PHYSICAL REVIEW
LETTERS

VOLUME 54

25 FEBRUARY 1985

NUMBER 8

Long-Time Tails in the Velocity Autocorrelation Function of Hard-Rod Binary Mixtures
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The temporal evolution of binary mixtures of hard rods in a ring is simulated in a computer with
random initial velocities +v. The time the system takes to reach a Maxwellian distribution dramat-
ically diverges as the mass ratio e — 1 and it also increases, although rather slowly, when e = oo. A
negative ‘‘long-time tail,”’ i.e., a slow, power-law decay in the velocity autocorrelation function at
large values of the time ¢, is observed whose behavior changes from t=3tor7% 8<L1, as € is in-

creased from e=1.
PACS numbers: 05.20.—y

The computation of transport coefficients such as
diffusion constants in model systems is sometimes
hampered by the appearance of long-time tail effects.
More specifically, the velocity autocorrelation function
(VAF) decays for large values of the time ¢:

(w(0)v(t)) — 78,

i.e., very slowly as compared to the Langevin ex-
ponential relaxation! which usually characterizes the
short-time behavior. Given that (1) may last in prac-
tice for very long times, the estimation during comput-
er simulations of the diffusion coefficient D by numer-
ical integration of the VAF, as given by the Einstein-
Green-Kubo formula?

D= [ arw (0w (), @

may suffer from serious inaccuracies unless the exact
form (1) is known. Moreover, the investigation of
long-time tails can be fruitful in understanding some
details of the kinetic behavior of the system. The
present situation concerning these matters, however,
is not clear-cut; a brief account follows.

Alder and Wainwright® discovered, during a series
of numerical experiments in two and three dimen-
sions, that the VAF presents a positive part having a
long-time effect (1) with 8=d/2, where d is the
dimensionality of the system. This result may affect
the same foundations of traditional kinetic theory,
namely, the Bogoliubov ideas about sharply separated

t— oo, 1)

time scales during the system relaxation from a non-
equilibrium initial state to a situation described by hy-
drodynamics.’? The effect seemed confirmed* and
several theoretical explanations arose; see Pomeau and
Resibois,” Dorfman,® and van Beijeren’ for reviews.
More recently, however, even though the effect seems
now also confirmed by scattering experiments,? it has
been argued that long-time tails having the usual
kinetic significance might have never been observed
nor rigorously established by theory so far; see the re-
cent controversy in Fox” 1% and Adler et al.!! for fur-
ther details.

At the present time it can in principle be easier to
analyze these matters in the context of one-
dimensional systems. The exact analytical treatment
of the infinite system of identical hard-core particles
on a line!% 13 shows that the relaxation of a test particle
in the system deviates from the short-time exponential
behavior, and the VAF presents then a very small,
negative part whose leading term is of the form (1)
with 8 =3. That is, the situation differs from the one
depicted at d =2, 3, where the tail is positive and the
power-law exponent is d/2. Previous attempts to ob-
serve this effect during the computer simulation of
one-dimensional systems!41¢ failed mainly because of
bad statistics; recently, however, direct evidence was
found for a tail =3 in a one-component Lennard-
Jones system in one dimension.!”

We report in this Letter preliminary results of the

© 1985 The American Physical Society 731



VOLUME 54, NUMBER 8§

PHYSICAL REVIEW LETTERS

25 FEBRUARY 1985

temporal evolution in a computer of a binary mixture
of 1000 hard rods on a ring. Half the particles, chosen
at random, are assigned masses m; while the rest are
assigned masses m,. Nevertheless, our main results
here probably hold as well when there is only one par-
ticle of mass m, in a system of light particles, a case
where the statistics would be poorer, and it is thus less
suitable for a numerical experiment. The system re-
laxes for different values of the mass ratio e =m,/m,
from a homogeneous state where the particles have
randomly oriented velocities of equal magnitude, *+ v.
Our motivation for this particular initial state is two-
fold: (a) The case with an initial velocity distribution
+ v and m;=m, can be solved exactly!>!? so that we
have a clear guide and one may then concentrate on
the particular behavior expected when m, becomes
different from m;. (b) The results in this Letter arise
from a series of studies concerning the temporal evo-
lution of systems relaxing from nonequilibrium condi-
tions which are mainly focused on the ‘‘ergodic”
behavior when m,=m,.1° Reference 16 states both
that our system with m > m, is ergodic in the velocity
distribution (unlike the case m;=m,) in the sense
that, starting with an arbitrary distribution for the
velocities, it reaches a Maxwellian distribution, and
that other details of the final equilibrium state, such as
the radial distribution function, are also practically in-
dependent of €. Reference 16 also gives further de-
tails of the model and a description of the numerical
procedure which introduces slight modifications in the
standard algorithm.>* We observe here long-time tails
and investigate their dependence on € to conclude
about a crossover in & as one increases the value of €
from unity. We also study the relaxation time of the
system as a function of € over a broad range of €
values.

The relaxation time, 7, is defined as the time the

system takes to reach a Maxwellian velocity distribu-
tion. This can be estimated by visual examination of
the temporal evolution of the velocity distribution
(VD) or one may compute the Boltzmann’s H (¢)
function by proper numerical integration of the VD.
For all cases, except e=1, one observes that H (¢)
monotonically decreases until it reaches the stationary
regime where H (¢) fluctuates very near a constant
value Heg, i.e., dH (t)/dt =0 from that moment which
indicates that the VD has approximately a Maxwellian
shape. The equilibrium value H.q obtained as a time
average over the stationary regime shows a clear
dependence on €, namely, it increases with €. The re-
laxation times 7, estimated visually and estimated by
analysis of the onset of condition dH (t)/dt =0, agree
very well with each other and show an interesting
behavior. This is illustrated in Fig. 1 where 7 is plot-
ted versus €. (Note the change of scale of the axes.)
As shown by Fig. 1, r diverges when € — 1; for
€ =1 the initial velocity distribution * v is conserved
in time. The latter is consistent with the fact that the
system with e =1 is nonergodic in the VD so that only
the distribution of a specified, test particle (otherwise
indistinguishable from the others) would exhibit dif-
fusion and approach to equilibrium in this case. By in-
creasing € one observes that 7 presents a minimum
around € =5 and that 7 increases, though rather slowly
in this case, with increasing e. The systems with
€=>50 (and less markedly when e€=30) evolve very
slowly because the light rods (one on the average) are
surrounded by very heavy rods and there is a short-
time tendency to reach a local equilibrium condition.
Finally, it seems to us (having in mind that any experi-
mental data are limited by necessity) that the systems
reach practically the true equilibrium state (e.g., Heg).
As, however, one should probably expect that + — oo
when e€— oo, our experimental points in Fig. 1 for
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FIG. 1. The relaxation time 7, in units of the overall mean free time ¢¢, as a function of the mass ratio . Note the change
of scale, both in the vertical and horizontal axes; the scale on the left corresponds to the data for e =< 1.2, while the scale on the
right is for 2 =< e = 50. The solid line is a guide to the eye. Note also that one should probably expect that 1 — oo when € — oo

(see text).
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FIG. 2. The function D,(¢), as defined in Eq. (4), in arbi-
trary units vs Inz. The symbols are as follows: triangles
(e=8, a=2), asterisks (e=2, a=1), crosses (e=8,
a=1), and circles (e=2, a=2).

€ = 30 should be viewed as affected by much larger er-
ror bars than the others. We cannot be more precise
about the large-e limit with our present data; probably
one should use a method different from the present
numerical analysis in order to study the nature of the
expected divergence for e — co. Our data, on the oth-
er hand, show that the divergence for small € seems to
have a power-law nature, say,

T~ (e—1)"° €—1, 3)

where o < 2.

The temporal evolution of the VAF, which is com-
puted in practice (for both species of particles) as the
average of v(0)v(¢) divided by v(0)?, is seen to reach
(very small) negative values after the exponential de-
cay for every mass ratio considered here; this is fol-
lowed by a slow tendency towards zero from below.
That is, we observe the long-time tails (1) in one-
dimensional mixture systems, to our knowledge for
the first time. Moreover, the details of this behavior
are intimately related to the result (3). Indeed, we find
evidence that 8— 3 when e€— 1, and that & quickly
decreases towards a value near unity when € increases
from e=1. The former observation is consistent with
the result =23 for a test particle starting at t =0 from
the origin of an infinite system with a velocity v'. The
latter result 8 < 1, however, is probably rather unex-
pected, although it seems consistent with the situation
for one-dimensional lattice systems.'® We present
some evidence of those facts in Fig. 2; this figure re-
quires an explanation.

It is difficult in practice for us to draw conclusions
about the details of long-time tails by looking directly
to the VAF because the effect is small and the noise is

important during the very final relaxation of the sys-
tem.'* 15 Thus we have analyzed the function

N -1, (N
iv,-z(O)] 2 iv,-(O)v,»(t)], (€))

i=1 t'=ol=1

D, (1)=

which behaves rather smoothly. Here o =1, 2 denotes
the different species in the system, the computations
refer [as well as those reported before for H (¢) and 71
to the case Ny = N, =500, and several mass ratios were
considered now from e =1 to e = 8. Note that function
(4) is a simple extension to finite times and different
masses of the fundamental expression (2). We find in
this way that the only reasonable fit to the data for
€ >> 1 has the form D (¢) =a + b Int, with @ > 0 and
b < 0; as a matter of fact the data clearly deviate from
a behavior D =a +bt™, m < 0, and one obtains a < 0
and b > 0 on this assumption. This demonstrates that
the negative tail has the behavior (1) with 8§ =1; the
case € = 8 is illustrated in Fig. 2. When € — 1, howev-
er, the fit D =a + bt™ becomes better, a and b are pos-
itive, and m approaches —2, which indicates that 5 — 3
in (1). We expect to pursue these numerical studies
and extend the above results to a broader range of €
values.
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