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Lattice results are available for �S ¼ 2 matrix elements for the first time in full QCD, which improve

considerably the status of hadronic uncertainties in K- �K mixing with respect to earlier phenomenological

studies. Using an average of the ETMC and RBC-UKQCD results, we analyze �K in natural supersym-

metry (SUSY). This scenario arises as a consistent BSM framework after the latest results from the LHC.

The analysis is improved with respect to previous studies including next-to-leading order matching

conditions of order �3
s . We derive new bounds for SUSY mass insertions in the scenario with a light third

generation and study the implications for squark and gluino masses, compared with direct searches at the

LHC. Assuming natural values for the flavor-violating SUSY couplings of both chiralities, we find that the

sbottom must be heavier than 3 TeV for a gluino mass up to 10 TeV. In this scenario no natural values for

squark and gluino masses can satisfy the flavor bounds.

DOI: 10.1103/PhysRevD.86.095004 PACS numbers: 12.60.Jv, 12.38.Gc, 13.25.Es

I. INTRODUCTION

Flavor physics observables related to mixing and decay
of K, D and B mesons pose strong bounds on new physics
(NP) models. A strong constraint on the scale of NP comes
from the measurement of �K, related to indirect CP viola-
tion in the neutral kaon system, which sets a lower bound
on the NP scale around �� 104 TeV in the presence of
flavor-violating couplings of Oð1Þ [1,2].

In order to study flavor observables, one has to face the
calculation of the matrix elements of the relevant local
operators. In the case of �K, the matrix elements of the
full set of �S ¼ 2 operators beyond the standard model
(SM) has been recently computed in full QCD by the
ETMC and RBC-UKQCD lattice QCD collaborations
[3,4]. These results constitute a considerable improvement
with respect to previous results in the quenched approxi-
mation [5]. The model-independent bounds on the scale of
New Physics imposed predominantly by the operator Q4

has increased almost by a factor of 3 [3].
These new results can be immediately used to set con-

straints on supersymmetry, putting bounds either on its
flavor-violating couplings, or on the SUSY masses, if
some particular scenario is chosen for the flavor violation.
A first analysis has been performed in Ref. [6], where they
consider the QCD running between the scale set by the
heavy squark masses, and the lower scale set by the gluino
mass (and eventually a light third generation).

After the first run of the LHC, direct SUSY searches
have established relatively strong bounds on the masses of
the squarks of the first two generations, more moderate
bounds on the gluino mass, and still weaker bounds on
third-generation squarks. This circumstance is in fair con-
nection to the spirit of natural SUSY, where the only
strongly interacting SUSY partners required to be light

are the squarks of the third generation, and to a lesser
extent, the gluino. This generic SUSY scenario is consis-
tent with naturalness and with current results from direct
searches at the LHC [7–9].
In this paper, we study the bounds imposed by �K on

natural SUSY taking into account the recent lattice QCD
results for the matrix elements, as well as next-to-leading
order (NLO) matching conditions for the �S ¼ 2 Wilson
coefficients. We begin in Sec. II reviewing briefly the
relevant formulas for �K beyond the SM, and in Sec. III
we combine the two different sets of lattice QCD results for
the matrix elements, obtaining averaged results to be used
in the phenomenological analysis. In Sec. IV, we summa-
rize the relevant details concerning flavor violation in
natural SUSY, in Sec. V we study the constraints on the
flavor violating couplings, and in Sec. VI we study the
implications on squark and gluino masses, under certain
generic assumptions concerning the flavor violation.

II. KAON MIXING IN THE SM AND BEYOND

The parameter �K is given by [10]

�K ¼ sin��e
i��

�
ImMð6Þ

12

�m
exp
K

þ ��

�
; (1)

where Mð6Þ
12 is the short-distance contribution at the charm

scale. Assuming nonrelativistic normalization for matrix

elements, Mð6Þ
12 ¼ h �K0jH effjK0i. This short-distance con-

tribution can be split into the SM and NP components:

Mð6Þ
12 ¼ MSM

12 þMNP
12 ; (2)

where the NP contribution can be related to the SM and
experimental values for �K through
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ImMNP
12 ¼

ffiffiffi
2

p
�m

exp
K

��

ðj�Kjexp � j�KjSMÞ; (3)

with 1=�� ¼ 1=ð ffiffiffi
2

p
sin��Þð1� ��=ð ffiffiffi

2
p j�expK jÞÞ, namely,

�� ¼ 0:94� 0:02 [10]. For the SM value of �K we take

j�KjSM ¼ ð1:9� 0:3Þ � 10�3; (4)

computed in Ref. [11] and rescaled to our value of �� and

to the more recent average of the B parameter B̂K given in
Ref. [12] (see Sec. III).

The current experimental values j�Kjexp and �mexp
K are

given by [13]

�m
exp
K ¼ ð3:483� 0:006Þ � 10�15 GeV; (5)

j�Kjexp ¼ ð2:229� 0:010Þ � 10�3; (6)

which together with Eq. (3) imply the following bound on
the NP contribution:

ImMNP
12 ¼ ð1:7� 1:6Þ � 10�18 GeV: (7)

The most general effective Hamiltonian for K- �K mixing
beyond the SM is given by

H eff ¼
X5
i¼1

Cið�ÞQið�Þ þX3
i¼1

~Cið�Þ ~Qið�Þ; (8)

where the SUSY basis of operators is

Q1¼ �d���PLs� �d	�
�PLs	; Q2¼ �d�PLs� �d	PLs	;

Q3¼ �d�PLs	 �d	PLs�; Q4¼ �d�PLs� �d	PRs	;

Q5¼ �d�PLs	 �d	PRs�; (9)

together with the chirally flipped operators ~Q1;2;3 obtained

from Q1;2;3 with the substitution L $ R. The chiral pro-

jectors are defined as PL;R ¼ ð1� �5Þ=2.
The NP amplitude is then given by

MNP
12 ¼ X

i

CNP
i ð�Þh �K0jQið�ÞjK0i: (10)

The matrix element for the SM operator Q1 is related to
the bag parameter BK (in the nonrelativistic convention)

h �K0jQ1ð�ÞjK0i ¼ 1

3
mKf

2
KBKð�Þ; (11)

and the matrix elements of the operators Q2;3;4;5 are usu-

ally normalized to hQ1i, defining the ratios Ri as

Rið�Þ � h �K0jQið�ÞjK0i
h �K0jQ1ð�ÞjK0i : (12)

The NP Wilson coefficients must be given in the same
renormalization scheme as the matrix elements, and at the
same renormalization scale �. Since the matching condi-
tions are computed at the matching scale � related to the
masses of the heavy particles, the Wilson coefficients must
be evolved down by means of the Renormalization Group.

The evolution matrix at NLO in QCD for � ¼ 2 GeV in
the RI scheme is given in Ref. [14]. Taking this into
account, we can write

MNP
12 ¼ 1

3
mKf

2
KBK½�11ð�ÞðCNP

1 ð�Þ þ ~CNP
1 ð�ÞÞ

þ ½�22ð�ÞR2 þ �23ð�ÞR3�ðCNP
2 ð�Þ þ ~CNP

2 ð�ÞÞ
þ ½�32ð�ÞR2 þ �33ð�ÞR3�ðCNP

3 ð�Þ þ ~CNP
3 ð�ÞÞ

þ ½�44ð�ÞR4 þ �45ð�ÞR5�CNP
4 ð�Þ

þ ½�54ð�ÞR4 þ �55ð�ÞR5�CNP
5 ð�Þ�; (13)

where the NLO evolution coefficients �ijð�Þ for � ¼
1 TeV in the Landau-RI scheme are collected in Table I.
Including NLO matching conditions for the Wilson coef-
ficients Ci, the combination �ijð�ÞCjð�Þ is independent of
the matching scale at NLO. Equations (7) and (13) will be
used in the following sections to study the constraints from
�K on NP.

III. REVIEW OF LATTICE QCD RESULTS
FOR �S¼ 2 MATRIX ELEMENTS

The bag parameter BK has been calculated in full QCD
by lattice groups since 2004 [15]. The average result up to
2010 for the corresponding renormalization-independent

parameter B̂K is given by [16] B̂K ¼ 0:738ð20Þ. Recently,
new refined lattice studies have become available [17–20].
Here, we use the updated world average of Ref. [12]:

B̂ K ¼ 0:7643ð97Þ: (14)

This leads to the following value for the B-parameter in the
Landau-RI renormalization scheme:

BðRIÞ
K ð2 GeVÞ ¼ 0:546ð7Þ: (15)

This year, the ratios Ri in Eq. (12) have been calculated
in full QCD for the first time, by the ETMC and RBC-
UKQCD collaborations [3,4], with Nf ¼ 2 and 2þ 1

active flavors respectively. These results supersede pre-
vious ones in the quenched approximation [21,22].
The RBC-UKQCD and ETMC matrix elements are

given in the SUSY basis, at a renormalization scale of

3 GeV and in the MS scheme of Ref. [23]. We perform a
weighted average of both results using the procedure
described in Ref. [13]. In the case of R2 and R5 the
RBC-UKQCD central values lie outside the average error

TABLE I. Values from Ref. [14] for the NLO �F ¼ 2 evolu-
tion coefficients from � ¼ 1 TeV to � ¼ 2 GeV in the Landau
RI scheme and in the SUSY basis.

� ¼ 1 TeV-RI scheme

�11ð�Þ ¼ 0:762 �22ð�Þ ¼ 2:544 �23ð�Þ ¼ �0:002
�32ð�Þ ¼ �0:591 �33ð�Þ ¼ 0:390 �44ð�Þ ¼ 4:823
�45ð�Þ ¼ 0:186 �54ð�Þ ¼ 1:351 �55ð�Þ ¼ 0:875
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band. To take this into account we increase the errors
to include the RBC-UKQCD central values. The RBC-
UKQCD and ETMC results together with our averaged
values are collected in Table II and represented in Fig. 1.

For the phenomenological analysis—according to
Eq. (13)—one has to combine the Ri averages in Table II
with the �ijð�Þ factors in Table I. For this purpose, how-

ever, the quantities Ri and �ijð�Þmust be defined using the

same renormalization prescription. The ratios Ri in Table II

are defined in the MS scheme of Ref. [23] and at
� ¼ 3 GeV, while the coefficients �ijð�Þ in Table I are

given in the Landau-RI scheme for � ¼ 2 GeV. We find
it more convenient to transform the ratios Ri to the

Landau-RI scheme at � ¼ 2 GeV, e.g., to the prescription
in which the coefficients �ijð�Þ are given.
We first perform the QCD running from 3 GeV down to

2 GeV. This running is performed at NLO by means of the
two-loop anomalous dimensions given in Ref. [23] (see
also Ref. [24]). However, in Ref. [23] the renormalization
is carried out in the so-called chiral basis of operators, Qi

(see Eq. (2.1) of Ref. [23]). The translation between both
bases is a Fierz transformation: Qsch

i ð�Þ ¼ �ijQsch
j ð�Þ,

where the matrix � is given by

� ¼

1 0 0 0 0

0 0 0 0 �2

0 0 0 1 0

0 1 0 0 0

0 4 8 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; (16)

where the label ‘‘sch’’ stands for either scheme, MS or RI.
Fierz transformations introduce a different prescription for

evanescent operators in the MS scheme, which makes the

MS scheme of Ref. [23] used by RBC-UKQCD and ETMC

different from the MS scheme in Refs. [24,25].
The QCD running from 3 GeV down to 2 GeV is

given by QMS
i ð2GeVÞ¼ Ûð3GeV;2GeVÞjiQMS

j ð3GeVÞ,

TABLE II. Unquenched lattice QCD results for the ratios
Rið�Þ as given in Refs. [3,4], in the MS scheme of Ref. [23],
given at the renormalization scale � ¼ 3 GeV. Our average
results are computed as explained in the text.

MS at � ¼ 3 GeV
ETMC [3] RBC-UKQCD [4] Our average

R2ð�Þ �16:3ð0:6Þ �15:3ð1:7Þ �16:2ð0:9Þ
R3ð�Þ 5.5(0.4) 5.4(0.6) 5.5(0.3)

R4ð�Þ 30.6(1.3) 29.3(2.9) 30.4(1.2)

R5ð�Þ 8.2(0.5) 6.6(0.9) 7.8(1.2)

RBC UKQCD'12
R2 15.3 17

ETMC'12
R2 16.3 06

18 16 14 12 10

RBC UKQCD'12
R3 5.4 06

ETMC'12
R3 5.5 04

2 0 2 4 6 8 10 12

RBC UKQCD'12
R4 29.3 29

ETMC'12
R4 30.6 13

26 28 30 32 34 36 38

RBC UKQCD'12
R5 6.6 09

ETMC'12
R5 8.2 05

2 4 6 8 10

FIG. 1 (color online). Weighted average of unquenched lattice results of Refs. [3,4], for the ratios of matrix elements Ri, given in the
MS scheme of Ref. [23], at the renormalization scale � ¼ 3 GeV. The lighter-colored error bars correspond to the enlarged errors that
include the central values of the RBC-UKQCD results. See the text for details.
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where Ûð3 GeV; 2 GeVÞ is the NLO evolution matrix in

the chiral basis and the MS scheme of Ref. [23], given by

Ûð3; 2Þ ¼

1:035 0 0 0 0

0 1:022 0:011 0 0

0 0:130 0:830 0 0

0 0 0 0:887 �0:474

0 0 0 0:001 1:152

0
BBBBBBBB@

1
CCCCCCCCA
:

(17)

The evolution is performed in 4-flavor QCD [26], consis-
tent with the fact that the charm quark is a dynamical
degree of freedom from 3 to 2 GeV for the NP contribu-
tions parametrized in Eq. (13). The value of the strong
coupling at these scales is obtained from �sðmcÞ running
up to 2 and 3 GeV in the 4-flavor theory. We use the full
results for the running of �sð�Þ from Ref. [27], giving

�ð4Þ
s ð2 GeVÞ ¼ 0:3041 and �ð4Þ

s ð3 GeVÞ ¼ 0:2552. The
relevant inputs at the charm scale are �sðmcÞ ¼ 0:3537
and mcðmcÞ ¼ 1:28ð1Þ GeV [28].

The conversion to the RI scheme is performed by means
of the NLO matrix �rMS!RI of Ref. [23], namely

QRI
i ð�Þ ¼ MijQ

MS
i ð�Þ, with M ¼ ½1� ð�s=4
Þ�rMS!RI�

and �rMS!RI given by

�rMS!RI¼

0:879 0 0 0 0

0 �1:129 �6:773 0 0

0 0:307 10:871 0 0

0 0 0 5:644 0:214

0 0 0 12:939 2:689

0
BBBBBBBB@

1
CCCCCCCCA
:

(18)

This matrix can be rotated to the SUSY basis by means of
the rotation � given in Eq. (16). The result will differ from

the one in Refs. [24,25] because the MS renormalization
scheme is not the same.

Summarizing, to work out the ratios Rið�Þ at
� ¼ 2 GeV in the Landau-RI scheme from Rið�Þ at

� ¼ 3 GeV in MS we make

RðRIÞ
i ð2 GeVÞ ¼ N ijR

ðMSÞ
j ð3 GeVÞ; (19)

where the transformation matrix N ij is defined as

N ij ¼
½��1MUTð3; 2Þ��ij
½��1MUTð3; 2Þ��11

: (20)

Numerically, we find:

N ¼

1 0 0 0 0

0 0:743 �0:037 0 0

0 0:073 1:083 0 0

0 0 0 0:608 �0:001

0 0 0 �0:131 1:037

0
BBBBBBBB@

1
CCCCCCCCA
: (21)

Applying this transformation to the averaged lattice results
of Table II, we get

RðRIÞ
2 ð2GeVÞ¼�12:2ð0:7Þ; RðRIÞ

3 ð2GeVÞ¼4:8ð0:3Þ;
RðRIÞ
4 ð2GeVÞ¼18:5ð0:7Þ; RðRIÞ

5 ð2GeVÞ¼4:1ð1:2Þ:
(22)

These values, together with BðRIÞ
K ð2 GeVÞ ¼ 0:546ð7Þ of

Eq. (15), will be used in the phenomenological analysis
in Secs. V and VI.

IV. FLAVOR VIOLATION IN NATURAL SUSY

In general SUSY models, flavor violation in the quark
sector is mediated predominantly by strong interactions,
via flavor-changing quark-squark-gluino interactions
induced by soft SUSY-breaking terms.
Let Mq be the squark mass matrix in the q ¼ u, d

sector, given in the super-CKM basis. In order to go to a
physical basis where squarks do not mix with each other, a
rotation is performed in the squark sector alone to diago-
nalize the squark mass matrix:

~m 2
diag ¼ �qM2

q�
y
q : (23)

After this rotation is performed, the 6� 6 unitary matrix
�q appears in the quark-squark-gluino vertex:

L q~q ~g ¼ � ffiffiffi
2

p
gs�

ji�
q ð~qjTaqiÞ~gþ H:c:; (24)

where qi are three left-handed (i ¼ 1, 2, 3) and three right-
handed quarks (i ¼ 4, 5, 6), of type q ¼ u or d. This vertex
leads to squark-gluino loop penguin and box diagrams that
contribute (among other things) to �F ¼ 1 and �F ¼ 2
processes. As an example, the contribution to a s ! d
transition is given at the leading order by ASUSY

s!d �
ð�s=m~gÞ�id�

d �is
d fð ~m2

i =m
2
~gÞ, where fðxÞ is a penguin

function. It is clear that both in the case of degeneracy
( ~mi ¼ ~m) and in the case of alignment (�ij ¼ �ij), the

amplitude vanishes.
Mechanisms suppressing flavor violation in SUSY such

as degeneracy (SUSY-GIM mechanism) or alignment are
required by flavor physics data, if the soft SUSY-breaking
scale is low to comply with naturalness. In the absence
of such mechanisms, the NP scale must be as high as
� * 104 TeV in order to satisfy bounds from K- �K mixing
[1,2] (the bounds from B-physics are somewhat weaker
� * 102 TeV). The absence of a natural symmetry-based
principle providing a sufficiently effective suppression of
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flavor violation in the presence of a low SUSY scale,
without challenging naturalness, is a manifestation of the
SUSY flavor problem.

However, naturalness does not require all the soft masses
to be low, but only those linked more strongly to the Higgs.
In the strong sector, the stops ~tL;R contribute at one loop to

the Higgs mass and should be not much heavier than about
�500 GeV, while the gluino contributes at the two-loop
level and should not be heavier than about�1:5 TeV [7,8],
assuming that the fine-tuning is not worse than �10%. By

SUð2ÞL symmetry, the ‘‘left-handed’’ sbottom ~bL is also
required to be light. Beyond these restrictions, first and
second generation squarks can be heavy, providing a scale
suppression to flavor violation without compromising nat-
uralness. These type of SUSY models have been collected
under the name of Natural SUSY.

In Natural SUSY, the transition s $ d mediated by first-
and second-generation squarks is suppressed by their heavy
masses, and the competing process where the transition is
mediated by third-generation squarks takes over, even
though it is second order in flavor violating couplings.
This mechanism relates flavor violation inK andB physics.
K- �K mixing sets bounds on flavor-violating couplings re-
lated to the third family, that are comparable to those derived
from B physics [29,30]. However, for this mechanism to
work, the scale suppression provided by the squark masses
of the first two generations is in general not enough, and an
additional Uð2Þ flavor symmetry might be invoked [31].

Taking into account these considerations, we consider a
natural SUSY scenario with first-generation squarks of
mass� ~mh around�10 TeV, and third-generation squarks
of mass � ~m‘ around �500 GeV. A suitable parameteri-
zation of the rotation matrices �q ¼ ð�qL ;�qRÞ is given

by [30,32]

�qL ¼

1 0 ��̂q;13
LL

0 1 ��̂q;23
LL

�̂q;13�
LL c� �̂q;23�

LL c� c�

0 0 0

0 0 0

��̂q;13�
LL s�e

�i� ��̂q;23�
LL s�e

�i� �s�e
�i�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

�qR ¼

0 0 0

0 0 0

�̂q;13�
RR s�e

i� �̂q;23�
RR s�e

i� s�e
i�

1 0 ��̂q;13
RR

0 1 ��̂q;23
RR

�̂q;13�
RR c� �̂q;23�

RR c� c�

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
; (25)

where c� ¼ cos�q and s� ¼ sin�q, with�q themixing angle

in the q3LR sector. The mass insertions �̂q;i3
LL;RR are the cou-

plings responsible for the flavor transitions, and can be

bounded imposing flavor constraints. A similar parameteri-
zation for rotationmatrices with nondegenerate squarks has
been considered, for example, in the phenomenological
analyses in Refs. [33–35], an important difference being
that �db

LL, �
db
RR were set to zero to kill effects in kaon physics.

In the next section, we consider the bounds that can be
derived from �K assuming a squark spectrum of the type
discussed above. On the other hand, these mass insertions
receive contributions from soft SUSY-breaking parameters
in the Lagrangian, as well as from Yukawa couplings.
Assuming no particular cancellation between these two
(in principle unrelated) contributions, leads to a natural
size of the mass insertions that can be used to infer bounds
on squark and gluino masses. This is the target of Sec. VI.
In order to study the constraints from flavor observables,

the SUSY amplitudes must be computed. The model-
dependent part of these amplitudes is encoded in the
matching conditions, that is, the values of the Wilson
coefficients in the effective Hamiltonian at the matching
scale �. These matching conditions are known to NLO in
strong interactions: leading-order matching conditions can
be found in Refs. [36,37] for �F ¼ 1 and �F ¼ 2 pro-
cesses respectively. Two-loop NLO corrections to �F ¼ 1
have been computed in Refs. [38,39], while the full NLO
corrections to �F ¼ 2 can be found in Refs. [32,40].
While it can be argued that NLO corrections are numeri-

cally small and have no real impact on the bounds derived
for the SUSY parameters, it should be noted that at leading
order the amplitude suffers from a substantial renormal-
ization scale dependence that leads to large uncertainties.
The two main reasons for this sensitivity to the renormal-
ization scale are [25,40]: (a) the leading-order contribution
is proportional to �2

s , while there is no definition of
the renormalization point at LO, and (b) the anomalous
dimensions of the operators in Eq. (10) are large.
In order to stress this point we show, in Fig. 2,

the dependence of j�Kj on the SUSY matching scale

0.5 1 1.5 2 2.5 3 3.5

2.210

2.215

2.220

2.225

2.230

2.235

2.240

Matching Scale TeV

K
10

3

FIG. 2 (color online). j�Kj in SMþ SUSY vs the matching
scale for a set of SUSY parameters consistent with experimental
bounds. The dashed line (blue) is LO and the solid line (red) is
NLO. The point at which the LO and the NLO coincide depends
on the point in SUSY parameter space.
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comparing the LO and NLO results. There is clearly a
considerable reduction in the renormalization scale ambi-
guity when going from a LO to a NLO matching. By
performing a complete NLO analysis, it is justified to
ignore the uncertainty related to the variation of the renor-
malization scale. We emphasize that a complete NLO
analysis in nondegenerate SUSY scenarios has never
been done before, and we also note that, in general, exist-
ing LO analyses do not take into account the renormaliza-
tion scale uncertainty.

Besides the renormalization of �s and squark and gluino
masses that must be taken into account at NLO, flavor-
changing renormalization of quark and squark propagators
have to be considered. The (finite) renormalization of
quark fields induced by squark-gluino loops leads to chir-
ally enhanced effects that can be numerically important
(see Refs. [41,42]). However, in an ‘‘on-shell’’ scheme for
the super-CKM basis these corrections are absent. The
difference between both schemes boils down to a different
definition for the mass insertions (see Appendix C of
Ref. [40]). In this paper all mass insertions are defined in
the on-shell scheme. The (infinite) renormalization of
squark fields induced by the squark tadpole implies that
the diagonalization of the squark mass matrices must be
performed at each renormalization scale. We therefore
define the rotation matrices �qð ~�Þ at a fixed scale ~�, and

include in the matching conditions the contribution from
nondiagonal squark masses, which are of order ~mijð�Þ �
�s log ~�=�. These in fact contribute to the RG equation
and to the reduction of the renormalization scale
uncertainty.

Apart from strong-interaction squark-gluino corrections,
contributions from chargino-squark loops are relevant in
certain scenarios due to the role of A-terms. We understand
that both contributions are mostly uncorrelated in a general
setup, meaning that both contributions set independent
bounds on SUSY (see for example Sec. 3 of Ref. [43]).
In this paper we focus on the conclusions that can be taken
from squark-gluino contributions alone. A study of the
effect of chargino contributions is certainly worthwhile,
but beyond the scope of this paper.

V. CONSTRAINTS FROM �K ON FLAVOR
VIOLATING COUPLINGS

In this section, we derive constraints on the insertions

�̂db
LL;RR and �̂sb

LL;RR from the measurement of �K. The

bounds are obtained imposing the constraint in Eq. (7) on
the NP amplitude of Eq. (13), where the NLO matching
conditions for the coefficients Cið�Þ are taken from
Ref. [40]. The matching scale is fixed at � ¼ 1 TeV,
which is justified at NLO according to the discussion in
the previous section. The coefficients Ci depend on the
gluino massm~g, the heavy and light squark masses ~mh, ~m‘,

and the rotation matrices �q, all defined at the matching

scale. For the rotation matrices we use the parameterization
of Eq. (25).
For the analysis we fix the masses to ~mh ¼ 10 TeV,

~mbL ¼ 500 GeV, ~mbR ¼ 700 GeV and m~g ¼ 1 TeV. We

put the flavor violation in the up sector to zero, and we

consider two scenarios: �̂ib
RR ¼ 0 (LL only) and �̂ib

LL ¼ �̂ib
RR

(LL ¼ RR).
In Fig. 3 (upper plot), we show the one- and two-sigma

constraints on the �̂db
LL � �̂sb

LL plane in the case of LL
mixing only. The constraints are obtained by a standard
-square minimization, in the situation where the complex
phases make the amplitude purely imaginary. These
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FIG. 3 (color online). Constraints on mass insertions from j�Kj
in the case of LL mixing only (upper plot) and LL ¼ RR (lower
plot), at one sigma (dark shaded) and two sigma (light shaded).
The constraints are obtained as explained in the text.
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constraints are therefore the most conservative on the

magnitude of the mass insertions, j�̂ib
LLj. These bounds

can be approximately summarized by the constraint:

Im ½ð�̂db
LL�̂

sb�
LL Þ2�< 1:7� 10�6 at 95%C:L: (26)

The one and two sigma constraints in the case of LL ¼ RR
mixing are shown in the lower plot of Fig. 3. In this case,
the relevant bound can be expressed approximately as

Im½�̂db
LL�̂

sb�
LL �̂

db
RR�̂

sb�
RR �< 1:6� 10�9 at 95%C:L: (27)

These approximate results are obtained by neglecting
terms in the amplitude containing a product of more than
four mass insertions. Since the mass insertions are small,
and having checked that the numerical coefficients of such
terms are also small, this approximation is fully justified.

VI. IMPLICATIONS FOR SQUARK
AND GLUINO MASSES

Focusing on the LL sector, the squark mass matrices in

the super-CKM basis are given by M2LL
u ¼ Vu ~m

2
QV

y
u and

M2LL
d ¼ Vd ~m

2
QV

y
d . Here, ~mij

Q are the soft masses for the

squark SUð2ÞL doublets, and the matrices Vu;d are the

rotations transforming left-handed quark supermultiplets
from the weak to the super-CKM basis, and such that

VuV
y
d ¼ VCKM is the CKM matrix. The link between

MLL
u and MLL

d imposed by SUð2ÞL symmetry is then

M2LL
u ¼ VCKMM2LL

d Vy
CKM. This relationship has been

used to relate flavor violation in K- �K and D- �D mixing
(see for example Refs. [44,45]).

We can diagonalize both matrices applying the rotation

matrices �ðLLÞ
q in the LL sector:

~m 2
diag ¼ �uVCKM�

y
d ~m

2
diag�dV

y
CKM�

y
u ; (28)

where ~m2
diag ¼ diagð ~m2

h; ~m
2
h; ~m

2
‘Þ up to perhaps terms of

order ~m2
‘. We note that we have dropped the superscript

ðLLÞ in the �q matrices. For convenience, we defineUy ¼
�uVCKM�

y
d . The right-hand side of Eq. (28) can bewritten as

r:h:s ¼ ~m2
h

�
1�Uy

0

0

1

0
BB@

1
CCAUþO

�
~m2
‘

~m2
h

��
: (29)

Expanding in the sameway the left-hand side, Eq. (28) leads
to U3i ¼ �3i þOð ~m2

‘= ~m
2
hÞ. This equation sets a natural

size for the mass insertions. For example, in the case in
which the up quark and squark sectors are approximately
aligned, we have �u � 1 and therefore �3i

d ’ V3i
CKM þ

Oð ~m2
‘= ~m

2
hÞ, which translates into [30]

�̂ d;i3
LL ’ V3i

CKM þOð ~m2
‘= ~m

2
hÞ: (30)

This discussion is justified when the ratio ~m2
‘= ~m

2
h is very

small. On more general grounds, the condition that any
chiral-conserving entry of the matrixMq is at least of size

~m2
‘, leads to �̂LL * ~m2

‘= ~m
2
h [30]. Excluding unexpected

cancellations, we expect

�̂ d;i3
LL * maxðV3i

CKM; ~m
2
‘= ~m

2
hÞ: (31)

In this section, we assume that the mass insertions

satisfy the lower bounds �̂d;i3
LL;RR > V3i

CKM, and study the

implications of the measurement of �K on squark and
gluino masses.
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FIG. 4 (color online). Constraints on the masses of the gluino
and the sbottom ( ~mb ¼ ~mbL ¼ ~mbR ) from j�Kj in the case of LL

mixing only (up) and LL ¼ RR (down), at 65% (dark shaded)
and 95% C.L. (light shaded). The dashed line correspond to the
95% C.L. constraint obtained from LO matching conditions. The
constraints are obtained as explained in the text.
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The results are shown in Fig. 4 in the case of LL mixing
only (upper panel) and LL ¼ RRmixing (lower panel), for
heavy squarks of 10 TeV and ~mbL ¼ ~mbR . Also shown are

the LO constraints, that turn out to be less stringent than the
NLO ones. In the absence of RR mixing, for a gluino
heavier than 200 GeV, the sbottom mass is unconstrained.
These bounds do not compete with direct searches at
the LHC. The situation is quite different in the case of
LL ¼ RR mixing (with ~mbL ¼ ~mbR). In this case the

operator Q4 gives a big contribution to �K because of the
chiral enhancement of its matrix element, its large anoma-
lous dimension, and because the coefficient C4 is numeri-
cally large. We find that the sbottom must be generically
heavier than about 3 TeV independently of the gluino mass
(for m~g & 10 TeV). This situation is clearly excluded by

naturalness. This is an example where the flavor bounds are
far more stringent than the direct searches at the LHC. An
intermediate scenario with 0< �RR < �LL will lead to
constraints that lay in between the two extreme situations
considered.

VII. CONCLUSIONS

We have analyzed the impact of the latest lattice QCD
results for �S ¼ 2 matrix elements in full QCD on natural
SUSY, with NLO matching conditions for the Wilson

coefficients. The weighted average of the ETMC and
RBC-UKQCD results for the matrix elements at 2 GeV
in the Landau-RI scheme are collected in Eq. (23). They
imply significant progress compared to older quenched
results, and can be used to set constraints on New Physics.
Concerning the SUSY analysis, we show the impact of

the inclusion of NLO matching conditions, reducing
considerably the renormalization scale uncertainty. The
bounds on the flavor-violating couplings are summarized
in Fig. 3. They can be approximated by the bounds given
in Eqs. (26) and (27). Assuming a natural size for mass
insertions [see Eq. (30)], we derive lower bounds on squark
and gluino masses. In the case of LL and RR mixing, the
bounds are much stronger than the direct bounds from the
LHC, implying a sbottom heavier than 3 TeV in this
scenario.
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