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We introduce a new parameter to investigate replica symmetry breaking transitions using finite-size
scaling methods. Based on exact equalities initially derived by F. Guerra this parameter is a direct check
of the self-averaging character of the spin-glass order parameter. This new parameter can be used to
study models with time reversal symmetry but its greatest interest lies in models where this symmetry
is absent. We apply the method to long-range and short-range Ising spin-glasses with and without a
magnetic field as well as short-range multispin interaction spin-glasses. [S0031-9007(98)06955-5]
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The subject of replica symmetry breaking has becom
an important issue in statistical physics [1]. Since repli
symmetry breaking was proposed a long time ago [
there have been several new developments concern
spin-glasses as well as their applications in other areas
statistical physics. Setting aside the question whether a
how this transition could be observed in real experimen
it is certainly relevant to establish the validity of mean
field theory for spin-glasses when applied to short-ran
systems. In this context, quite recently a new controver
has appeared on the problem whether self-averagen
(i.e., the independence of the order parameter on
microscopic realization of the quenched disorder)
automatically satisfied in short-range systems. While t
answer to this question [3] appears to be closely relat
to the proper definition of the order parameter and ho
the thermodynamic limit is taken, there are few doub
that non-self-averaging is the crucial signature for a sp
glass scenario where replica symmetry breaks. Althou
there is not definite proof, recent exact results support t
assertion [3–5].

The purpose of this Letter is to unambiguously sho
that indeed replica symmetry (hereafter referred to
RS) breaks in short-range spin-glasses and that the g
uine feature of the broken phase relies on the non-se
averaging character of the order parameter. While t
major part of the work in spin-glasses has been focus
on models where there is a time reversal symmetry in t
Hamiltonian this is not an essential requirement for th
existence of a replica symmetry breaking (RSB) trans
tion. In models with time reversal symmetry (hereafte
referred to as TRS), RS and TRS break simultaneou
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at the spin-glass transition temperature. Because both
and TRS break precisely at the same temperature, it
very difficult to distinguish the different features related to
both transitions. Indeed, the main distinction between th
droplet [6] and the mean-field approaches relies on whic
symmetries break at the spin-glass transition temperatu
While in the first approach only TRS breaks at the tran
sition temperature, in the second approach both symm
tries break. The most widely used parameter to loca
spin-glass transitions (the Binder parameter) signals t
breaking of time reversal symmetry rather than the othe
Consequently, the major part of numerical calculations u
ing the Binder parameter does not show that RS brea
at the spin-glass transition temperature but rather wheth
TRS breaks. Then, it is essential to look for signatures
replica symmetry breaking in models where time revers
symmetries are lacking.

A large class of models where TRS is not present
spin-glasses in an external magnetic field or multispi
p-interaction spin-glass models (p-SG) withp being
odd. The first class of models can be described b
Hamiltonians of the type

H  H0 2 h
X

i

si  2
X
si,jd

Jijsisj 2 h
X

i

si ,

(1)

where the termh
P

i si breaks the TRS (s ! 2s) of the
HamiltonianH0. On the other hand, models of p-SG take
the general form

H  2
X

si1,i2,..,ip d
Ji1i2...ip si1 si2 . . . sip . (2)
© 1998 The American Physical Society
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For p odd, TRS is absent. The interest of this la
family of models [contrary to (1)] relies on the fact tha
there is no parameter which when appropriately tun
restores TRS [this happens in the family of models
Eq. (1), where TRS is recovered ifh  0].

When studying phase transitions in ordered systems, o
generally computes the temperature dependence of cu
lants of the order parameter distribution such as susc
tibilities (second moments) or adimensional paramete
such as the kurtosis (Binder parameter) or the skewn
of the order parameter distribution. The usefulness
these quantities to distinguish RSB transitions is hampe
by the fact that finite-size corrections to the leading sca
ing behavior of the Binder parameter are big. For RS
transitions it is then convenient to consider adimension
quantities which depend on other genuine features of
transition (and not only on TRS) such as self-averagene
Our purpose here is to define a suitable parameter wh
is the analog of the Binder parameter for transitions whe
TRS breaks and which can be used to locate spin-gl
transitions where RS breaks. In spin-glasses the order
rameter is not the global magnetization but a measure
the freezing of the spins, the Edwards-Anderson parame
q [7]. The appropriate way to compute this parameter is
consider two replicas (i.e., two identical copies of the sam
system) and compute the overlap,q  s1yV d

PV
i1 siti ,

whereV is the size or volume of the system. Expecta
tion values of the momentskqklBG allow one to recon-
struct the order parameter distributionPJ sqd, wherek. . .lBG
stands for the usual Boltzmann-Gibbs average for a giv
sample. It has been recently shown by Guerra [5] th
sample to sample fluctuations of the cumulants of the o
der parameter distributionPJsqd are Gaussian distributed
in the thermodynamic limit. For instance, the following
relationship is fulfilled in spin-glasses in the low tempera
ture phase belowTc:

G 
x

2
SG 2 x

2
SG

V 2ksq 2 kqlBGd4lBG 2 x
2
SG


1
3

, (3)

wheres.d means an average over the quenched disorder
xSG (the spin-glass susceptibility) is defined as

xSG  V skq2lBG 2 kql2
BGd . (4)

The interest of defining the parameterG is that it van-
ishes above the transition temperature in the disorde
phase where sample to sample fluctuations ofPJ sqd dis-
appear in theV ! ` limit. Consequently,G is a pa-
rameter which plays the same role as the usual Bind
parameterg in ferromagnets and is given (in theV ! `

limit) by GsT d  s1y3d f1 2 QHsT 2 Tcdg, whereQH is
the Heaviside theta function. In RSB transitions (3) go
to zero (as the sizeV increases) as1yV for T . Tc but
converges to a finite value forT , Tc. We expect the
critical temperature (where RS breaks) to be signaled
the crossing of the different curves corresponding to d
ferent lattice sizes. Furthermore, close toTc it is reason-
able to expectGsT d , GsLyjd, wherej is a correlation
length. We stress that the calculation ofG is especially
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useful in models where TRS is absent. In the presen
of TRS the usual Binder parameterg can be used to lo-
cate the phase transition with much less numerical effo
But the interest ofG is that it emphasizes the non-self
averaging character of the low temperature phase.

To check these predictions we have performed a n
merical simulation of the models of the previous type (
(with and without a magnetic field) and thep-spin model
(2). All of the simulations use the parallel temperin
method, an efficient algorithm to thermalize small sampl
[8]. We have studied three different models, the mea
field Sherrington-Kirkpatrick (SK) model [9], the four di-
mensional (4D) Ising spin-glass, and the model Eq. (2)
four dimensions withp  3. In this last case, the Hamil-
tonian is short ranged, there are two spins per site in a
simple cubic lattice and the Hamiltonian couples all po
sible triplets of spins occupying nearest-neighbor sites
the lattice. More precisely the Hamiltonian reads

H  2

VX
i1

DX
m1

sJi,m
s12,1ds

i
1si

2s
i1m
1 1 J

i,m
s12,2ds

i
1si

2s
i1m
2

1 J
i,m
s1,12ds

i
1s

i1m
1 s

i1m
2

1 J
i,m
s2,12ds

i
2s

i1m
1 s

i1m
2 d , (5)

where the pairsi, md denotes the link of the lattice and th
spinsssi

1, s
i
2d occupy the same sitei in the lattice.

First, we show the results in the four dimension
Ising spin-glass without a magnetic field (h  0). This
is a check of our method since the transition is we
known using standard methods [8]. The model
described by Eq. (1) with theJij  61 connecting
nearest-neighbor sites in a cubic lattice of sideL with
periodic boundary conditions. The simulations were do
for sizes L  4, 5, 8,10 (2944, 1920, 1376, 320 sample
respectively) with 100 000 Monte Carlo steps (MCS
of thermalization time and the same amount of steps
collect statistics (forL  10 we did runs up to 35 million
of MCS). Figure 1 shows the results forG. Note the
existence of a critical temperature above whichG goes to
zero and below which it converges to 1y3. The different
curves cross at a temperature in agreement with t
derived from the analysis of the usual Binder parame
[11] and also series expansions [10] (Tc . 2.03).

Next, we consider models without TRS. We first con
sider the study of the SK model in a magnetic field. Th
SK model [9] corresponds to Eq. (1) withJij long-ranged

and Gaussian distributed withJij  0, J2
ij  1yV . The

existence of a transition in a field is well established
mean-field theory but there are a few results which co
roborate its existence using numerical simulations [1
Figure 2 showsGsT d for V  32, 256, 512, 1024 with
1000, 1000, 400, 150 samples, respectively. While it
very difficult to see evidence for this transition with th
usual cumulants (skewness or Binder parameter) the s
ation turns out to be clearer with the parameterG where
a merging close toT . 0.6 0.7 [below Tcsh  0d  1]
1699
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FIG. 1. G in the 4D Ising spin-glass without a field. The
horizontal line indicates the expected lowT result G 
1y3 while the vertical line indicates the expected transitio
temperature derived from other methods [10,11]. Error ba
are shown forL  4, 10.

is observed. The figure clearly shows the existence
two temperature regions: a high temperature region wh
G goes to zero with the volume (as1yV ) and a low
temperature one whereG converges to 1y3 (within the
precision of the statistics). This shows the existence
the Almeida-Thouless line in the SK model, a result we
known in the mean-field theory of spin-glasses but diffi
cult to observe numerically.

The results in the four dimensional Ising spin-glas
model in a field are shown in Fig. 3. Simulations wer
done at a magnetic fieldh  0.4 with statistics ranging
from 20 000 MCS forL  3 up to 450 000 forL  9.

0.4 0.8 1.2 1.6
T
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0.3
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0.5

G

FIG. 2. G in the SK model ath  0.3. Error bars are shown
for V  32, 1024. The different curves merge at a temperatu
well compatible with the theoretical resultTcsh  0.3d 
0.65 [13].
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FIG. 3. G in the 4D 6 J Ising spin-glass ath  0.4. The
number of samples is 2560, 1280, 704, 64 forL  3, 5, 7, 9,
respectively. Error bars are shown forL  3, 9.

We also observe here a behavior very similar to th
found in Fig. 2. The existence of the two regions
high temperature one whereG goes to zero and a low
temperature one whereG converges to a finite value clos
to 1y3) is also clear from the plot.

Figures 2 and 3 show quite unambiguously that the
are two regions where self-averaging properties are q
different. This is a strong indication in favor of the exis
tence of a RSB phase transition in spin-glasses in a m
netic field. But a scale invariant crossing point is n
as clearly observed in Figs. 2 and 3 compared to w
is observed in Fig. 1 for zero magnetic field and Fig.
(see below). There are two factors which make nume
cal simulations of spin-glasses in a magnetic field mu
more difficult. The first one is related to the difficulty o

2.0 2.5 3.0 3.5 4.0
T

0.00
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G

FIG. 4. G in the model (5) without TRS symmetry with three
spin interaction and two spins per site. We find thatTc . 2.62.
Error bars are shown forL  3, 6.
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thermalizing spin-glasses at low temperatures. When
field is switched on, the critical temperature is pushe
down (as Figs. 2 and 3 clearly show). This makes the
malization in the low temperature region more difficul
The second factor is related to the fact that Eq. (1) resto
the TRS at a zero magnetic field. Consequently, it is na
ral to expect the existence of a crossover lengthLc (which
increases as the magnetic field decreases) such that ab
Lc the finite-field fixed point dominates the scaling be
havior while belowLc the scaling behavior is dominated
by the zero field fixed point. In the case of Fig. 3 th
crossover length was previously estimated (Lc . 5 [12]).
This crossover effect manifests as a displacement of
crossing point to lower temperatures as the size increas
For large sizes (and always within errors) the cros
ing point stays at aboutTc . 1.2, a value for the criti-
cal temperature which has also been estimated throu
other methods [14,15].

Assuming that the value of the parameterG at the
crossing point corresponds to a universal amplitud
we find (after examination of the data for the SK an
the 4D Ising spin-glass at zero and finite field) tha
Gc  GsT  Tcd clearly increases with the field. This
result suggests (in case the previous assumption is c
rect) that the transition without a field and in a field i
determined by different fixed points [16].

To check that the parameterG is indeed a good tool to
determine RSB transitions it would be more convenie
to consider a model where there is no external sm
parameter (like the field) which can restore the TR
For such a model there will not be a crossover leng
Lc, and a crossing point for the parameterG should be
easier to see already for small sizes. To confirm the
expectations we have investigated model (5) withJi,m 
61 in four dimensions in lattices of sizesL  3, 4, 5, 6
with 100 000 MCS of statistics per temperature. Th
results are shown in Fig. 4. Our results show an algebr
divergence of the spin-glass susceptibilityxSG , and a least-
squares fit givesxSG , sT 2 Tcd2g with Tc . 2.63 and
g . 1.0. This value ofTc is in striking agreement with the
crossing point observed in Fig. 4. If one assumes, as s
before, thatGsT d , GsLyjd with j , sT 2 Tcd2n then
sdGydT dTTc , L1yn. A power law fit yieldsn . 1y2
suggesting that bothg andn are close to mean-field values

Summarizing, we have proposed a new parameterG
based on exact inequalities initially derived by Guer
[5]. This parameter is suited to numerically study replic
symmetry breaking transitions. The parameterG in
Eq. (3) has the good properties of being bounded a
positive (a property which does not have the usual Bind
parameter used for spin-glasses without TRS) and can
used as a good indicator for RSB transitions using finit
size scaling methods. At high temperatures,G goes to
zero as1yV whereV is the volume of the system while a
low temperatures it converges to 1y3 in theL ! ` limit.
We have investigated the 4D and the SK model in a fie
finding evidence for an RSB transition. But the nice
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application of the method is for models where there is n
tunable parameter which restores TRS (like the magne
field). By introducing a new short-rangep-spin model
[Eq. (5)] we have shown thatG is indeed a good indicator
for RSB. We have considered a model withp  3 in 4D
showing thatG displays a crossing point where the spin
glass susceptibility diverges. Finally, we want to stres
that the information gathered fromG in models without
TRS cannot be extracted in an easy way from the usu
standard cumulants of the sample averagedPsqd. The
genuine property of replica symmetry breaking transition
in disordered systems is the non-self-averaging charac
of the spin-glass order parameter, a feature which
specifically taken into account within the present metho
A deeper understanding of the appropriate renormalizati
group approach in spin-glasses is certainly needed
clarify the appropriate theoretical framework to deal wit
these types of phase transitions.
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