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We discuss the advantages of combining the experimental bound on BrðBs ! �þ��Þ and the measured

BrðB ! K‘þ‘�Þ to get the model-independent constraints on physics beyond the Standard Model. Since

the two decays give complementary information, one can study not only the absolute values of the Wilson

coefficients that are zero in the Standard Model, but also their phases. To identify the sector in which the

new physics might appear, information about the shapes of the transverse asymmetries in B ! K�‘þ‘� at

low q2’s can be particularly useful. We also emphasize the importance of measuring the forward-

backward asymmetry in B ! K‘þ‘� decay at large q2’s.
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I. INTRODUCTION AND BASIC FORMULAS

Ever since the first observation of B ! K�� [1], the
decay modes governed by the loop-induced b ! s transition
have played a major role in the search for signals of physics
beyond the Standard Model (BSM) in low-energy experi-
ments. After years of experimental and theoretical effort, we
now know that the observed decay rates and several con-
veniently defined observables are consistent with the
Standard Model (SM) predictions, thus leaving little room
for new physics (NP). Since the nonperturbative QCD (had-
ronic) uncertainties are still large in most cases, the com-
parison between theory and experiment is not yet at the
precision level, and quantitative statements about the size of
possible NP contributions are often subjects of controversy.

Much of the experimental activity has been devoted to
B ! K�‘þ‘� decay, for which improvement on theoreti-
cal (hadronic) uncertainties is hard to achieve, apart from a
few asymmetries that will be studied at CMS, LHCb and in
the new generation of B-physics experiments. In contrast to
the decay to K�, a substantial improvement in the deter-
mination of the hadronic form factors entering the theo-
retical description of B ! K‘þ‘� is realistic to expect
very soon. In that respect, the recently reported result on
BrðB ! K‘þ‘�Þ by BABAR [2] is likely to become a major
constraint in the NP searches. The ongoing experimental
effort to detect another b ! s mediated decay, Bs !
�þ��, has been greatly improved after LHCb was able
to set an upper bound on BrðBs ! �þ��Þ that got very
close to the value predicted in the SM [3]. In this paper we

discuss how these two decay modes can be combined to
give us complementary information about the potential
physics contributions from BSM.
The most important effect of physics BSM in Bs !

�þ�� is expected to come from a coupling to the scalar
and/or the pseudoscalar operators. If that scenario is veri-
fied in nature, it would strongly affect B ! K‘þ‘�,
whereas the three transverse asymmetries Að2;im;reÞ

T ðq2Þ of
B ! K�‘þ‘� decay would remain unchanged with respect
to their shapes predicted at low q2’s in the SM [4].1 If,
instead, the NP alters the couplings to the semileptonic
operators / �s��PL;Rb, then the shapes of the mentioned

asymmetries would change too.
In this paper we assume that the NP does not couple with

tensor operators (specified below). It turns out that this
assumption can also be tested by measuring A‘

FBðq2Þ, the
forward-backward asymmetry in B ! K‘þ‘�, but in the
region of large q2’s in which the nonzero tensor couplings
would entail a large enhancement of A‘

FBðq2Þ.
In what follows, we will show how and why the two

decay modes, Bs ! �þ�� and B ! K‘þ‘�, are comple-
mentary, and after combining the recent experimental results
with our current theoretical knowledge of the hadronic
matrix elements, we will discuss the resulting constraints
on NP.
In handling the B ! K‘þ‘� decay we computed the

form factors by using the simulations of quenched QCD on
the lattice (LQCD), which appear to be compatible with the
results obtained by evaluating the QCD sum rules near
the light cone (LCSR) [6]. These results are merely an

*Laboratoire de Physique Théorique est une unité mixte de
recherche du CNRS, UMR 8627, Orsay Cedex, France.

1Please note that the asymmetry Að2Þ
T ðq2Þ has been introduced

in Ref. [5] and since then abundantly discussed in the literature.
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illustration of the potential of LQCD in pinning down the
hadronic errors in this decay. Very soon these results will
be substantially improved by using the available QCD
configurations that contain the effects of dynamical quarks
[7]. Notice that the lattice results are more reliable in the
larger half of the q2 region available from this decay
(14 GeV2 & q2 & 20 GeV2). For that reason it would be
desirable to have the experimentally established partial
decay width of B ! K‘þ‘� at q2’s that are also accessible
in modern lattice QCD studies. In that way we would be far
more confident about the quantitative statements made
from this kind of analysis.

The effective Hamiltonian describing the b ! s‘þ‘�
transitions at low energy is [8]

H eff ¼ � 4GFffiffiffi
2

p VtbV
�
ts

�X6
i¼1

Cið�ÞOið�Þ

þ X
i¼7;8;9;10;P;S;T;T5

ðCið�ÞOi þ C0
ið�ÞO0

iÞ
�
; (1)

where the twice Cabibbo-suppressed contributions
(/ VubV

�
us) have been neglected. The operator basis in

which the Wilson coefficients have been computed is [9,10]

O 7 ¼ e

g2
mbð�s���PRbÞF��; O0

7 ¼
e

g2
mbð �s���PLbÞF��; O8 ¼ 1

g
mbð�s���T

aPRbÞG��a;

O0
8 ¼

1

g
mbð�s���T

aPLbÞG��a; O9 ¼ e2

g2
ð�s��PLbÞð �‘��‘Þ; O0

9 ¼
e2

g2
ð�s��PRbÞð �‘��‘Þ;

O10 ¼ e2

g2
ð�s��PLbÞð �‘���5‘Þ; O0

10 ¼
e2

g2
ð�s��PRbÞð �‘���5‘Þ; OS ¼ e2

16�2
ð �sPRbÞð �‘‘Þ;

O0
S ¼

e2

16�2
ð�sPLbÞð �‘‘Þ; OP ¼ e2

16�2
ð �sPRbÞð �‘�5‘Þ; O0

P ¼ e2

16�2
ð�sPLbÞð �‘�5‘Þ;

OT ¼ e2

16�2
ð�s���bÞð �‘���‘Þ; OT5 ¼ e2

16�2
ð �s���bÞð �‘����5‘Þ;

(2)

where PL;R ¼ ð1� �5Þ=2, ‘ ¼ e or �, and the explicit
expressions for O1�6 can be found in Ref. [9]. Short-
distance physics effects, encoded in theWilson coefficients
Cið�Þ, have been computed in the SM through a perturba-
tive matching of the effective with the full theory at � ¼
mW , and then evolved down to � ¼ mb by means of the
QCD renormalization group equations at next-to-next-to-
leading logarithmic approximation [9]. It is customary to
reassemble Wilson coefficients multiplying the same had-
ronic matrix element into effective coefficients appearing
in the physical amplitudes, namely [11]

Ceff
7 ¼4�

�s

C7�1

3
C3�4

9
C4�20

3
C5�80

9
C6;

Ceff
8 ¼4�

�s

C8þC3�1

6
C4þ20C5�10

3
C6;

Ceff
9 ¼4�

�s

C9þYðq2Þ; Ceff
10 ¼

4�

�s

C10;

C0;eff
7;8;9;10¼

4�

�s

C0
7;8;9;10;

(3)

where the function Yðq2Þ is

Yðq2Þ¼4

3
C3þ64

9
C5þ64

27
C6�1

2
hðq2;0Þ

�
C3þ4

3
C4þ16C5

þ64

3
C6

�
þhðq2;mcÞ

�
4

3
C1þC2þ6C3þ60C5

�

�1

2
hðq2;mbÞ

�
7C3þ4

3
C4þ76C5þ64

3
C6

�
; (4)

and

hðq2; mqÞ ¼ � 4

9

�
ln
m2

q

�2
� 2

3
� z

�
� 4

9
ð2þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jz� 1j

p

�
8<
:
arctan 1ffiffiffiffiffiffiffi

z�1
p z > 1

ln1þ
ffiffiffiffiffiffiffi
1�z

pffiffi
z

p � i�
2 z � 1

; (5)

with z ¼ 4m2
q=q

2. To make the notation less heavy, in
what follows we will drop the superscript ‘‘eff’’ in
Wilson coefficients, while tacitly assuming the redefini-
tions in Eq. (3). Note that in the SM theWilson coefficients
of the right-handed flavor violating operators or of the
operators OS;P;T;T5 are absent and therefore C0

7;8;9;10¼
Cð0Þ
S;P;T;T5¼0.

II. PHYSICAL PROCESSES AS CONSTRAINTS

A. Bs ! ‘þ‘�

One of the most promising decay modes expected to
reveal the effects of NP at LHCb is Bs ! �þ��. Using
the effective theory [Eq. (1)], the only operator contrib-
uting to the amplitude of this process in the SM is O10,
and the expression for the branching fraction of this decay
reads

BrðBs ! ‘þ‘�ÞSM

¼ �Bs

G2
F�

2

16�3
jVtbV

�
tsj2mBs

m2
‘�‘ðm2

Bs
ÞjC10j2f2Bs

; (6)
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where �‘ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘=q
2

q
, ‘ ¼ � or e, and the Bs

meson decay constant is defined via

h0j�s��PLbjBsðpÞi ¼ i

2
fBs

p�: (7)

On general grounds, the contributions of physics beyond
the SM can modify the above expression to

BrðBs ! ‘þ‘�ÞBSM ¼ �Bs
f2Bs

m3
Bs

G2
F�

2

64�3
jVtbV

�
tsj2�‘ðm2

Bs
Þ

�
�m2

Bs

m2
b

jCS � C0
Sj2

�
1� 4m2

‘

m2
Bs

�

þ
��������mBs

mb

ðCP � C0
PÞ

þ 2
m‘

mBs

ðC10 � C0
10Þ

��������2
�
; (8)

thus lifting the helicity suppression exhibited in the SM
expression [Eq. (6)]. This is why it is interesting and
important to experimentally investigate this decay for
both ‘ ¼ � and ‘ ¼ e. In the SM, the electron mass
severely suppresses the decay rate, and a clean detection
of the Bs ! eþe� events would be a clear signal of NP
effects. In the last formula the presence of the right-
handed (non-SM) couplings would induce C0

10 � 0, while
the new scalar (pseudoscalar) couplings would entail the

nonzero Cð0Þ
S (Cð0Þ

P ).

Several specific NP models that allow for large values
of CS suggested a possibility of observing a large number
of Bs ! �þ�� events. Recent experimental activity at
the LHC [3], however, showed that such a large enhance-
ment does not occur and the current upper bound on
BrðBs ! �þ��Þ is quite close to the SM value. More
specifically,2

BrðBs ! �þ��Þexp < 4:1� 10�9;

BrðBs ! �þ��Þth-SM ¼ ð3:3� 0:3Þ � 10�9;
(9)

where for the SM estimate we used the parameters given
in Appendix B of the present paper (cf., Table II).
Although the desired enhancement by orders of magni-
tude with respect to the SM does not occur, the possibility
of seeing the NP signal from this decay mode is still alive.
One can even envisage the possibility of BrðBs ! �þ��Þ
smaller than the one predicted in the SM, as can be easily
seen from Eq. (8).

If, for the moment, we only consider the possibility that
the SM is extended by allowing a coupling to the scalar

operator, i.e., by keepingC0
10 ¼ Cð0Þ

P ¼ 0, then from Eq. (8)

one gets

jCS � C0
Sj � 0:08 ð1�Þ; (10)

which we illustrate in Fig. 1. This limit is actually not too
far away from jCS � C0

SjSM ¼ 0, which is why this bound

becomes a very severe constraint on the NP models with
scalar operators. The above bound still allows for an
observation of BrðBs ! eþe�Þ & 2� 10�9, unless the
lepton flavor universality is not respected by NP.
Obviously, the bound in Eq. (10) does not give us any
information about CS and C

0
S separately. For that we would

need the complementary information that can be inferred
from B ! K‘þ‘�.
Recent research about exploring the constraint from

the experimental bound on BrðBs ! �þ��Þ has been
reported in Ref. [19].

B. B ! K‘þ‘�

There are many papers in the literature dealing with this
decay. We were able to check the expressions given in
Ref. [20] with which we agree. The full distribution of
this decay is conveniently expressed as

d2�‘ðq2; cos	Þ
dq2d cos	

¼ a‘ðq2Þ þ b‘ðq2Þ cos	þ c‘ðq2Þcos2	;
(11)

where for short �‘ � �ðB ! K‘þ‘�Þ, q2 ¼ ðp‘þ þ p‘�Þ2,
and 	 is the angle between the directions of �B and of ‘� in
the center-of-mass frame of the lepton pair. In terms of
specific Lorentz components, Fiðq2Þ (i ¼ S, P, V, A, T,
T5), the explicit expressions of the functions on the right
hand side of Eq. (13) are

LHCb bound
theo

ry
pred

ict
ion
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FIG. 1 (color online). Increase of BrðBs ! �þ��Þ with
jCS � C0

Sj according to Eq. (8) is shown by the dark band,

defined by 1� errors on the input parameters. The brightly
shaded area depicts the experimentally allowed values for the

decay mode. C0
10 ¼ Cð0Þ

P ¼ 0 has been used.

2Recently, it has been noted that the effect of Bs � �Bs mixing
should be taken into account [12], whose net effect amounts to
replacing BrðBs ! �þ��Þexp ! ð1� ysÞBrðBs ! �þ��Þexp,
where ys ¼ ð��=2�ÞBs

¼ ð9:0� 2:1� 0:8Þ% was also mea-
sured by LHCb [13]. This correction is already incorporated in
the corrected experimental value [Eq. (10)].
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a‘ðq2Þ ¼ Cðq2Þ
�
q2ð�2

‘ðq2ÞjFSðq2Þj2 þ jFPðq2Þj2Þ þ 
ðq2Þ
4

ðjFAðq2Þj2 þ jFVðq2Þj2Þ þ 4m2
‘m

2
BjFAðq2Þj2

þ 2m‘ðm2
B �m2

K þ q2ÞReðFPðq2ÞF�
Aðq2ÞÞ

�
;

b‘ðq2Þ ¼ 2Cðq2Þfq2½�2
‘ðq2ÞReðFSðq2ÞF�

Tðq2ÞÞ þ ReðFPðq2ÞF�
T5ðq2ÞÞ� þm‘½

ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þ

q
�‘ðq2ÞReðFSðq2ÞF�

Vðq2ÞÞ
þ ðm2

B �m2
K þ q2ÞReðFT5ðq2ÞF�

Aðq2ÞÞ�g;

c‘ðq2Þ ¼ Cðq2Þ
�
q2ð�2

‘ðq2ÞjFTðq2Þj2 þ jFT5ðq2Þj2Þ � 
ðq2Þ
4

�2
‘ðq2ÞðjFAðq2Þj2 þ jFVðq2Þj2Þ

þ 2m‘

ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þ

q
�‘ðq2ÞReðFTðq2ÞF�

Vðq2ÞÞ
�
; (12)

where

C ðq2Þ ¼ G2
F�

2jVtbV
�
tsj2

512�5m3
B

�‘ðq2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þ

q
; (13)

with


ðq2Þ ¼ q4 þm4
B þm4

K � 2ðm2
Bm

2
K þm2

Bq
2 þm2

Kq
2Þ
(14)

and

FVðq2Þ ¼ ðC9 þ C0
9Þfþðq2Þ þ

2mb

mB þmK

�
�
C7 þ C0

7 þ
4m‘

mb

CT

�
fTðq2Þ;

FAðq2Þ ¼ ðC10 þ C0
10Þfþðq2Þ;

FSðq2Þ ¼ m2
B �m2

K

2mb

ðCS þ C0
SÞf0ðq2Þ;

FPðq2Þ ¼ m2
B �m2

K

2mb

ðCP þ C0
PÞf0ðq2Þ �m‘ðC10 þ C0

10Þ

�
�
fþðq2Þ �m2

B �m2
K

q2
ðf0ðq2Þ � fþðq2ÞÞ

�
;

FTðq2Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þp

�‘ðq2Þ
mB þmK

CTfTðq2Þ;

FT5ðq2Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þp

�‘ðq2Þ
mB þmK

CT5fTðq2Þ: (15)

In the above expressions we employed the standard decom-
positions of the hadronic matrix elements in terms of the
form factors, namely

hKðkÞj �s��bjBðpÞi¼
�
ðpþkÞ��m2

B�m2
K

q2
q�

�
fþðq2Þ

þm2
B�m2

K

q2
q�f0ðq2Þ;

hKðkÞj�s���bjBðpÞi¼�iðp�k��p�k�Þ 2fTðq
2Þ

mBþmK

: (16)

After integrating Eq. (11) over q2 ¼ ðp� kÞ2, one obtains
d�‘ðcos	Þ
d cos	

¼ A‘ þ B‘ cos	þ C‘cos
2	; (17)

where obviously

A‘ ¼
Z q2max

q2
min

a‘ðq2Þdq2; B‘ ¼ Rq2max

q2
min

b‘ðq2Þdq2;

C‘ ¼
Z q2max

q2
min

c‘ðq2Þdq2;
(18)

with q2min ¼ 4m2
‘, and q2max ¼ ðmB �mKÞ2. For a partial

decay width, one would obviously choose different
q2min=max. Finally, the integration over 	 leads to the full
decay width, in which the term proportional to cos	 drops
out. The latter survives in the forward-backward asymme-
try, and we have

�‘ ¼ 2

�
A‘ þ 1

3
C‘

�
; A‘

FB ¼ B‘

�‘

: (19)

Clearly these two observables are independent, as they
involve different pieces of the distribution [Eq. (11)]. In
Ref. [20] another useful quantity has been introduced,

F‘
H ¼ 2ðA‘ þ C‘Þ

�‘

; (20)

which in the SM is proportional to m2
‘, but can receive

important contributions in various scenarios of NP. Before
continuing, wewish to stress that in the SM A‘

FB ¼ 0, and it
remains zero even if the Wilson coefficients Cð0Þ

7;9;10 re-
ceived large NP contributions. Its nonzero measurement
would be a clean signal of NP, and therefore its experi-
mental study would be highly welcome.
For our purpose, it is important to note that all

the functions in Eqs. (12) and (15) involve the sum of
Ci þ C0

i, and therefore the full branching ratio provides
us with a constraint that is complementary to Eq. (10). The
recently measured [2]

Br ðB!K‘þ‘�Þexp¼ð4:7�0:6�0:2Þ�10�7 (21)

is compatible with the SM prediction,
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BrðB!K‘þ‘�ÞSM¼
(ð7:5�1:4Þ�10�7 LQCD

ð6:8�1:6Þ�10�7 LCSR
; (22)

which, at this stage, we take to be

Br ðB ! K‘þ‘�ÞSM ¼ ð7:0� 1:8Þ � 10�7; (23)

thus covering all the values allowed by the two methods of
computing the form factors, LQCD and LCSR. Allowing

for nonzero Cð0Þ
S then leads to

jCS þ C0
Sj � 1:3 ð1�Þ; (24)

as illustrated in Fig. 2. To obtain Eq. (24), we had to assume

that NP does not alter the SM values ofCð0Þ
7;9 which enter the

expression for BrðB ! K‘þ‘�Þ. That assumption can be
tested experimentally through the study of low-q2 behavior
of three transverse asymmetries discussed in Ref. [4]
which exhibit three very important features: (i) they have
small hadronic uncertainties, (ii) their shapes are highly

sensitive to Cð0Þ
7;9, and (iii) they are completely insensitive

to Cð0Þ
S;P.

Another important comment concerning the constraint
in Eq. (24) is that it is obtained by including the 1�
experimental uncertainty, and by using the form factors
that are either obtained from the numerical simulations of
quenched QCD on the lattice (see Appendix B of this
paper) or in the QCD sum rule analyzed near the light
cone [6], respectively labeled as LQCD and LCSR in
Eq. (22). LQCD results appear to be consistent with those
obtained from LCSR. The three relevant form factors,
fþ;0;Tðq2Þ, will soon be improved by the new generation

of unquenched lattice QCD simulations. Several such stud-
ies are underway [7]. Notice that the improvement of
fþ;0;Tðq2Þ is much more realistic to expect than those

parameterizing the B ! K� transition matrix elements,
because the latter decay involves many more form factors,
including at least three that suffer from very large uncer-
tainties (see e.g., Ref. [21]).

III. CONSTRAINTS ON THE SCALAR
(PSEUDOSCALAR) COUPLINGS

Couplings to the scalar and pseudoscalar operators are
particularly interesting in the framework of supersymmet-
ric (SUSY) extensions of the SM. A very detailed consid-
eration of the SUSY contributions to Bs ! ‘þ‘� has been
made in Ref. [22]. The relations between the Wilson co-

efficients Cð0Þ
S;P and CS

LL;LR;RL;RR, defined in Ref. [22] are

CS¼XðCS
LRþCS

LLÞ�; CP¼XðCS
LR�CS

LLÞ�;
C0
S¼XðCS

RRþCS
RLÞ�; C0

P¼XðCS
RR�CS

RLÞ�;
(25)

where X ¼ �=ð ffiffiffi
2

p
GF�V

�
tsVtbÞ. From Ref. [22] we learn

that the SUSY contributions to the box and penguin dia-

grams can modify Cð0Þ
S;P as follows:

(i) Diagrams with one charged Higgs boson propagat-
ing in the box can give a nonzero contribution via
coupling to the left-handed parts only. Furthermore,

they verify CHþ
S ¼ �CHþ

P . The right-handed cou-

plings, instead, are suppressed by the strange quark

mass, C0
S
Hþ ¼ C0

P
Hþ ¼ 0.

(ii) Diagrams with charginos propagating in the
box also give rise to C�

S and C�
P, but leave C0

S
�¼

C0
P
�¼0. Moreover, if for example the masses of

squarks and sneutrinos in the box are degenerate,
then one again obtains C�

S ¼ �C�
P.

(iii) The Z0-penguin diagram, with superparticles prop-
agating in the loop, cannot generate a contribution

to Cð0Þ
S;P due to the vector coupling to Z0.

(iv) The H0-penguin diagram, instead, can give a siz-
able contribution, which verifies

CH0

S ¼ �CH0

P ; C0H0

S ¼ C0H0

P (26)

up to the electroweak symmetry-breaking correc-
tions that are proportional to the mass splitting
between the SUSY (MSSM) Higgs bosons, namely
m2

H0 �m2
A0 .

The situation similar to the H0-penguin case above also
happens in the models with vector leptoquark states. In
those models, nonzero contributions toCS are possible, and
they satisfy the relation CS ¼ �CP, as well as C

0
S ¼ �C0

P

[23]. On the contrary, the models with scalar leptoquarks

cannot generate any sizeable value of Cð0Þ
S;P. These are

obviously only two among many scenarios of physics
BSM in which the coupling to scalar (pseudoscalar) can
be generated.
In the remainder of this section we will combine the

constraints discussed in Sec. II and apply them to two

particular scenarios: (1) Cð0Þ
S � 0, while C0

10 ¼ Cð0Þ
P ¼ 0,

and (2) Cð0Þ
P � 0, while keeping C0

10 ¼ Cð0Þ
S ¼ 0. In each

case we will also allow the nonzero relative phase between
the left- and right-handed couplings (Wilson coefficients).

BaBar value

theory prediction
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6.
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10.

CS CS'

B
r
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FIG. 2 (color online). BrðB ! K‘þ‘�Þ ¼ �B�‘ as a function
of jCS þ C0

Sj. Bright shaded horizontal band corresponds to the

recently measured BrðB ! K‘þ‘�Þ at BABAR. We used �‘

given in Eq. (19) and �B ¼ �B0 to conform with the experimental
practice when combining neutral and charged B modes.
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A. Cð0Þ
S � 0

We first focus on the scenario in which CS and C
0
S can be

different from zero. Besides jCð0Þ
S j � 0, NP can induce new

weak phases, which through our constraints in Eqs. (10)
and (24) cannot be studied separately. Instead, one can
study the impact of the relative phase, ��S ¼ �0

S ��S,

by using

jCS�C0
Sj2¼jCSj2þjC0

Sj2�2jCSjjC0
Sjcosð��SÞ (27)

and explore the possible values of jCSj and jC0
Sj for various

��S 2 ½0; �� that are compatible with the constraints in
Eqs. (10) and (24). The bound on Bs ! �þ�� is much
more compelling, and for any nonzero relative phase,��S,
the constraint provided by B ! K‘þ‘� becomes essen-
tially superfluous, except in the case of ��S ¼ 0 when the
constraint of Eq. (10) describes a stripe in the plane (jCSj,
jC0

Sj) that is cut off by the constraint of Eq. (24). This

situation is illustrated in Fig. 3 for three representative
cases, ��S ¼ 0, �=2, and �. We see that the situation in
which ��S ¼ 0 is indeed peculiar, and only for very small
values of the relative phase ��S are the sizable couplings
to NP via scalar operators possible. Otherwise a nonzero

relative phase entails a reduction of available jCð0Þ
S j, as we

show in Fig. 4. Two important comments are in order:
(i) Any value of jCSj and/or jC0

Sj allowed by the con-

straints in Eqs. (10) and (24), for any value of the
relative phase ��S, is consistent with the branching
fraction of the inclusive B ! Xs‘

þ‘� decay, which
has been measured at the B factories at low q2’s
[24,25], resulting in an average [26],

Z 6GeV2

1GeV2

dBrðB!Xs�
þ��Þ

dq2
dq2jexp¼1:6ð5Þ�10�6:

(28)

By using the formulas presented in Refs. [26,27], we
obtain in the SM

Z 6 GeV2

1 GeV2

dBrðB ! Xs�
þ��Þ

dq2
dq2jth-SM

¼ 1:59ð17Þ � 10�6; (29)

where, instead of the usual practice to normalize
by the inclusive semileptonic �ðB ! Xce�Þ de-
cay, we actually use the tree-level decay rate
proportional to the fifth power of the b-quark
mass, i.e.,

B0¼�B
4�2G2

FjVtbV
�
tsj2m5

b

3ð4�Þ5 ¼3:41ð47Þ�10�7; (30)

which is now possible thanks to the fact that the
value of the b-quark is by now very well deter-
mined from the multitude of techniques of QCD
sum rules and modern simulations of QCD on the
lattice. Our result agrees very well with the one
obtained in Ref. [26] that was obtained by normal-
izing to �ðB ! Xce�Þ. In practice we take the
average quark mass quoted by PDG and convert
it to the pole mass using the next-to-next-to-
leading logarithmic approximation perturbative
QCD corrections [28].
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FIG. 3 (color online). The constraint on jCSj and jC0
Sj obtained from BrðB ! K‘þ‘�Þ is represented by the brightly shaded area,

whereas the one deduced from BrðBs ! �þ��Þ is described by the dark shaded region. Of course, only the overlap of both regions is

consistent with the constraints. It is also consistent with BrðB ! Xs‘
þ‘�Þ and jCð0Þ

S j � 0; it does not modify the transverse

asymmetries in B ! K�‘þ‘�. Plotted are the cases with three specific choices of the relative phase ��S.
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FIG. 4 (color online). Maximal value of jCSj or jC0
Sj allowed

by the constraints in Eqs. (10) and (24) as a function of the
relative phase ��S 2 ½0; ��.
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The scalar contribution to B ! Xs�
þ�� has been

computed in Ref. [29], and leads to a term that
adds up to BrðB ! Xs‘

þ‘�ÞSM and reads

dBrðB!Xs�
þ��Þ

dq2

��������Cð0Þ
S

¼ 3B0

2m2
b

�
1� q2

m2
b

�
2 q2

m2
b

�ðjCSj2þjC0
Sj2Þ: (31)

When integrated between 1 and 6 GeV2, this leads
to a tiny correction,

Z 6GeV2

1GeV2

dBrðB!Xs�
þ��Þ

dq2
dq2

¼1:59ð17Þ�10�6½1þ0:007ð1ÞðjCSj2þjC0
Sj2Þ�;
(32)

so that even the largest allowed values for jCð0Þ
S j,

displayed in Fig. 4, result in a negligibly small
correction to the inclusive B ! Xs�

þ�� rate.
(ii) We stress again that the NP scenario in which only

the coupling to the scalar operators Oð0Þ are allowed
would not modify the SM predictions of the q2

shapes of three transverse asymmetries that can be
measured from B ! K�‘þ‘� decay, namely

Að2;im;reÞ
T ðq2Þ [4].

B. Cð0Þ
P � 0

The situation is slightly more complicated in the case of
CP � C0

P because both phases are needed. It is easy to see
that Eq. (8) gives us��������CP � C0

P þ 2
mbm�

m2
Bs

CSM
10

��������
� 8�3=2mb

�GFfBs
m2

Bs
jVtbV

�
tsj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BrðBs ! �þ��Þ
mBs

�Bs
��ðm2

Bs
Þ

vuut ¼ 0:150;

(33)

and therefore considering only the relative phase, ��P ¼
�P0 ��P, is not enough. Instead, we write

jCPj2þjC0
Pj2�2jCPjjC0

Pjcosð��PÞþ ~C2
10

þ2 ~C10½jCPjcos�P�jC0
Pjcosð�Pþ��PÞ��ð0:150Þ2;

(34)

where, for brevity, we use ~C10 ¼ 2CSM
10 mbm�=m

2
Bs
.

Besides ��P, we choose to vary the phase of CP. A
compact analytical expression similar to Eq. (34) that
constrains CP þ C0

P from BrðB ! K‘þ‘�Þ cannot be ob-
tained. Instead, we get

jCPþC0
Pjm‘¼0�1:3; jCPþC0

P�0:33jm�
�1:3 ð1�Þ

(35)

in the massless and massive lepton case, respectively. In
what follows, we will use m‘ ¼ m� � 0.

We first fix �P ¼ 0 and vary the relative phase ��P 2
½0; ��. Typical examples are shown in Fig. 5. We then let

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

CP

C
P

'

P 0 o, P 0 o

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

CP

C
P

'

P 0 o, P 90 o

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

CP

C
P

'

P 0 o, P 180 o

FIG. 5 (color online). Allowed values for jCPj and jC0
Pj correspond to the overlap of the constraints obtained from BrðB ! K‘þ‘�Þ

(light shaded area) and BrðBs ! �þ��Þ (dark shaded area). Illustration is provided for three various values of the relative phase ��P

and for �P ¼ 0.
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FIG. 6 (color online). Available values of jCPj or jC0
Pj allowed

by the experimental results of Eqs. (9) and (21) are plotted as a
function of the relative phase ��P ¼ �0

P ��P, for four differ-
ent values of �P specified in the legend.
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�P 2 ð0; 2�� and observe that the possible values of jCPj
and jC0

Pj consistent with Eqs. (9) and (21) are smaller than
in the �P ¼ 0 case. For any fixed �P the situation is
similar to what we observed in the case of jCSj and jC0

Sj
(cf., Fig. 4), namely that for larger��P the possible values
of jCPj and jC0

Pj are smaller than in the case ��P ¼ 0. In
other words, the most space available for NP occurs when
the phases of jCPj and jC0

Pj are aligned (��P 	 0), and
even more when the NP phase �P 	 0. This is illustrated
in Fig. 6.

Furthermore, observations similar to those we made in
the end of the previous subsection apply also in this
case:

(i) Our result that jCð0Þ
P j & 1:0 for any value of �P and

for any ��P is consistent with the observed branch-
ing fraction of the inclusive decay rate [Eq. (28)],
which is modified by the presence of the pseudosca-
lar operator in the same way it was in the case of the
scalars [29], namely,

dBrðB!Xs�
þ��Þ

dq2

��������Cð0Þ
P

¼ 3B0

2m2
b

�
1� q2

m2
b

�
2 q2

m2
b

�ðjCPj2þjC0
Pj2Þ: (36)

(ii) Notice also that the nonzero values of Cð0Þ
P � 0 can-

not modify the SM predictions of the low q2 shapes

of three transverse asymmetries, Að2;im;reÞ
T , currently

studied in the B ! K�‘þ‘� decay at LHCb.

C. Peculiar case of CS;P � 0

Before closing this section, we would like to comment
on the case, often discussed in the literature, in which the
NP can couple via CS;P � 0 but with C0

S;P ¼ 0. The

available range of values for jCS;Pj � 0 consistent with

the constraints provided by BrðB ! K‘þ‘�Þ and
BrðBs ! �þ��Þ is depicted in Fig. 7. As in the previous
cases, the largest range of jCS;Pj � 0 is obtained when the

pseudoscalar coupling is real, �P ¼ 0. The result is, of

course, invariant with respect to the change of the phase
�S. A particularly important observation that can be made
in this case is that the current constraint provided by B !
K‘þ‘� is redundant, but that situation could radically
change if the errors on B ! K form factors were signifi-
cantly reduced. To illustrate that effect, we keep the
central values of the form factors fixed and reduce the
errors by 20%. In that hypothetical situation, the con-
straint coming from the measured and theoretically eval-
uated BrðB ! K‘þ‘�Þ is not compatible with the SM
(within the 1� accuracy), and therefore B ! K‘þ‘�
becomes an essential constraint to the values of possible
jCS;Pj. The corresponding plots are presented in Fig. 8,

where we only show the cases for which the overlapping
region (satisfied by both constraints) exists. For �P *
40
 such a solution would not exist, which would be
very valuable information about NP.
The above example only further highlights the impor-

tance of reducing the errors on the B ! K transition form
factors by using the currently available lattice QCD con-
figurations that includeNf ¼ 2, 2þ 1, and even 2þ 1þ 1

dynamical quark flavors. We should also stress that simul-
taneous experimental effort in measuring the partial decay
width of B ! K‘þ‘� at several moderately large and large
values of q2 would be highly welcome, because for those
momentum transfers the uncertainties of the form factors
computed in LQCD are under much better control than
those at low q2’s. Effort in that direction made in Ref. [2] is
highly welcome.

IV. CONSTRAINTS ON Cð0Þ
10

In this section we focus on the NP contributions
that might arise from the couplings to the operator O10

and O0
10, assuming that the Wilson coefficients Cð0Þ

S;P ¼ 0,

as in the SM.3 Specific realizations of the two-Higgs

FIG. 7 (color online). Allowed values for jCSj and jCPj obtained by combining the experimental information on BrðB ! K‘þ‘�Þ
(light shaded area) and the upper bound on BrðBs ! �þ��Þ (dark shaded area). Illustration is provided for three various values of the
relative phase �P.

3Here we also tacitly assume that the Cð0Þ
7;9;T , which enter the

expression for BrðB ! K‘þ‘�Þ, remain at their SM values.
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doublet models have been discussed in great detail in

Refs. [22,30]. Note that our Wilson coefficients Cð0Þ
10 are

related to the ones defined in Ref. [22] as

C10¼XðCV
LR�CV

LLÞ�; C0
10¼XðCV

RR�CV
RLÞ�; (37)

where X is the same one defined after Eq. (25). From
Refs. [22,30] we learn that

(i) The Z0-penguin, with a charged Higgs running in the
loop, gives rise to

CZ0Hþ
10 / þ m2

t

m2
W

1

tan2�
;

C0Z0Hþ
10 / �msmb

m2
W

tan2�:

(38)

Therefore, a nonzero contribution in the scenario is
conceivable for either small or large tan�, although
the large tan� in C0

10 is suppressed by the strange

quark mass.

(ii) The Z0-penguin, with a gluino running in the loop,
is only relevant at larger tan�, and the correspond-

ing contributions are such that CZ0 ~g
10 ¼ C0Z0 ~g

10 .

(iii) Box diagrams are highly suppressed and give no
interesting contributions.

As far as the leptoquark models are concerned, C10 andC
0
10

can be nonzero in both classes of models, namely with
scalar or vector leptoquarks. Interestingly, however, the

change in Cð0Þ
10 implies the change in Cð0Þ

9 too. For more

details about this issue, see Ref. [23].
In what follows, we proceed in a way similar to the

previous section and use Eqs. (9) and (21) to obtain

jC10þC0
10j�4:4; jC10�C0

10j�4:8 ð1�Þ: (39)

It is now sufficient to study the impact of the relative phase,
�� ¼ �100 ��10, by using

jC10 � C0
10j2 ¼ jC10j2 þ jC0

10j2 � 2jC10jjC0
10j cosð��Þ:

(40)
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FIG. 8 (color online). Same as in Fig. 7, except that the errors on the hadronic form factors relevant to B ! K‘þ‘� are reduced by
20%, and we plot the cases with �P ¼ 0, 20
 and 40
.
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FIG. 9 (color online). Constraint on jC10j and jC0
10j obtained by combining the experimental information on BrðB ! K‘þ‘�Þ (light

shaded area) and BrðBs ! �þ��Þ (dark shaded in the plots). We used the hadronic form factors and the decay constant given in
Appendixes A and B. Three plots correspond to three specific choices of the relative phase �� ¼ �100 ��10 indicated in each plot.
The domain inside the dashed curve is allowed by the inclusive decay, as indicated in Eq. (43). The region satisfying all three
constraints is within the thick curve. See text for the explanation about the yellow region.
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In Fig. 9 we illustrate the resulting constraints for three
distinctive cases, �� ¼ 0, �=2, and �. We see that for
�� ¼ 0 the main constraint comes from B ! K‘þ‘�,
whereas in the case of �� ¼ � the decisive constraint is
Bs ! �þ��, which is easy to understand from Eq. (40).
In the intermediate case of �� ¼ �=2 the two constraints
are equivalent.

We also checked the hypothetical scenario in which
the measured BrðBs ! �þ��Þ coincides with its value
predicted in the SM [Eq. (9)]. As a result, the allowed
region in the jC10j-jC0

10j plane is depicted by the yellow

stripe in Fig. 9.
Contrary to the previous section, in this case the inclu-

sive branching fraction [Eq. (28)] provides us with a valu-

able new constraint. The contribution from Oð0Þ
10 to the

differential decay rate can be extracted from Ref. [29],
and for the massless lepton pair it reads

dBrðB ! Xs�
þ��Þ

dq2

��������Cð0Þ
10

¼ B0

m2
b

�
1� q2

m2
b

�
2
�
1þ 2

q2

m2
b

�

� ðjC10j2 þ jC0
10j2Þ; (41)

and therefore we can write

10 6 �
Z 6 GeV2

1 GeV2

dBrðB ! Xs�
þ��Þ

dq2
dq2

¼ 0:69ð9Þ þ 0:058ð6ÞðjC10j2 þ jC0
10j2Þ: (42)

When combined with the experimental value in Eq. (28),
we get

4:7 � jC10j2 þ jC0
10j2 � 28:9 ð1�Þ: (43)

As before, we account for the 1� uncertainty around the
central experimental value and take the lowest/largest
possible values to obtain the limits in Eq. (43), which
describes a disc in the jC10j-jC0

10j plane, as shown in

Fig. 9 (dashed curves). The situation is now more inter-
esting, as it depends considerably on the value of the
relative phase. For �� ¼ 0, the constraint coming from
B ! K‘þ‘� is overwhelming, and the one inferred from
Bs ! �þ�� is only marginal. For �� ¼ �, the two
constraints exchange roles, and the most stringent con-
straint comes from Bs ! �þ��. In the intermediate
situation with �� ¼ �=2, the two constraints are equiva-
lent and have shapes similar to that coming from B !
Xs�

þ��. In Fig. 10 we show the possible values of

jCð0Þ
10j compatible with all three constraints and for any

�� 2 ½0; ��.
Another difference with respect to the (pseudo)scalar

operators discussed in the previous section is that the
low q2 dependence of the three transverse asymmetries,

Að2;im;reÞ
T ðq2Þ, extracted from the full angular analysis of

B ! K�‘þ‘� decay, are different from their SM

shapes when the Cð0Þ
10 are modified by the NP contri-

butions (see Ref. [4] for details). In particular, the

slope of the asymmetry AðreÞ
T ðq2Þ is highly sensitive to

the value of C10,

@AðreÞ
T ðq2Þ
@q2

��������q2¼0
¼ R

C10

2mbC7

; (44)

where R is a convenient ratio of the B ! K� form
factors.4

V. ON THE IMPORTANCE OF MEASURING
THE FORWARD-BACKWARD ASYMMETRY

IN B ! K‘þ‘� DECAY

The observation that the spectrum of b ! s‘þ‘� decays
in the region of large q2 * 15 GeV2 is not plagued by the
�cc resonances opened numerous possibilities for testing
theory against experiment [31]. This is the region in which
a major progress in taming the hadronic uncertainties by
means of LQCD is possible, and therefore a more reliable
extraction of physics BSM from experiment should be
possible.
One quantity that we find particularly interesting to

study at large q2’s is the forward-backward asymmetry
A
�
FBðq2Þ. In the SM this quantity is zero and remains as

such, even if the NP considerably modifies the values of the

Wilson coefficients Cð0Þ
7;9;10. On the other hand, if the NP

gives rise to the new (non-SM) Dirac structures, A
�
FBðq2Þ

can quite appreciably differ from zero. To our knowledge
this observation was made for the first time in Ref. [32].
The expression for A

�
FBðq2Þ used in Ref. [32], however,

0 1 2 3 4 5
0

1

2

3

4

5

C10

C
10

'

FIG. 10 (color online). The dark region describes the possible
values of jC10j and jC0

10j for any relative phase �� 2 ½0; ��,
obtained from the measured BrðB ! K‘þ‘�Þ, the upper bound
on BrðBs ! �þ��Þ, and the branching fraction of the partial
inclusive decay rate, cf., Eqs. (28) and (42). A thick dot corre-
sponds to the Standard Model value, C10 ¼ �4:103.

4More specifically, R ¼ ðV=T1Þ=ðmB þmK� Þ 	 ðA1=T2Þ=ðmB �mK� Þ [4].
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differs from the one reported in Ref. [20]. We checked both
formulas and agree with the one given in Ref. [20].

To get a better insight into the impact of NP on
A‘
FBðq2Þ, we expand it in powers of the lepton mass and

write5

A‘
FBðq2Þ ¼

Cðq2Þ
�‘

mB �mK

mb

ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þ

q
f0ðq2Þ

� f2ðCSCT þ CPCT5Þq2fTðq2Þ
þm‘½CSC9ðmB þmKÞfþðq2Þ
þ 2mbðCSC7 þ 2CT5C10ÞfTðq2Þ�
þOðm2

‘Þg: (45)

All the quantities in the above formula have already been
defined in Sec. II B. Measuring A‘

FBðq2Þ at large q2’s
would be highly beneficiary for our quest for NP at low
energies. A separate experimental study of Ae

FBðq2Þ and
A�
FBðq2Þ would help us discern the first term from the

second in Eq. (45). Notice that the first term is nonzero
only if the NP coupling to a tensor operator is allowed.
Therefore this quantity can be used to test the assumption
we made in the previous sections of this paper when
discussing BrðB ! K‘þ‘�Þ, namely that CT;T5 ¼ 0, as

in the SM.
Moreover, from the inclusive branching fraction

[Eq. (28)] to which the tensor operators contribute
as [29]

dBrðB ! Xs�
þ��Þ

dq2

��������CT;T5

¼ 8B0

m2
b

�
1� q2

m2
b

�
2
�
2þ q2

m2
b

�
� ðjCTj2 þ jCT5j2Þ; (46)

one gets

Z 6 GeV2

1 GeV2

dBrðB ! Xs�
þ��Þ

dq2
dq2

¼ 1:59ð17Þ � 10�6½1þ 0:66ð9ÞðjCTj2 þ jCT5j2Þ�:
(47)

Contrary to the (pseudo)scalar case in which the factor
multiplying new Wilson coefficients is very small, cf.,
Eq. (32), the corresponding factor multiplying the tensor

Wilson coefficients is much larger, and consequently the
constraint provided by Eq. (28) is much stronger:

jCTj2 þ jCT5j2 � 2:6: (48)

For the sake of illustration, we take CT ¼ CT5 ¼ 1:1 and
plot A

�
FBðq2Þ in Fig. 11 at large q2’s by taking CS;P ¼ 0.

With that choice, and due to the fact that we consider the
decay to the pair of muons, the A

�
FBðq2Þ � 0 everywhere

and is strongly enhanced near q2max ¼ ðmB �mKÞ2. We
then switch CS or CP to illustrate the case when the first
term in Eq. (45) is nonzero. If indeed realized in nature,
this latter situation would be relatively easy to check
experimentally.

VI. SUMMARY

In this paper we showed that Bs ! �þ�� and B !
K‘þ‘�, the two actively studied decays in the B physics
experiments, provide us with complementary information
about potential NP contributions. While the decay ampli-
tude for Bs ! �þ�� is proportional to the difference
between the Wilson coefficients of the operators of oppo-
site chirality, the B ! K‘þ‘� involves the sum of these
Wilson coefficients.
We checked the situations in which the NP enters either

via the scalar, the pseudoscalar, or the semileptonic opera-
tors. To decide which situation is verified in nature (if any),
useful information can be obtained from the low-q2 shapes
of the transverse asymmetries in B ! K�‘þ‘� decay.
Those asymmetries are being studied in experiments and
have an important advantage in that the relevant hadronic
uncertainties are small. A nonzero coupling to the scalar
and/or pseudoscalar operator would not modify the low-q2

shapes of these asymmetries. From Bs ! �þ�� and B !
K‘þ‘� we find the absolute bounds

jCð0Þ
S j & 0:7; jCð0Þ

P j & 1:0; (49)

16 18 20 22 q2

0.3

0.2

0.1

0.0

0.1

0.2

0.3
A FB q2

FIG. 11 (color online). Forward-backward asymmetry in B !
K�þ�� decay. The full curve is obtained with CT ¼ CT5 ¼ 1:1
[consistent with Eq. (48)] and by keeping CS;P ¼ 0. The dashed
curves, instead, are obtained with the same CT ¼ CT5 ¼ 1:1, but
with CS ¼ 0, CP ¼ 1 (thick dashed curve) or CP ¼ 1, CS ¼ 0
(thin dashed curve).

5For simplicity, here we take the Wilson coefficients to be real.
If they were all fully complex, then the expansion in Eq. (45)
would look as follows:

A‘
FBðq2Þ ¼

Cðq2Þ
�‘

mB �mK

mb

ffiffiffiffiffiffiffiffiffiffiffiffi

ðq2Þ

q
f0ðq2ÞRef2½ðCS þ C0

SÞC�
T

þ ðCP þ C0
PÞC�

T5�q2fTðq2Þ þm‘½ððCS þ C0
SÞ

� ðC9 þ C0
9Þ�ÞðmB þmKÞfþðq2Þ þ 2mbððCS þ C0

SÞ
� ðC7 þ C0

7Þ�ÞfTðq2Þ þ 2ððC10 þ C0
10ÞC�

T5ÞfTðq2Þ�
þOðm2

‘Þg:
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that are valid for any value of the NP phases. In fact, the

values for jCð0Þ
S;Pj can be considerably reduced if the non-

zero NP phases are allowed.
In the case in which the coupling to the semileptonic

operators O0
10 is modified by the presence of NP particles,

the transverse asymmetries in B ! K�‘þ‘� would have
peculiar shapes, different from those predicted in the SM.
From our study of Bs ! �þ�� and B ! K‘þ‘� we
obtain that

2:2 &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC10j2 þ jC0

10j2
q

& 4:8; (50)

regardless of the value of the relative NP phase. Note
that the lower bound is fixed by the experimentally
measured partial decay rate of the inclusive B !
Xs�

þ�� decay.
In considering B ! K‘þ‘� we ignored the contribu-

tions from the tensor operators. That assumption can also
be experimentally tested by measuring the nonzero
forward-backward asymmetry in B ! K‘þ‘� decay.

Our approach of considering a pair of Wilson coeffi-
cients at a time is orthogonal to the global fit approach
adopted in many recent works. We have checked explic-
itly our results with the results of Bobeth et al. in
Ref. [19], where a fit to real Wilson coefficients C7;9;10

also included the experimental observables related to B !
K�‘þ‘� and B ! K��. Our results in the scenario with
complex C10 and C0

10 (Fig. 10) agree well with their

presented range of real C10. We have also checked our
allowed regions for Wilson coefficients against the results
of the global fit presented in Altmannshofer et al. in
Ref. [19].

In this paper we focused either on the quantities that
have small hadronic uncertainties, or those for which the
hadronic uncertainties are likely to be improved soon.
This is particularly the case with the B ! K form factors,
that we computed in the quenched approximation of
QCD, which will soon be improved by including the
effect of light dynamical quarks. Detailed experimental
information about the partial decay rate of B ! K‘þ‘� in
the upper range of q2’s will become particularly useful,
because the results for the form factors computed on the
lattice at larger q2’s are more reliable and have smaller
errors.
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Note added.—While this paper was in writing, the new
results for BrðB ! K‘þ‘�Þ, measured at LHCb, appeared

in Ref. [38]. Their value is lower than the one reported by
BABAR [2], and the agreement with the current theoreti-
cal estimate of the same quantity is only at the 2� level.
Once a more reliable estimate of the B ! K form factors
computed on the lattice becomes available, we will repeat
the analysis presented here by including the 1, 2, 3�
effects.

APPENDIX A: B ! K FORM FACTORS

The results for the form factors used in this paper are
obtained from the analysis following the same procedure as
the one explained in detail in Ref. [33], but by using the
(quenched) gauge field configurations obtained at finer
lattice spacing [a�1 ¼ 3:8ð1Þ GeV]. Those configurations
have been used to compute the B ! K�� form factors in
Ref. [34], and we refer the reader to that paper for lattice
details.
Besides the form factors fþðq2Þ and f0ðq2Þ computed

along the lines explained in Ref. [33], we also computed
the tensor form factor fTðq2Þ appearing in Eq. (16). Note
that the tensor density depends on the renormalization
scale that we have set to � ¼ mb, the same scale at which
the corresponding Wilson coefficients have been
computed.
It is easy to extend the parameterization of Ref. [35] to

include the form factor fTðq2Þ and keep the minimal
number of parameters needed to describe the q2 depen-
dence of all three form factors. In terms of poles exchanged
in the t-channel, the q2 dependence of fTðq2;�Þ is driven
by the states with JP ¼ 1�.6 The lowest such a state is B�

s ,
whose couplings to the vector and tensor bilinear quark
operators are defined via

h0j�s��bjB�ðp; "rÞi ¼ "�r�mB�fVB�
s
;

h0j�s���bjB�ðp; "rÞi ¼ iðp�"
�r
� � p�"

�r
� ÞfTB�

s
ð�Þ:

(A1)

The nearest pole contribution then reads

hKðkÞj �s��bjBðpÞipole ¼
X
r

h0j�s��bjB�
sðq; "rÞihB�

sð"rÞjBKi
q2 �m2

B�
s

¼ � 1

2

�
p� þ k� �m2

B �m2
K

q2
q�

�

�mB�
s
fVB�

s
gB�

sBK

q2 �m2
B�
s

;

) fpoleþ ðq2Þ ¼ � 1
2mB�

s
fVB�

s
gB�

sBK

q2 �m2
B�
s

; (A2)

where we used the standard definition hB�
sð"rÞjBKi ¼

gB�
sBKðk � "rÞ. Similarly, for the matrix element of the

6Notice in particular that couplings to 1þ states are ruled out
when both external states are pseudoscalars.
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tensor quark operator we have

hKðpKÞj �s���bjBðpBÞipole

¼ X
r

h0j�s���bjB�
sðq; "rÞihB�

sð"rÞjBKi
q2 �m2

B�
s

) f
pole
T ðq2;�Þ ¼ � 1

2 ðmB þmKÞfTB�
s
ð�ÞgB�

sBK

q2 �m2
B�
s

; (A3)

and therefore the residua of these two form factors are
related, i.e.,

Resq2!m2
B�s
fTðq2;�Þ ¼ mB þmK

mB�
s

fTB�
s
ð�Þ

fVB�
s

Resq2!m2
B�s
fþðq2Þ:

(A4)

It is quite remarkable to note that the pole dominance, that
is expected to be reasonable at large q2’s (small recoils),
leads to a simple proportionality relation between fTðq2Þ
and fþðq2Þ, namely

fTðq2;�Þ
fþðq2Þ

¼ mB þmK

mB�
s

fTB�
s
ð�Þ

fVB�
s

; (A5)

which is essentially verified in the low-q2 region (large
recoils), as obtained in Ref. [36,37]:

fTðq2Þ
fþðq2Þ

	 mB þmK

mB

: (A6)

On the basis of Eq. (A4), it is judicious to define the scale
independent

~f Tðq2Þ ¼
mB�

s

mB þmK

fVB�
s

fTB�
s
ð�Þ fTðq

2;�Þ; (A7)

which then can be easily included in the parameterization
of Ref. [35] as

TABLE I. B ! K‘þ‘� form factors at several values of q2.
The renormalization scale for the tensor form factor is � ¼ mb.

q2½GeV2� f0ðq2Þ fþðq2Þ fTðq2Þ
13.0 0.51(6) 0.90(9) 0.80(11)

14.5 0.54(6) 1.04(9) 0.92(12)

15.9 0.57(7) 1.21(11) 1.07(14)

17.4 0.61(7) 1.45(13) 1.27(17)

18.8 0.65(7) 1.75(18) 1.52(20)

20.3 0.70(8) 2.19(22) 1.89(21)
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FIG. 12 (color online). Comparison of the q2 dependence of the B ! K transition form factors as obtained in quenched lattice QCD
with the predictions based on using the QCD sum rules near the light cone.
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f0ðq2Þ ¼ cð1� �Þ
1� q2=ð�m2

B�
s
Þ ;

fþðq2Þ ¼ cð1� �Þ
ð1� q2=m2

B�
s
Þð1� �q2=m2

B�
s
Þ ;

~fTðq2Þ ¼ cð1� �TÞ
ð1� q2=m2

B�
s
Þð1� �Tq

2=m2
B�
s
Þ ;

(A8)

so that only one new parameter (�T) is needed to fit all
three form factors. The values of form factors extracted
at various q2 from our lattice computation are listed in
Table I, where we also used fTB�

s
ðmbÞ=fB�

s
¼ 0:91ð3Þ,

computed on the same lattices. In terms of the above
parameters, we have

fþð0Þ¼f0ð0Þ¼0:33ð4Þ; ~fTð0Þ¼0:31ð4Þ
�¼0:72ð14Þ; �T ¼0:67ð15Þ; �¼1:35ð15Þ; (A9)

which are obtained either by extrapolating the parameters
to the B-meson mass (M-1), or by fitting the results from
Table I (M-2) to the parameterization in Eq. (A8).

We should stress that the results for the form factors
presented and used in this paper are obtained in the
quenched approximation of QCD, and that they will be
updated very soon by using the available gauge field
configurations in which the effects of the light sea quarks
have been included. We also note that the results for the

form factors presented here are compatible with those
obtained by using the LCSR, which are parameterized as
follows [6]:

f0ðq2Þ ¼ 0:331ð4Þ
1� q2=6:122

;

fþðq2Þ ¼ 0:162ð21Þ
1� q2=5:412

þ 0:173ð22Þ
ð1� q2=5:412Þ2 ;

fTðq2Þ ¼ 0:161ð21Þ
1� q2=5:412

þ 0:198ð25Þ
ð1� q2=5:412Þ2 ;

(A10)

and illustrated in Fig. 12.

APPENDIX B: NUMERICALVALUES OF THE
QUANTITIES USED IN THIS WORK

The values of all quantities used in this work are listed in
Table II. Two comments are in order.
(i) We use �B ¼ �B0 to respect the experimental prac-

tice when combining the charged and neutral
BrðB ! K‘þ‘�Þ decay modes.

(ii) Taking the continuum results of three unquenched
simulations from Ref. [16] in the quadrature, one
gets the average fBs

¼ 0:234ð6Þ GeV, which is mar-

ginally compatible with a spectacularly accurate
result reported in Ref. [17]. We inflated the error
to include the central value of Ref. [17].
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BEČIREVIĆ et al. PHYSICAL REVIEW D 86, 034034 (2012)

034034-14

http://dx.doi.org/10.1103/PhysRevLett.71.674
http://dx.doi.org/10.1103/PhysRevLett.71.674
http://arXiv.org/abs/1204.3933
http://dx.doi.org/10.1103/PhysRevLett.108.231801
http://dx.doi.org/10.1103/PhysRevLett.108.231801
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.004
http://dx.doi.org/10.1016/j.nuclphysb.2011.09.004
http://dx.doi.org/10.1016/S0370-2693(98)01271-4
http://dx.doi.org/10.1016/S0370-2693(98)01271-4
http://dx.doi.org/10.1103/PhysRevD.71.094009
http://dx.doi.org/10.1103/PhysRevD.71.094009
http://dx.doi.org/10.1103/PhysRevD.71.014029
http://dx.doi.org/10.1103/PhysRevD.75.054013
http://dx.doi.org/10.1103/PhysRevD.75.054013
http://arXiv.org/abs/1111.0981
http://dx.doi.org/10.1016/0550-3213(89)90078-3
http://dx.doi.org/10.1016/0550-3213(89)90078-3
http://dx.doi.org/10.1016/0550-3213(93)90235-H
http://dx.doi.org/10.1016/0550-3213(93)90235-H
http://dx.doi.org/10.1016/0550-3213(95)00029-R
http://dx.doi.org/10.1103/PhysRevD.52.186


[9] C. Bobeth, M. Misiak, and J. Urban, Nucl. Phys. B574,
291 (2000).

[10] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras,
D.M. Straub, and M. Wick, J. High Energy Phys. 01
(2009) 019.

[11] A. J. Buras, M. Misiak, M. Münz, and S. Pokorski, Nucl.
Phys. B424, 374 (1994).

[12] K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg,
M. Merk, A. Pellegrino, and N. Tuning, Phys. Rev. Lett.
109, 041801 (2012).

[13] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 108,
101803 (2012); 108, 241801 (2012).

[14] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,
075021 (2010).

[15] A. D. Martin, J. Outhwaite, and M.G. Ryskin, Eur. Phys. J.
C 19, 681 (2001).

[16] A. Bazavov et al. (Fermilab Lattice and MILC
Collaboration), Phys. Rev. D 85, 114506 (2012); H. Na,
C. J. Monahan, C. T. H. Davies, R. Horgan, G. P. Lepage,
and J. Shigemitsu, arXiv:1202.4914; P. Dimopoulos et al.
(ETM Collaboration), J. High Energy Phys. 01 (2012) 046.

[17] C. McNeile, C. T.H. Davies, E. Follana, K. Hornbostel,
and G. P. Lepage, Phys. Rev. D 85, 031503 (2012).

[18] J. Charles, O. Deschamps, S. Descotes-Genon, R. Itoh, H.
Lacker, A. Menzel, S. Monteil, V. Niess et al., Phys. Rev.
D 84, 033005 (2011); M. Bona, A. J. Bevan, M. Ciuchini,
D. Derkach, E. Franco, L. Silvestrini, V. Lubicz, C.
Tarantino et al., Proc. Sci., FPCP2010 (2010) 039.

[19] A. J. Buras and J. Girrbach, arXiv:1204.5064; F.
Mahmoudi, S. Neshatpour, and J. Orloff, arXiv:1205.1845;
F. Beaujean, C. Bobeth, D. van Dyk, and C. Wacker,
arXiv:1205.1838; W. Altmannshofer, P. Paradisi, and
D.M. Straub, J. High Energy Phys. 04 (2012) 008; S.
Descotes-Genon, D. Ghosh, J. Matias, and M. Ramon, J.
High Energy Phys. 06 (2011) 099; J. Matias, F. Mescia, M.
Ramon, and J. Virto, J. High Energy Phys. 04 (2012) 104; J.
Drobnak, S. Fajfer, and J. F. Kamenik, Nucl. Phys.B855, 82
(2012); K. de Bruyn, R. Fleischer, R. Knegjens, P.
Koppenburg, M. Merk, A. Pellegrino, and N. Tuning,
Phys. Rev. Lett. 109, 041801 (2012); A. Behring, C.
Gross, G. Hiller, and S. Schacht, arXiv:1205.1500; D.
Ghosh, M. Guchait, S. Raychaudhuri, and D. Sengupta,
arXiv:1205.2283 [Phys. Rev. D (to be published)]; A. K.
Alok, A. Datta, A. Dighe, M. Duraisamy, D. Ghosh, and D.
London, J. High Energy Phys. 11 (2011) 121.

[20] C. Bobeth, G. Hiller, and G. Piranishvili, J. High Energy
Phys. 12 (2007) 040.

[21] A. Abada, D. Becirevic, P. Boucaud, J.M. Flynn, J. P.
Leroy, V. Lubicz, and F. Mescia (SPQcdR
Collaboration), Nucl. Phys. B, Proc. Suppl. 119, 625
(2003); K. C. Bowler, J. F. Gill, C.M. Maynard, and
J.M. Flynn (UKQCD Collaboration), J. High Energy
Phys. 05 (2004) 035.

[22] P. H. Chankowski and L. Slawianowska, Phys. Rev. D 63,
054012 (2001); G. Isidori and A. Retico, J. High Energy
Phys. 11 (2001) 001.

[23] N. Kosnik, arXiv:1206.2970.
[24] M. Iwasaki et al. (Belle Collaboration), Phys. Rev. D 72,

092005 (2005).
[25] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

93, 081802 (2004).
[26] T. Huber, T. Hurth, and E. Lunghi, Nucl. Phys. B802, 40

(2008).
[27] A. Ali, E. Lunghi, C. Greub, and G. Hiller, Phys. Rev. D

66, 034002 (2002).
[28] K. G. Chetyrkin and M. Steinhauser, Nucl. Phys. B573,

617 (2000).
[29] S. Fukae, C. S. Kim, T. Morozumi, and T. Yoshikawa,

Phys. Rev. D 59, 074013 (1999).
[30] H. E. Logan and U. Nierste, Nucl. Phys. B586, 39 (2000).
[31] C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, J. High

Energy Phys. 01 (2012) 107; M. Beylich, G. Buchalla, and
T. Feldmann, Eur. Phys. J. C 71, 1635 (2011); M. Bartsch,
M. Beylich, G. Buchalla, and D.-N. Gao, J. High Energy
Phys. 11 (2009) 011.

[32] A. K. Alok, A. Dighe, and S.U. Sankar, Phys. Rev. D 78,
114025 (2008).

[33] A. Abada, D. Becirevic, P. Boucaud, J. P. Leroy, V. Lubicz,
and F. Mescia, Nucl. Phys. B619, 565 (2001).

[34] D. Becirevic, V. Lubicz, and F. Mescia, Nucl. Phys. B769,
31 (2007).

[35] D. Becirevic and A. B. Kaidalov, Phys. Lett. B 478, 417
(2000).

[36] J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, and J. C.
Raynal, Phys. Rev. D 60, 014001 (1999).

[37] M. Beneke, A. P. Chapovsky, M. Diehl, and T. Feldmann,
Nucl. Phys. B643, 431 (2002); D. Pirjol and I.W. Stewart,
Phys. Rev. D 67, 094005 (2003); 69, 019903 (2004).

[38] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys.
07 (2012) 133.

COMPLEMENTARITY OF THE CONSTRAINTS ON NEW . . . PHYSICAL REVIEW D 86, 034034 (2012)

034034-15

http://dx.doi.org/10.1016/S0550-3213(00)00007-9
http://dx.doi.org/10.1016/S0550-3213(00)00007-9
http://dx.doi.org/10.1088/1126-6708/2009/01/019
http://dx.doi.org/10.1088/1126-6708/2009/01/019
http://dx.doi.org/10.1016/0550-3213(94)90299-2
http://dx.doi.org/10.1016/0550-3213(94)90299-2
http://dx.doi.org/10.1103/PhysRevLett.109.041801
http://dx.doi.org/10.1103/PhysRevLett.109.041801
http://dx.doi.org/10.1103/PhysRevLett.108.101803
http://dx.doi.org/10.1103/PhysRevLett.108.101803
http://dx.doi.org/10.1103/PhysRevLett.108.241801
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1007/s100520100598
http://dx.doi.org/10.1007/s100520100598
http://dx.doi.org/10.1103/PhysRevD.85.114506
http://arXiv.org/abs/1202.4914
http://dx.doi.org/10.1007/JHEP01(2012)046
http://dx.doi.org/10.1103/PhysRevD.85.031503
http://dx.doi.org/10.1103/PhysRevD.84.033005
http://dx.doi.org/10.1103/PhysRevD.84.033005
http://arXiv.org/abs/1204.5064
http://arXiv.org/abs/1205.1845
http://arXiv.org/abs/1205.1838
http://dx.doi.org/10.1007/JHEP04(2012)008
http://dx.doi.org/10.1007/JHEP06(2011)099
http://dx.doi.org/10.1007/JHEP06(2011)099
http://dx.doi.org/10.1007/JHEP04(2012)104
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.004
http://dx.doi.org/10.1016/j.nuclphysb.2011.10.004
http://dx.doi.org/10.1103/PhysRevLett.109.041801
http://arXiv.org/abs/1205.1500
http://arXiv.org/abs/1205.2283
http://dx.doi.org/10.1007/JHEP11(2011)121
http://dx.doi.org/10.1088/1126-6708/2007/12/040
http://dx.doi.org/10.1088/1126-6708/2007/12/040
http://dx.doi.org/10.1016/S0920-5632(03)01643-8
http://dx.doi.org/10.1016/S0920-5632(03)01643-8
http://dx.doi.org/10.1088/1126-6708/2004/05/035
http://dx.doi.org/10.1088/1126-6708/2004/05/035
http://dx.doi.org/10.1103/PhysRevD.63.054012
http://dx.doi.org/10.1103/PhysRevD.63.054012
http://dx.doi.org/10.1088/1126-6708/2001/11/001
http://dx.doi.org/10.1088/1126-6708/2001/11/001
http://arXiv.org/abs/1206.2970
http://dx.doi.org/10.1103/PhysRevD.72.092005
http://dx.doi.org/10.1103/PhysRevD.72.092005
http://dx.doi.org/10.1103/PhysRevLett.93.081802
http://dx.doi.org/10.1103/PhysRevLett.93.081802
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.028
http://dx.doi.org/10.1016/j.nuclphysb.2008.04.028
http://dx.doi.org/10.1103/PhysRevD.66.034002
http://dx.doi.org/10.1103/PhysRevD.66.034002
http://dx.doi.org/10.1016/S0550-3213(99)00784-1
http://dx.doi.org/10.1016/S0550-3213(99)00784-1
http://dx.doi.org/10.1103/PhysRevD.59.074013
http://dx.doi.org/10.1016/S0550-3213(00)00417-X
http://dx.doi.org/10.1007/JHEP01(2012)107
http://dx.doi.org/10.1007/JHEP01(2012)107
http://dx.doi.org/10.1140/epjc/s10052-011-1635-0
http://dx.doi.org/10.1088/1126-6708/2009/11/011
http://dx.doi.org/10.1088/1126-6708/2009/11/011
http://dx.doi.org/10.1103/PhysRevD.78.114025
http://dx.doi.org/10.1103/PhysRevD.78.114025
http://dx.doi.org/10.1016/S0550-3213(01)00494-1
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.032
http://dx.doi.org/10.1016/j.nuclphysb.2007.01.032
http://dx.doi.org/10.1016/S0370-2693(00)00290-2
http://dx.doi.org/10.1016/S0370-2693(00)00290-2
http://dx.doi.org/10.1103/PhysRevD.60.014001
http://dx.doi.org/10.1016/S0550-3213(02)00687-9
http://dx.doi.org/10.1103/PhysRevD.67.094005
http://dx.doi.org/10.1103/PhysRevD.69.019903
http://dx.doi.org/10.1007/JHEP07(2012)133
http://dx.doi.org/10.1007/JHEP07(2012)133

