLRW universes as well.
However, if the vacuum energy density is a time-dependent
component it cannot have this energy-momentum tensor.
Actually, as we will see now the same applies for the other
components appearing in Eqs. (3.1.2) and (3.1.3).

However, from the system (3.1.2) and (3.1.3) we get the
coupled conservation equation

_�m þ _�r þ _�� ¼ �3H�m � 4H�r: (3.2.1)

This equation is indeed a first integral of that system.
Clearly, for _�� � 0 none of the components can satisfy
the standard conservation equation as emphasized above.6

It is easy to see that this does not depend on the particu-
lar choice (3.1.4). Let us assume that the variable vacuum
has an energy density 8�G

3 ��ðtÞ ¼ CHH
2 and that it is a

perfect fluid with an a priori undefined equation of state.
Then it follows from its (assumed) conservation equation

that its equation of state parameterw� satisfies� _H
H2 ¼ 3

2 �
ð1þ w�Þ. So if we consider a simple (flat) universe
containing also dust, the only consistent way is to have
�� ¼ CH ¼ 1. So we end with no dust at all and the first
Friedmann equation reduces to an equality (while w�

remains of course undefined). We stress that these concep-
tual issues are also true for other models with similar
effective Friedmann equations, for example, models
inspired by the holographic principle or models based on
the entropic-force principle. Ultimately these properties
arise from the absence (in general) of a formulation at
the level of the action which is still an open issue.
As mentioned in the previous section, in a pragmatic

approach we assume the validity of (3.1.2) and (3.1.3)
without explicitly deducing them from an underlying
action—see, however, [8] for a specific framework along
these lines. After some calculations the coupled conserva-
tion equation (3.2.1) reads

_�m þ _�r � 3

2
C _H

�
_�m þ 4

3
_�r

�

¼ �3Hð1� CHÞ
�
�m þ 4

3
�r

�
: (3.2.2)

We note that the model does not yield a conservation
equation for each component separately, seemingly over-
looked in Ref. [17]. For this we would need to specify the
action of the model and to find the corresponding energy-
momentum tensors. Moreover, the system is not fully
defined by Eqs. (3.1.2) and (3.1.3). Indeed, any solution
of the following set of equations

_�m ¼ �3H
1� CH

1� 3
2C _H

�m þQ; (3.2.3)

_� r ¼ �4H
1� CH

1� 2C _H

�r �Q; (3.2.4)

5Let us notice that the recent work [26], which extends the
discussion of a model first suggested in Appendix C of Ref. [11],
contains a linear term in H rather than our _H term. As mentioned
in Sec. II A, odd powers of H cannot emerge from a covariant
effective action, and in this sense these models are more phe-
nomenological than the class of GRVE models (3.1.4) presented
here.

6The nonconservation of matter in the presence of running
vacuum energy has recently been proposed as a possible link
between the dynamical DE and the increasing evidence for a
possible variation of the fundamental constants and scales in
nature, as e.g., the QCD scale—see Ref. [27]. However, a
running vacuum energy of the form (2.1.5) can be made com-
patible with matter conservation if one allows G to slowly evolve
with time, see Ref. [8] for a concrete scenario connected with an
action functional. For the present GRVE framework, though, G
is assumed to be strictly constant.
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for arbitrary function Q ¼ QðtÞ, will be a solution of
Eq. (3.2.2). In the matter dominated (�r � 0) and radiation
dominated (�m � 0) stages we must have from Eq. (3.2.2)
that Q ! 0. The simplest version of this model is to
assume that Eq. (3.2.2) reduces at all times to a set of
decoupled equations with Q ¼ 0 at all times. We conjec-
ture that this is perhaps the only way to introduce consis-
tently an arbitrary number of species.

It will be convenient to introduce the following notations:

� � CH; (3.2.5)

� � 3

2
C _H; (3.2.6)

as well as the important quantities

�m � 1� �

1� �
; (3.2.7)

�r � 1� �

1� 4
3�

: (3.2.8)

The motivation for the relabeling (3.2.5) is simply because
for C _H ¼ 0 the GRVE model boils down to the original
running vacuum model discussed in Sec. II A, and then CH

exactly reduces to the parameter � defined in that section.
Using these definitions, Eqs. (3.2.3) and (3.2.4) (setting
Q ¼ 0) can be written as follows:

_�m ¼ �3H�m�m; (3.2.9)

_� r ¼ �4H�r�r; (3.2.10)

for which it is straightforward to obtain the corresponding
solutions (setting a0 ¼ 1):

�m ¼ �0
ma

�3�m ¼ �0
mð1þ zÞ3�m ; (3.2.11)

�r ¼ �0
ra

�4�r ¼ �0
rð1þ zÞ4�r : (3.2.12)

Note that these decoupled solutions reduce automatically to
the behavior of dustlike matter during matter domination
(�r � 0) and to the radiation component during radiation
domination (�m � 0). They take the standard form for
�m ¼ 1 and �r ¼ 1.

C. Determining the time evolving vacuum energy
and the Hubble function

The Eqs. (3.2.9) and (3.2.10) are decoupled; there is no
transfer of energy between the two components. However
there is a transfer of energy between the running vacuum
energy �� and these components. We find for the evolution
of ��

_� � ¼ 3Hð�m � 1Þ�m þ 4Hð�r � 1Þ�r: (3.3.1)

When �m ¼ �r ¼ 1 the standard behavior of matter and
radiation is recovered and then �� ¼ �=ð8�GÞ reduces to
a genuine cosmological constant with� ¼ 3C0. The trans-
fer of energy between the matter components and the
GRVE is the physical reason for the particular scaling
behaviors (3.2.11) and (3.2.12), which obviously depart
from the standard expectations �m � a�3 and �r � a�4

in the �CDM owing to the nonvanishing values of the
parameters � and �. We have here an effective interacting
dark energy model. Consistency enforces to have an inter-
action between the running vacuum energy and all other
components.
The addition of the term C _H

_H ¼ 2
3�

_H introduces an

important change compared to the original running vac-
uum model discussed in Sec. II Ain which C _H ¼ 0but the
new degree of freedom is severely constrained by obser-
vations. The reason is that the model cannot depart too
much from the �CDM values �m ¼ �r ¼ 1, with

�r ¼ �m

1� �

1� 4
3�

: (3.3.2)

The only way to satisfy both constraints �m � 1 and
�r � 1 is to have

j�j � 1; j�j � 1 , �m � 1; �r � 1: (3.3.3)

Of course we have �m ¼ �r ¼ 1 when both parameters �
and � vanish. Note also that the condition �r � 1 is crucial
for the viability of our model at high redshifts [e.g., when
fitting the model against cosmic microwave background
(CMB) data]. If we use only constraints at very low red-
shifts, models with �m � 1 (i.e., j�j � 1) but not neces-
sarily satisfying j�j � 1 will fare well in this domain,
though the model would actually be unviable taking into
account its behavior at high redshifts.
Compared to the old running vacuum energy model

(� ¼ 0), the generalized model offers more possibilities
to depart from standard cosmology:
(i) One can have �r ¼ �m � 1, in which case the model

just reduces to the original running model (� ¼ 0 or
C _H ¼ 0, and � � 0). Both radiation and dust scale in
a nonstandard way but their departure from standard
behavior is not independent and depends on one

single parameter �, specifically �m � a�3ð1��Þ and
�r � a�4ð1��Þ.

(ii) �r ¼ 1 and �m � 1, in which case radiation behaves
in the standard way but dust does not. This occurs
when � ¼ 4

3� � 0. This case exists only in the

generalized model � � 0. Departure from standard
cosmology occurs already at low redshifts.

(iii) �m ¼ 1 and �r � 1, in which dust scales in stan-
dard way but radiation does not. This corresponds
to � ¼ � � 0. This case can mimic standard
cosmology at low redshifts but it is strongly con-
strained when high redshift data are considered.
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(iv) �m � 1, �r � 1 and �m � �r, in which the devia-
tion of the nonrelativistic component is different
from the relativistic one, and hence this provides an
extension of the first case discussed above which is
only possible within the GRVE model.

The three last cases above are only possible in the
generalized model � � 0. However these additional pos-
sibilities are strongly constrained by observations on both
low and high redshifts. We will see in particular in Sec. IV
that the strong constraint on � in the regime (3.3.3) is
similar to that one found for � in the original running
model—see the recent analyses [11,12].

Equation (3.3.1) is easily recast in the form

d��

da
¼ 3ð�m � 1Þ�m

a
þ 4ð�r � 1Þ�r

a
(3.3.4)

which is easily integrated using the solutions (3.2.11) and
(3.2.12) and the explicit form of the vacuum energy as a
function of the scale factor can be expressed as follows:

��ðaÞ ¼ �0
� þ �0

mð��1
m � 1Þða�3�m � 1Þ

þ �0
rð��1

r � 1Þða�4�r � 1Þ: (3.3.5)

The Hubble function can now be constructed from the
matter components (3.2.9) and (3.2.10) and the vacuum
energy (3.3.5):

H2 ¼ 8�G

3
½�m þ �r þ ���

¼ H2
0

�
�0

m

�m

�0
m

þ�0
r

�r

�0
r

þ�0
�

��

�0
�

�
: (3.3.6)

Introducing the normalized Hubble rate in terms of the
redshift, EðzÞ � HðzÞ=H0, we find

E2ðzÞ ¼ �0
m

�m

ð1þ zÞ3�m þ�0
r

�r

ð1þ zÞ4�r þH�2
0 C0

1� �
;

(3.3.7)

where we have used the standard definition �i ¼ �i=�c,
with �c ¼ 3H2=ð8�GÞ, satisfying the constraint

�� þ�m þ�r ¼ 1 (3.3.8)

at all times.
Note that the boundary condition Eðz ¼ 0Þ ¼ 1 in

Eq. (3.3.7) leads to the equality

H�2
0 C0 ¼ �0

� � ��; (3.3.9)

where we have defined �� ¼ �� ��, with �� ¼
��0

m þ ð4=3Þ��0
r . The �� parameter is characteristic of

the extension of the original running vacuum model into
the GRVE model and is closely related to �. Indeed ��
gauges the size of the new _H-effect in terms of H2 at the
present time since it satisfies the relation C _H

_H0 ¼ � ��H2
0 ,

which can be compared to CHH
2
0 ¼ �H2

0 in the original

running model. To confirm that relation let us write

the current value of the C _H
_H term in the starting

Eqs. (3.1.2) and (3.1.3) as follows:

C _H
_H0 ¼ �C _Hðq0 þ 1ÞH2

0 ¼ �
�
3

2
�0

m þ 2�0
r

�
C _HH

2
0 :

(3.3.10)

Thus we find �� ¼ ��m þ ��r, where ��m ¼ ð3=2Þ�0
mC _H ¼

��0
m and ��r ¼ 2�0

rC _H ¼ ð4=3Þ��0
r represent the

nonrelativistic and relativistic matter contributions,
respectively.
After having determined the explicit relation between ��

and the other parameters, we see from Eq. (3.3.9) that C0

becomes also explicitly determined as follows:

C0 ¼ H2
0

�
�0

� � �þ
�
�0

m þ 4

3
�0

r

�
�

�

¼ H2
0

�
�0

� � CH þ 3

2

�
�0

m þ 4

3
�0

r

�
C _H

�
: (3.3.11)

Notice that for � ¼ 0 (or C _H ¼ 0) it boils down to the
corresponding expression (2.1.7) for the original running
vacuum model. On the other hand Eq. (3.3.11) tells us
another interesting feature, to wit: models with C0 ¼ 0
cannot have the two parameters � and � (equivalently
CH and C _H) simultaneously small, i.e., it is impossible to
satisfy the relations (3.3.3) unless �0

� ¼ 0–which is of

course unacceptable. In particular, entropic-force models
[17] cannot have CH and C _H simultaneously small, other-
wise they would contradict the measured value of the
cosmological term: �0

� ’ 0:73. Even if we would accept

that at least one of the parameters CH and C _H is not small,
the resulting model would be contrived as it would entail a
nontrivial modification of the standard �CDM cosmology.
Actually in the next section we will encounter a related
difficulty, which is perhaps the biggest stumbling block to
the C0 ¼ 0 models.

D. Crucial distinction between some
entropic-force and GRVE models

In the previous subsections we have solved in detailed
the full class of cosmological models based on the set of
generalized FLRW Eqs. (3.1.2) and (3.1.3). In particular,
we have assumed arbitrary values for the parameters C0,
CH � � and C _H / �. However we expect from observa-
tional constraints that the last two ones are sufficiently
small—cf. Eq. (3.3.3) in order for the generalized models
not to depart too much from the standard scaling laws of
matter and radiation.
We turn now our attention specifically to the additive

parameter C0. If the other two parameters (CH and C _H)
have to be small, this is not the case for C0 and as we will
see now it cannot vanish. While the running vacuum
energy models have a nonvanishing C0, this is not the
case for some entropic force models.
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Indeed, successful models must be able to produce an
accelerated expansion at very low redshifts. To start with
let us analyze the situation C0 ¼ 0. It is easy to derive from
the expression for €a

a that accelerated expansion is obtained

both in the matter and radiation-dominated stages if the
following condition is satisfied (with C0 ¼ 0):

�� 2

3
�>

1

2
, 2�r < 1: (3.4.1)

In the matter-dominated era a slightly weaker condition is
required:

�� 2

3
�>

1

3
, 3

2
�m < 1: (3.4.2)

We see that these conditions are redshift independent.
Therefore, if we have an accelerated expansion rate at
very low redshifts, we will have it at least during all of the
matter-dominated stage. This leads obviously to an unvi-
able cosmology putting aside the fact that the corresponding
scaling behaviors are completely unviable observationally.

We can recover these results solving for the time depen-
dence of HðtÞ and aðtÞ. The following equation holds
during matter domination:

_H þ 3

2
�mH

2 ¼ 3

2
�m

C0

1� �
: (3.4.3)

When C0 ¼ 0 the condition (3.4.2) for accelerated expan-
sion is clearly recovered from Eq. (3.4.3). In the general
case C0 � 0, Eq. (3.4.3) can be solved to yield

HðtÞ ¼ A coth

�
3

2
�mAt

�
; (3.4.4)

aðtÞ ¼ Dsinh2=3�m

�
3

2
�mAt

�
; (3.4.5)

where we have used (3.3.9) and we have set

D ¼
�
�m;0 � ��MÞ
��;0 ���

�
1=3�m

; A ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��;0 ���

1� �

s
:

(3.4.6)

Returning to the case with vanishing C0, the solution to
(3.4.3) reads

aðtÞ / t2=3�m;
€a

a
�

�
2

3�m

� 1

�
t�2; (3.4.7)

which shows again that (3.4.2) leads to accelerated expan-
sion. Hence we conclude that models with C0 ¼ 0 cannot
describe an expanding universe undergoing a transition
from decelerated to accelerated expansion.

E. Observational interpretation

For an ‘‘Einsteinian’’ interpretation of the generalized
running vacuum models, i.e., those represented by
Eqs. (3.3.6) and (3.3.7) with C0 � 0, let us write

H2 ¼ 8�G

3
½~�m þ ~�r� þ

~�

3

¼ H2
0

�
~�0
m

~�m

~�0
m

þ ~�0
r

~�r

~�0
r

�
þ

~�

3
; (3.5.1)

with the obvious identifications

~�m ¼ �m

�m

; ~�r ¼ �r

�r

;
~�

3
¼ C0

1� �
;

~�0
m ¼ �0

m

�m

¼ ~�0
m

�0
c

; ~�0
r ¼ �0

m

�r

¼ ~�0
r

�0
c

:

(3.5.2)

Observationally there is no reason to distinguish between
the matter or radiation energy density appearing in the
starting Eq. (3.1.2) and that part contained in ��. Hence

it is natural to identify the observed value �0
m;obs with

~�0
m

and similarly �0
r;obs with

~�0
r . We still have the standard

equality valid at all times,

~� m þ ~�r þ ~�� ¼ 1; (3.5.3)

with ~�� ¼ ~�
3H2 .

Even recast in the form (3.5.1) we should remember that
the energy densities ~�m and ~�r, obey the nonstandard
scaling laws (3.2.11), respectively, (3.2.12). Interestingly,
in this Einsteinian interpretation, our model reduces to a

model with a genuine cosmological constant ~� and non-
standard evolution of dust and radiation. In the generalized
running vacuum energy model, the departure from stan-
dard behavior of dust and radiation are independent from
each other.
In this model, the redshift at equality zeq is given by

ð1þ zeqÞ4�r�3�m ¼
~�0
m

~�0
r

: (3.5.4)

The variation of zeq constrains the quantity 4�r � 3�m, a

constraint that will be satisfied by our best-fit models found
in next section. In view of (3.3.7) we expect further very
tight constraints on �r itself deep in the radiation domi-
nated era.
In a first conservative approach we would like to keep a

standard thermal history. Even if ~�0
r assumes the value for

�0
r required by standard big bang nucleosynthesis, and

assuming that cosmic temperature scales in the standard
way, the expansion rate at the big bang nucleosynthesis
epoch will get changed by a nonstandard amount due to the
scaling law (3.2.12). Inserting numbers this finally yields
the conservative constraint j�r � 1j< 10�3 because the
expansion rate is severely constrained and cannot vary
too much at the time of big bang nucleosynthesis (see
e.g., Ref. [28]).
As �r is a free parameter, in practice we wish to explore

scenarios satisfying

�r ¼ 1: (3.5.5)

SPYROS BASILAKOS, DAVID POLARSKI, AND JOAN SOLÀ PHYSICAL REVIEW D 86, 043010 (2012)
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This choice means that the model parameters � and � are
no longer independent, and from (3.2.8) we see that we
must have � ¼ 3�=4. This ensures that the standard ther-
mal history is recovered. Indeed, with the choice (3.5.5),
the radiation dominated stage in our models is essentially
similar to the standard radiation dominated stage. We have
in particular that the temperature of thermalized relativistic
species scales consistently in the standard way. This is in
particular true for the CMB temperature.

We have derived all equations necessary in order to
constrain with observations the class of generalized
FLRW models (3.1.2) and (3.1.3) satisfying Eq. (3.5.5).
This we do in the next section.

IV. FITTING THE MODELS TO THE
OBSERVATIONAL DATA

In the following we present some details of the statistical
method and on the observational samples and data statis-
tical analysis that will be adopted to constrain the models
presented in the previous sections. We shall extract our fit
from the combined data on SNIa, the data on the baryonic
acoustic oscillations (BAOs), and the shift parameter of the
CMB. Note that in the case of the BAO analysis we have
to modify it appropriately in order to incorporate some
specific features of the present models.

A. The global fit to SNIa, BAOs and CMB

First of all, we use the Union 2 set of 557 type Ia
supernovae of Amanullah et al. [29].7 The corresponding
	2-function to be minimized is

	2
SNIaðpÞ ¼

X557
i¼1

�
�thðzi;pÞ ��obsðziÞ


i

�
2
; (4.1.1)

where zi is the observed redshift for each data point.
The fitted quantity � is the distance modulus, defined as
� � m�M ¼ 5 logdL þ 25, in which dLðz;pÞ is the
luminosity distance:

dLðz;pÞ ¼ ð1þ zÞ
Z z

0

dz0

Hðz0Þ : (4.1.2)

Here p a vector containing the cosmological parameters of
our model that we wish to fit for. In our case one possibility

would be to take e.g., p ¼ ð ~�0
m; �Þ. In Eq. (4.1.1), the

theoretically calculated distance modulus �th for each
point follows from Eq. (4.1.2), in which the Hubble func-
tion HðzÞ ¼ H0EðzÞ is given by Eq. (3.3.7) for the generic
model under consideration. Finally, �obsðziÞ and 
i stand
for the measured distance modulus and the corresponding
1
 uncertainty for each SNIa data point, respectively. The
previous Eq. (4.1.2) for the luminosity distance applies
only for spatially flat universes, which we are assuming

throughout. Note that since only the relative distances of
the SNIa are accurate and not their absolute local calibra-
tion, we always marginalize with respect to the internally
derived Hubble constant (for methods that do not need to a
priori marginalize over the internally estimated Hubble
constant, see for example Refs. [30,31]). In the case of
the Union2 SNIa data the internally derived Hubble
constant is H0 ’ 70 Km=s=Mpc which is in agreement to
that of WMAP7 [32] H0 ¼ 70:4 Km=s=Mpc used in the
present study.
In addition to the SNIa data, we also consider the BAO

scale produced in the last scattering surface by the com-
petition between the pressure of the coupled baryon-
photon fluid and gravity. The resulting acoustic waves
leave (in the course of the evolution) an overdensity sig-
nature at certain length scales of the matter distribution.
Evidence of this excess has been found in the clustering
properties of the SDSS galaxies (see Refs. [33–35]) and it
provides a ‘‘standard ruler’’ that we can employ to con-
strain dark energy models. In this work we use the results
of Percival et al. [34], rsðzdÞ=DVðz?Þ ¼ 0:1390� 0:0037.
Note that rsðzdÞ is the comoving sound horizon size at the
baryon drag epoch [36] (i.e., the epoch at which baryons
are released from the Compton drag of photons), and
zd �Oð103Þ is the corresponding redshift of that epoch,
closely related to that of last scattering–the precise
expression being given by the fitting formula of
Ref. [36]. Finally, DVðzÞ is the effective distance measure
[33] and z? ¼ 0:275. Of course, the quantities ðrs;DVÞ
can be defined analytically. In particular, rsðzdÞ is given
by the comoving distance that light can travel prior to
redshift zd:

rsðzdÞ ¼
Z tðzdÞ

0

csdt

a
¼

Z ad

0

csðaÞda
a2HðaÞ ; (4.1.3)

where ad ¼ ð1þ zdÞ�1, and

csðaÞ ¼
�

�~p�

�~�� þ �~�b

�
1=2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þRðaÞÞp ; (4.1.4)

is the sound speed in the baryon-photon plasma. Here we
assume adiabatic perturbations and we have used �~pb ¼ 0
and �~p� ¼ ð1=3Þ�~��, and defined RðaÞ ¼ �~�b=�~��. If

the scaling laws for nonrelativistic matter and radiation
would be those of the standard model, we would have
RðaÞ ¼ 3�b=4��, which can be finally cast as a linear

function of the scale factor RðaÞ ¼ ð3�0
b=4�

0
�Þa, where

�0
bh

2 ’ 0:02263 and �0
�h

2 ’ 2:47� 10�5 are the current

values of the normalized baryon and photon densities.
However, our scaling laws for nonrelativistic matter and
radiation are given by Eqs. (3.2.11) and (3.2.12). As a
result, the sound speed velocity in the plasma gets a
correction with respect to the standard result (a0 ¼ 1):

7Note that the data can be found in at http://supernova.lbl.gov/
Union/.
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RðaÞ¼3

4

�m

�r

~�bðaÞ
~��ðaÞ¼

3

4

1�4�=3

1��

~�0
b

~�0
�

a4�r�3�m: (4.1.5)

Of course for � ¼ 0 and � ¼ 0 (�m ¼ �r ¼ 1) the pre-
vious equation becomes again a linear function of the scale
factor, and it exactly reduces to the standard result.

The remaining ingredients of the BAO analysis are as
in the standard case, in particular the effective distance is
(see Ref. [33])

DVðzÞ �
�
ð1þ zÞ2D2

AðzÞ
cz

HðzÞ
�
1=3

; (4.1.6)

where DAðzÞ ¼ ð1þ zÞ�2dLðz;pÞ is the angular diameter
distance. Therefore, the corresponding 	2

BAO function is

simply written as

	2
BAOðpÞ ¼

½ rsðzdÞDVðz?Þ ðpÞ � 0:1390�2
0:00372

: (4.1.7)

Furthermore, a very accurate and deep geometrical
probe of dark energy is the angular scale of the sound
horizon at the last scattering surface, as encoded in the
location lTT1 of the first peak of the CMB temperature
perturbation spectrum. This probe is described by the
CMB shift parameter [37,38], defined as

R ¼
ffiffiffiffiffiffiffiffi
�0

m

q Z zls

0

dz

EðzÞ : (4.1.8)

The measured shift parameter according to the WMAP
7-year data [32] is R ¼ 1:726� 0:018 at the redshift of
the last scattering surface: zls ¼ 1091:36. In this case, the
	2-function is given by

	2
CMBðpÞ ¼

½RðpÞ � 1:726�2
0:0182

: (4.1.9)

For a detailed discussion of the shift parameter as a cos-
mological probe, see e.g., Ref. [39]. Let us emphasize that
when dealing with the CMB shift parameter we have to
include both the matter and radiation terms in the total
normalized matter density entering the EðzÞ function
in Eq. (4.1.8), given explicitly by Eq. (3.3.7). Indeed, the
radiation contribution reads �0

r ¼ ð1þ 0:227N�Þ�0
�,

with N� the number of neutrino species. Therefore, at
zls ¼ 1091:36, and including three light neutrino species,
the radiation contribution amounts to �24% of the total
energy density associated to matter, which is not negli-
gible. We use h ¼ 0:704 in our analysis.

Our statistical analysis, due to its simplicity, has been
used extensively in the literature in order to constrain the
dark energy models (see for example Refs. [31,40,41] and
references therein). We would like to point that a more
general statistical presentation would require the covarian-
ces of BAO and CMB shift parameter. We have checked
our statistical results using the latter covariances and our
results remain the same as they should. Note that the

corresponding covariances can be found in Percival et al.
[34] and in Komatsu et al. [32], respectively. Finally, as
emphasized before Eq. (3.1.1) we restrict our analysis to
spatially flat spaces. This seems justified in view of the
tight constraints on �k;0 and is sufficient for our purposes.

B. Numerical results

Since we perform an overall fit of the SNIaþ BAOþ
CMB data, it is important to take into account the contri-
bution of both nonrelativistic matter and radiation.
(i) For the concordance �CDM cosmology, we simply

have �0
� ¼ const. and

�mðzÞ ¼ �0
mð1þ zÞ3; �rðzÞ ¼ �0

rð1þ zÞ4:
(4.2.1)

(ii) Concerning the generalized running vacuum energy
model (3.1.2) and (3.1.2) we have explicitly given
the corresponding density formulas in Sec. III. Let
us recall thatC0 ¼ 0 is a very particular case that we
exclude from the class of the GRVE models. We
have shown in the previous section that this case is
not viable observationally and therefore we will not
consider it any further for the phenomenological
analysis. Therefore, from now on we assume that
C0 � 0 and focus on fitting the parameters of this
model to the SNIaþ BAOþ CMB data. In particu-
lar, we already know that � and � have to be
small—see Eq. (3.3.3)—but only the direct confron-
tation of the model with the data will tell us about
their possible maximum size. In practice, consider-
ing models satisfying (3.5.5), it will be convenient to
define the effective parameter

�eff � �� � ¼ 1

4
�; (4.2.2)

and use �eff as fitting parameter, together with ~�0
m.

We can check this explicitly by expanding �m and
�r linearly in j�j � 1 and j�j � 1, together with
some coefficients in Eq. (3.3.5), and using the
definition (4.2.2):

�m ’ 1� �eff ; �r ¼ 1: (4.2.3)

As a result, for the energy densities we find

~�mðzÞ ¼ ~�0
mðzÞð1þ zÞ3ð1��eff Þ;

~�rðzÞ ¼ ~�0
rð1þ zÞ4:

(4.2.4)

Similarly the corresponding normalized Hubble
flow squared reads

E2ðzÞ ¼ ~�0
mð1þ zÞ3ð1��eff Þ þ ~�0

rð1þ zÞ4 þ ~�0
�:

(4.2.5)

Finally, let us mention that within the same approxi-
mation we can write the BAO ratio (4.1.5) entering
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the modified sound speed of the baryon-photon
plasma as follows:

R ðaÞ ¼ 3

4
ð1� �effÞ

~�0
b

~�0
�

a1þ3�eff : (4.2.6)

For � ¼ 0 and � ¼ 0 (hence �eff ¼ 0) it clearly
reduces to the standard result mentioned in the
previous subsection.

These formulas confirm our contention that we can fully
reexpress all the background formulas in terms of the
effective fitting vector

p eff ¼ ð ~�0
m; �effÞ: (4.2.7)

We also see from the previous formulas that �eff is the
single effective parameter that controls the deviations of
the GRVE model with respect to the �CDM model in the
low z region (when radiation can be neglected). It is only in
the high redshift region where the model is sensitive to
independent contributions from �eff (equivalently, from �
or �). Notice that this feature could be used, in principle, to
distinguish between the two sorts of running models, i.e.,
the original one (which we reviewed briefly in Sec. II A)
and the generalized running vacuum model under discus-
sion in this paper. At low z the two kinds of models are
indistinguishable because they both depend on a single
parameter, � and �eff , respectively.

Let us next proceed with the numerical fit analysis. In
order to place tighter constraints on the corresponding
parameter space of our model, the probes described
above must be combined through a joint likelihood analy-
sis8 given by the product of the individual likelihoods
according to

L totðpÞ ¼ LSNIa �LBAO �LCMB: (4.2.8)

Since likelihoods are defined as Lj / expð�	2
j=2Þ, it

translates into an addition for the joint 	2 function:

	2
totðpÞ ¼ 	2

SNIa þ 	2
BAO þ 	2

CMB: (4.2.9)

In our 	2 minimization procedure, for the vacuum models
(running and concordance �CDM) we use the following

range and steps for the fitting parameters: ~�0
m 2 ½0:01; 1� in

steps of 0.001 and �eff 2 ½�0:02; 0:02� in steps of 10�4.
The numerical results that we obtain are the following. In
the case of the generalized running vacuum model the

overall likelihood function peaks at ~�0
m ¼ 0:274� 0:011,

�eff ¼ �0:00133� 0:0028 (or � ¼ 4�eff ’ �0:00532,

� ¼ 3�eff ’ �0:004) with 	2
totð ~�0

m; �effÞ ’ 542:93 for

556 degrees of freedom.9 In Fig. 1 we present the 1
, 2


and 3
 confidence levels in the ð ~�0
m; �effÞ plane. In particu-

lar, the left panel in that figure shows the individual like-
lihood contours, with the SNIa-based results indicated by
thick solid lines, the BAO results by dotted red lines and
those based on theCMB shift parameter by solid curvilinear
lines (in green). Using the SNIa data alone it is evident that

although the ~�0
m parameter is tightly constrained (’ 0:27),

the �eff parameter remains completely unconstrained. As
can be seen in the right plots of Fig. 1, the above degeneracy
is broken when using the joint likelihood analysis, involv-
ing all the cosmological data. Finally, in the case of the
concordance �CDM cosmology (�eff ¼ � � 0) we find
�0

m ¼ 0:274� 0:01 with 	2
totð�0

mÞ=d:o:f ’ 543:18=558.
Overall we see that the departure of the GRVE model

with respect to the �CDM is extremely small and cannot
be detected at present.

V. DISCUSSION AND CONCLUSIONS

In this paper we have generalized the running vacuum
energy models and we have solved the corresponding
background cosmology. The generalized running vacuum
model (3.1.2), (3.1.3), and (3.1.4) with C0 � 0 is able to
pass the SNIaþ BAOþ CMB data constraints with a
statistical significance comparable to that of the concord-
ance �CDM model which is a limiting case of the model
(�r ¼ �m ¼ 1, or equivalently � ¼ � ¼ 0). Although the
best-fit models are currently indistinguishable from

FIG. 1 (color online). Likelihood contours (for �2 lnL=Lmax

equal to 2.30, 6.16 and 11.81, corresponding to 1
, 2
 and 3

confidence levels) in the ð ~�0

m; �effÞ plane for the generalized
running vacuum model (4.2.5) (C0 � 0 or ~�0

� � 0). For the
CMB analysis we include also the radiation component as
indicated in Eqs. (4.2.4) and (4.2.5). The left panel shows the
contour lines based on the SNIa data: thick solid, almost vertical
lines (in black); BAOs: dotted curvilinear lines (in red); and
CMB shift parameter: solid curvilinear lines (in green). In the
right panel we show the corresponding contours based on the
joint statistical analysis of the SNIaþ BAOþ CMB data.

8Likelihoods are normalized to their maximum values. In the
present analysis we always report 1
 uncertainties on the fitted
parameters. Note also that the total number of data points used
here is Ntot ¼ 559, while the associated degrees of freedom is:
d.o.f¼ Ntot � nfit � 1, where nfit is the model-dependent number
of fitted parameters.

9Note that in Ref. [12] the original running vacuum model was
used—see Eqs. (2.1.5) and (2.1.6)—in which � is strictly equal to
zero—and the Constitution set of 397 SNIa data [42]. We would
like to mention here that those results for � are in agreement with
the current results for �eff within 1
 uncertainties.
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�CDM we expect that future very accurate data on both
low and high redshifts could help to distinguish these
models from the standard cosmology.

Some conceptual issues pertaining to these models were
also addressed which are related to the peculiar conserva-
tion laws derived in Sec. III. We stress that these issues
hold as well for other models with analogous effective
Friedmann equations, models inspired either by the holo-
graphic or the entropic-force principle. We have further
emphasized that the presence of a nonvanishing additive
constant C0 is crucial since otherwise the cosmology does
not allow for a transition between decelerated and accel-
erated expansion. That was actually noticed in previous
entropic-force studies [20].10 In contrast, the class of the
running vacuum models, both the generalized one (GRVE)
presented here and the original one (which existed in the
literature since long ago—see Ref. [7] and references
therein) do not suffer from this problem because C0 is
naturally expected to be nonvanishing as a result of inte-
grating the corresponding RG equation. Therefore, despite
the formal analogies between these two sorts of models,
the running vacuum models are naturally well positioned
for a correct phenomenological description of our cosmos.

From the point of view of the running vacuum models,
the current Universe appears as FLRW-like with a genuine
cosmological constant while dust and radiation evolve in a
nonstandard way, in the sense that they follow scaling laws
that deviate slightly from their behavior in �CDM. In
contrast to the old running vacuum energy model, the
generalized one introduced in this paper allows for an
independent departure from the standard behavior of both
components. We have used this freedom and we have
explored models satisfying �r ¼ 1 thereby ensuring that
relativistic matter obeys the standard behavior. In this way

potential difficulties related to the radiation dominated
era are essentially avoided. While the other parameter
�m ’ 1� �eff remains free, it can be efficiently con-
strained using CMB data. It is constrained by observations
at a similar level as the single parameter � of the original
running model, i.e., they are both presently allowed up to
Oð10�3Þ at most (in absolute value).
This order of magnitude size is consistent with the

theoretical expectations on these coefficients, interpreted
as one-loop �-functions of the running cosmological con-
stant. The mild variation induced on the CC term by these
coefficients is responsible for the dynamical character of
the vacuum energy, which is of course the reason why these
models have a chance to improve the situation with the
�CDM without giving up its phenomenological success.
Such time variation is foreseen on general QFT grounds
and it provides a possible formulation of an effective
dynamical dark energy, which in some cases can help
curing the cosmic coincidence problem [44] and other
related problems.
To summarize, the running vacuum models offer a

challenging phenomenologically consistent description of
a universe with presently accelerated expansion. The
dynamical � could be understood in the context of QFT
in curved space-time. Such potential connection with fun-
damental physics could help to conceive the origin of
a dynamical � term in QFT and eventually provide an
explanation for the tough cosmological constant problem.
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[9] I. L. Shapiro and J. Solà, Phys. Lett. B 682, 105 (2009);

confer also to the extended version arXiv:0808.0315, and
references therein.

[10] O. Bertolami, Nuovo Cimento B 93, 36 (1986); MM. Ozer
and O. Taha, Nucl. Phys. B287, 776 (1987); O.K. Freese,
F. C. Adams, J. A. Frieman, and E. Mottola, Nucl. Phys.
287, 797 (1987); J. C. Carvalho, J. A. S. Lima, and
I. Waga, Phys. Rev. D 46, 2404 (1992); see e.g., the
reviews J.M. Overduin and F. I. Cooperstock, Phys. Rev.
D 58, 043506 (1998); R. G. Vishwakarma, Classical
Quantum Gravity 18, 1159 (2001), and references therein.

[11] S. Basilakos, M. Plionis, and J. Solà, Phys. Rev. D 80,
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