1	High resolution mass spectrometric analysis of secoiridoids and metabolites as biomarkers
2	of acute olive oil intake – an approach to study inter-individual variability in humans
3	Sandra Silva ^{1,2} , Mar Garcia-Aloy ³ , Maria Eduardo Figueira ² , Emilie Combet ^{4*} , William
4	Mullen ^{5*} and Maria Rosário Bronze ^{1,2*}
5	
6	¹ iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras,
7	Portugal
8	² Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de
9	Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
10	³ Biomarkers & Nutrimetabolomic Lab, Department of Nutrition and Food Science, XaRTA,
11	INSA, Campus Torribera, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n,
12	08028 Barcelona, Spain
13	⁴ Human Nutrition, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary
14	and Life Sciences, University of Glasgow, Glasgow G31 2ER, UK
15	⁵ Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ,
16	UK
17	*These authors contributed equally to this work.
18	Correspondence: Maria Rosário Bronze (Professor)/ Faculty of Pharmacy, Universidade de
19	Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal/mrbronze@ff.ulisboa.pt/ Fax number
20	+ 351 21 794 64 70
21	
22	Keywords: bioavailability; metabolites; olive oil; phenolic compounds; secoiridoids.
23	Abbreviations: CAE, caffeic acid equivalents; 3,4-DHPEA – EA, (3,4-dihydroxyphenyl)ethanol linked
24	to elenolic acid; 3,4-DHPEA – EDA , dialdehydic form of deacetoxy of oleuropein aglycon; EVOO ,
25	extra virgin olive oil; HRMS, High resolution mass spectrometry; OO, olive oil; <i>p</i> -HPEA-EA, <i>p</i> -
26	hydroxyphenyl)ethanol linked to elenolic acid; <i>p</i> -HPEA – EDA, dialdehydic form of deacetoxy of
27	ligstroside aglycon; PLS-DA, Partial Least Squares Discriminant Analysis; OSC-PLS-DA, Partial Least
28	Squares Discriminant Analysis with Orthogonal Signal correction; VOO, virgin olive oil.

29 Abstract

30	Scope: Phenolic compounds are minor components of extra virgin olive oil (EVOO).
31	Secoiridoids are the major components contributing to the phenolic content of EVOO.
32	Information is lacking regarding their potential as biomarkers for EVOO intake.
33	Methods and results: Healthy volunteers ($n=9$) ingested 50 mL of EVOO in a single dose
34	containing 322 mg/kg total phenolic content (caffeic acid equivalents) and 6 mg/20g
35	hydroxytyrosol and its derivatives. Plasma was collected before (0h) and at 0.5, 1, 2, 4 and 6h
36	after ingestion. Urine samples were collected prior to ingestion (0h) and at 0-4, 4-8, 8-15 and
37	15-24h. Samples were analysed by UPLC coupled with an Exactive Orbitrap MS. Partial Least
38	Squares Discriminant Analysis with Orthogonal Signal Correction was applied to screen for
39	metabolites that allowed samples discrimination. Plasma biomarkers and urine biomarkers were
40	selected although individual variability was observed among volunteers. Results are in
41	accordance with in vitro experiments performed (in vitro digestion and hepatic microsomal
42	activity assays).
43	Conclusions: plasma (elenolic acid + H ₂ ; <i>p</i> -HPEA-EA + H ₂ + glucuronide) and urinary (3,4-
44	DHPEA-EA, 3,4-DHPEA-EA + H ₂ +glucuronide, methyl 3,4-DHPEA-EA + H ₂ +glucuronide)
45	secoiridoid compounds were selected as biomarkers to monitor EVOO intake showing good
46	predictive ability according to multivariate analysis.

1	
2	
3	
4	
5	
6	
7	
8	
a	
10	
11	
11	
12	
13	
14	
10	
10	
1/	
10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

47	Introduction
47	
48	The major source of fat intake in the Mediterranean diet is olive oil (OO) and its consumption
49	has been linked with increased longevity and a reduced frequency of chronic diseases, in
50	particular coronary heart disease [1-5]. A European Food Safety Authority claim for OO reports
51	that a daily consumption of 20g of OO containing at least 5 mg of hydroxytyrosol and its
52	derivatives can protect low density lipoproteins particles from oxidative damage [6, 7]. These
53	compounds are minor components of virgin olive oil (VOO) [8-10] and belong to the phenolic
54	compounds family which main classes in VOO are: phenolic acids, phenolic alcohols,
55	flavonoids, lignans and secoiridoids. The most abundant secoiridoids are the oleuropein and
56	ligstroside aglycones - (3,4-dihydroxyphenyl)ethanol (3,4-DHPEA) and (p-
57	hydroxyphenyl)ethanol (p-HPEA) linked to elenolic acid (EA), respectively. In addition, there
58	are also dialdehydic forms of deacetoxy of oleuropein and ligstroside aglycons (3,4-DHPEA-
59	EDA and <i>p</i> -HPEA-EDA, respectively) [8]. Phenolic content in VOO range from 40 to 900
60	mg/kg expressed as caffeic acid equivalents (CAE) [8, 11].
61	The digestion of VOO produces a micellar solution, with reported contradictory results on the
62	stability of the major VOO phenolics (tyrosol, hydroxytyrosol and secoiridoids 3,4-DHPEA-
63	EDA and <i>p</i> -HPEA-EDA) in the acidic environment of the stomach. While some identify a good
64	stability in terms of hydrolysis [12, 13], others report that 3,4-DHPEA-EDA undergoes a rapid
65	hydrolysis in a gastric acidic environment [14, 15] leading to an increase of hydroxytyrosol in
66	the lumen, and consequently in plasma via passive diffusion [16, 17].
67	The in vivo effects of VOO phenolic compounds such as hydroxytyrosol are linked to their
68	bioavailability [18] which depends on bioaccessibility, itself a function of the food matrix. A
69	lipid matrix, contributes to increased hydroxytyrosol bioavailability compared to an aqueous
70	matrix or a low fat yogurt [19-21], possibly via decreased rate of gastric emptying [20] and slow
71	release of hydroxytyrosol from the lipid matrix [20, 22].
72	After absorption the phenolic compounds undergo phase I/II biotransformation [11, 18]. The

73 majority of this metabolism occurs in the liver, namely in the smooth endoplasmic reticulum of

the hepatocytes due to the enzymes contained in the microsomes. Phase II conjugation

processes of methylation, glucuronidation and sulfation have been described for VOO phenoliccompounds [22-25].

77 VOO phenolic compounds are mainly absorbed in the small intestine [26] via passive diffusion

[16], although absorption via intestinal membrane carriers might be also involved [16, 27].

79 Phenolic compounds that are not absorbed in the small intestine, such as secoiridoids, are

80 degraded by the colonic microbiota [15].

Bioavailability of VOO phenolic compounds is affected by host factors, namely age and genomic profile, enzymatic activity or colonic microflora [16, 28]. In addition, in animal studies gender appeared as a factor conditioning bioavailability of hydroxytyrosol derivatives, related with enterohepatic circulation, and longer persistence of metabolites in organisms [27]. Although secoiridoids are the most abundant and complex family of phenolic compounds in VOO, their bioavailability has been poorly studied, in part because the main products of their metabolism (via hydrolysis) are hydroxytyrosol and tyrosol. However, hydroxytyrosol is not an ideal marker of compliance of VOO intake as it is present endogenously as a metabolite of the physiological neurotransmitter dopamine and can be produced after ingestion of red wine [29]. It is therefore difficult to reduce or control hydroxytyrosol concentration in biological fluids before interventions with VOO [18]. This warrants further research into the use of secoiridoids as biomarkers for VOO intake.

To obtain relevant information from metabolomics data, multivariate analysis is used [30] since, unlike univariate analysis, this approach can handle a large number of variables without requirement for the variables to be independent. Supervised methods, such as Partial Least Squares Discriminant Analysis (PLS-DA), are powerful tools in the search for markers that differ most between classes. The knowledge about the class to which a sample belongs to is used to select variables that are considerably different between groups of samples and which may be the candidate biomarkers. These approaches have been discussed in detail elsewhere [31, 32].

Molecular Nutrition and Food Research

3
4
5
6
7
2 Q
0
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
27
20
26
27
28
29
30
21
20
32
33
34
35
36
37
38
20
39
40
41
42
43
44
45
16
40 47
4/
48
49
50
51
52
53
50
04 55
55
56
57
58
59

101	The primary aim of this study was to characterize, in human subjects, the bioavailability and the
102	inter-individual variability of secoiridoids and their metabolites after an acute extra virgin olive
103	oil (EVOO) intake. Other typical phenolic compounds in EVOO such as phenolic acids,
104	phenolic alcohols, flavonoids, lignans, and their metabolites, were also monitored in the
105	samples to ascertain whether any of these could also be used to study EVOO intake. The
106	phenolic composition of EVOO was determined by LC-MS/MS. UPLC coupled with HRMS
107	using the Orbitrap technology was used to overcome limitations of low resolution MS
108	techniques as several isomeric forms of the oleuropein and ligstroside aglycones have been
109	reported [33-36]. PLS-DA was applied for data analysis to search for markers that differ most
110	between classes (e.g.: time collection point of sample) and allow validation of class spacing
111	numerically [37]. Digestion and hepatic microsomal in vitro models were also used to evaluate
112	the impact of digestion and microsomal enzymatic activity on EVOO secoiridoids. To the best
113	of our knowledge this is the first study on HRMS simultaneous screening of EVOO phenolic
114	compounds and metabolites in plasma and urine after an acute intake of EVOO.

115

116 Materials and Methods

117

118 *Materials*

119 Extra virgin olive oils used for human and *in vitro* assays were supplied by a Portuguese OO 120 producer. Reference standards used were: apigenin, luteolin and tyrosol (≥99%), hydroxytyrosol 121 (≥98%), and oleuropein (≥90%) purchased from Extrasynthese (Genay, France); enterolactone 122 $(\geq 90\%)$, enterodiol and pinoresinol $(\geq 95\%)$ and caffeic acid $(\geq 98\%)$ purchased from Sigma-123 Aldrich (Sigma, USA). Bile salts, DMSO, pancreatin, pepsin and sodium bicarbonate were 124 supplied from Sigma-Aldrich (Sigma, USA). HPLC grade, ACN, methanol, water, chloridric 125 and formic acid p.a. were purchased from Carlo Erba (Italy). HPLC grade acetic acid and 126 sodium carbonate were supplied from Panreac (Spain). Folin-Ciocalteu reagent was supplied

127	from Fluka (Switzerland). Rat pooled liver microsomes and NADPH-regenerating systems were
128	supplied from BD Gentest (Discovery Labware Inc., Woburn, MA).
129	
130	Human study design
131	Nine self-reported healthy volunteers (3 males and 6 females), non-smokers and not on any
132	medication, participated in the study and gave their written consent. Participants were aged
133	between 24 and 61 years old (mean 34.7, SD 12.7) and had a mean BMI of 23.5 (range 20.2-
134	26.6, SD 2.4). Volunteers were required to follow a low phenolic diet (olives and any type of
135	OO, as well as fruits, vegetables and plant products including tea and coffee were excluded) for
136	two days and to fast overnight prior to intervention. On day 3, all fasted subjects consumed 50
137	mL of EVOO with 30 g of white bread. This dose was selected as it ensured compliance with
138	EFSA health claim for phenolic compounds in OO [6, 7] in line with previous bioavailability
139	studies [38].
140	Venous blood samples were taken before (baseline: 0h) and 0.5, 1, 2, 4 and 6h post the
141	ingestion. Blood was collected in heparinized tubes at each time-point and immediately
142	centrifuged at 657 $\times g$ for 20 min at 4°C. Urine was collected before (baseline: 0h) and in
143	different collection periods (0-4, 4-8, 8-15 and 15-24h) following EVOO intake. The volume of
144	urine collected over each time period was recorded. Plasma and urine samples were frozen at -
145	80°C prior to analysis. The study was approved by the Ethics Committee of the Faculty of
146	Pharmacy, University of Lisbon (Permission number 02/CEECFFUL/2016). Protocols were
147	according to the Declaration of Helsinki.
148	
149	Extraction of plasma
150	Plasma samples were treated according to the method of Day et al. [39] with some
151	modifications. ACN: formic acid (99.8:0.2, v/v) (1.25 mL) was added to 500 μ L of plasma.
152	Samples were vortexed over a 2 min period followed by 10 min ultrasound, and centrifuged at
153	16,000 g for 10 min at 4°C. The supernatant was collected, frozen at -80°C, lyophilized, and

154 suspended in 50 μ L methanol:water (80:20, v/v), before analysis. The extraction procedure was

155	evaluated, as described in supplementary information (SI) section 1.1, by spiking pool plasma
156	with six standard phenolic compounds (apigenin, luteolin, enterolactone, enterodiol, pinoresinol
157	and oleuropein) at known concentrations. These standards were selected as they represent
158	different phenolic families and cover the mass range of the majority of metabolites detected in
159	the samples.
160	
161	Urine
162	Urine samples were defrosted centrifuged at 16,000 g for 10 min at 4°C before analysis (one
163	freeze-thaw cycle) without further processing.
164	
165	Upper gastro-intestinal in vitro digestion model
166	An EVOO was subjected to an upper gastro-intestinal <i>in vitro</i> digestion model (<i>n</i> = 6 digestions)
167	according to Soler A. et al. [13]. Oil and aqueous phases were separated and frozen at -20°C
168	prior to analysis by LC-MS/MS.
169	
170	In vitro microsomal assays
171	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used
171 172	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS.
171 172 173	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS.
171 172 173 174	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i>
171 172 173 174 175	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic
171 172 173 174 175 176	 An EVOO extract (SI section 1.2) was diluted to 10⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic compounds extract (SI section 1.2). The total phenolic content was determined [44] in triplicate
171 172 173 174 175 176 177	 An EVOO extract (SI section 1.2) was diluted to 10⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic compounds extract (SI section 1.2). The total phenolic content was determined [44] in triplicate (SI section 1.2).
171 172 173 174 175 176 177 178	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic compounds extract (SI section 1.2). The total phenolic content was determined [44] in triplicate (SI section 1.2).
171 172 173 174 175 176 177 178 179	An EVOO extract (SI section 1.2) was diluted to 10 ⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic compounds extract (SI section 1.2). The total phenolic content was determined [44] in triplicate (SI section 1.2). <i>LC-MS/MS assays</i>
171 172 173 174 175 176 177 178 179 180	 An EVOO extract (SI section 1.2) was diluted to 10⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic compounds extract (SI section 1.2). The total phenolic content was determined [44] in triplicate (SI section 1.2). <i>LC-MS/MS assays</i> Details of the analysis are presented in the SI section 1.4. Hydroxytyrosol and tyrosol standards
171 172 173 174 175 176 177 178 179 180 181	 An EVOO extract (SI section 1.2) was diluted to 10⁻⁵ M (CAE equivalents) in DMSO and used as described in SI section 1.3 [40-42]. The supernatant fraction was analysed by LC-MS/MS. <i>Total phenolic content determination</i> The protocol described by Owen <i>et al.</i> [43] was used for the preparation of the phenolic compounds extract (SI section 1.2). The total phenolic content was determined [44] in triplicate (SI section 1.2). <i>LC-MS/MS assays</i> Details of the analysis are presented in the SI section 1.4. Hydroxytyrosol and tyrosol standards were used to quantify these compounds and their secoiridoid derivatives in EVOO (results)

3
4
5
2
6
7
8
à
10
10
11
12
12
13
14
15
16
17
17
18
19
20
20
21
22
23
24
2 7 5
25
26
27
28
20
29
30
31
22
32
33
34
35
26
30
37
38
30
40
40
41
42
43
44
44
45
46
47
40
48
49
50
51
51
52
53
54
55
22
56
57
58
50
29
60

183 UPLC-Orbitrap MS assays

184 Details of the analysis are presented in SI section 1.5. Identification was based on molecular ion185 and mass error tolerance (5 ppm).

186

187 Data analysis

188	The Thermo ToxID software was used to screen for EVOO phenolic compounds and
189	corresponding metabolites in plasma and urine samples detected by UPLC-ESI-Orbitrap MS
190	analysis. As our aim was to find discrimination patterns before and after EVOO intake, we
191	screened for target compounds in plasma and urine samples in their free form and also as the
192	corresponding Phase I (hydrogenation, dehydrogenation, hydration and hydroxylation) and
193	Phase II metabolites (methylation, glucuronidation and sulfation), and mixed forms of Phase I
194	and II metabolites (Phase I reaction + glucuronidation and/or methylation): secoiridoids and
195	their metabolites as elenolic acid, hydroxy elenolic acid, 3,4-DHPEA-EA, 3,4-DHPEA-EDA,
196	methyl 3,4-DHPEA-EDA, methyl 3,4-DHPEA-EA, 10-hydroxy-3,4-DHPEA-EA, 10-hydroxy-
197	3,4-DHPEA-EDA, p-HPEA-EA and p-HPEA-EDA. Other typical phenolics reported in VOO
198	[45] were also screened: phenolic alcohols (tyrosol, hydroxytyrosol) and hydroxytyrosol
199	acetate, phenolic acids (caffeic acid, p-coumaric acid, homovanillic acid, vanillic acid), phenolic
200	aldehyde (vanillin), flavonoids (luteolin, apigenin) and lignans (1-acetoxypinoresinol,
201	hydroxypinoresinol, pinoresinol, syringaresinol). All these compounds were tentatively
202	identified by their exact mass. Criteria for variable inclusion in multivariate analysis were
203	absence at 0h time point in plasma and urine [23] and presence in samples from at least two
204	volunteers post EVOO ingestion. Participants were instructed to follow a low phenolic diet
205	that excluded olives and any type of OO. Therefore by excluding variables present at baseline
206	the variations in possible markers would be related to EVOO consumption minimizing
207	interference due to other dietary components.
208	Alignment of retention time and m/z values was carried out across samples using a tolerance
209	window of 5 ppm. Normalization of peak area of selected variables was performed using peak

210	area/total peak area for each chromatogram, and expressed as ppm (Peak area/total peak area X
211	1,000,000). Normalization allowed removal of systemic variation between spectra due to
212	variations in sample or equipment. Partial Least Squares Discriminant Analysis with Orthogonal
213	Signal correction (OSC-PLS-DA) was performed using SIMCA-P+ 13.0 software (SI section
214	1.6).
215	Determination of excretion of urinary biomarkers was done using hydroxytyrosol as standard.
216	Normalized peak areas of the selected variables in urine were used for quantification. Values
217	were corrected according to volume of urine collected per sample point.
218	
219	Results
220	Phenolic composition of EVOO
221	The EVOO ingested had a total phenolic content of $322 \pm 6 \text{ mg/kg}$ CAE and 6 mg/20g
222	hydroxytyrosol and its derivatives and therefore meeting the EFSA recommendation for
223	phenolic compounds in olive oil [6, 7]. Each volunteer ingested 14.7 mg of phenolics.
224	Individual characterization of phenolic compounds in this EVOO is presented in Table 1.
225	
226	In vitro upper gastro-intestinal digestion and microsomal assays
227	The <i>in vitro</i> digestion process led to a secoiridoids decrease (-0.49 fold change) due to chemical
228	hydrolysis and an increase in phenolic alcohols (hydroxytyrosol: 1.66 fold change and
229	tyrosol:0.64 fold change) in medium (SI section 2.1 Table S1). Secoiridoids were still detected
230	in the oil phase, after digestion, showing that they were still available for absorption and
231	metabolism. In vitro microsomal assays enabled to conclude that 3,4-DHPEA-EA and p-HPEA-
232	EA decayed in the assay medium along with increases in the corresponding hydrogenated
233	metabolites (SI section 2.2 Figure S1). Calculated half-life in rat liver microsomes was 14.4 h
234	for 3,4-DHPEA-EA and 7.2 h for <i>p</i> -HPEA-EA.
235	
236	OSC-PLS-DA applied to plasma and urine results
237	Plasma samples

2
2
3
4
5
ĉ
ю
7
8
õ
9
10
11
10
12
13
14
15
10
16
17
18
10
19
20
21
~ 1
22
23
24
27 05
25
26
27
21
28
29
30
00
31
32
33
24
34
35
36
00
37
38
30
40
40
41
42
42
43
44
45
16
40
47
48
<u>4</u> 0
50
51
52
52
53
54
55
55
56
57
58
50
59
60

238	Validation tests were performed for plasma extraction and results are presented in SI section 2.3
239	(Tables S2 and S3). Eighteen compounds in plasma samples were selected as variables
240	according to inclusion criteria (Table 2) and used for multivariate analysis. Possible isomeric
241	forms were detected for several secoiridoid compounds, as reported before [36].
242	The parameters used to assess the OSC-PLS-DA modelling quality are summarized in Table 3 .
243	With the exception of the model with all plasma samples evaluated at the same time (data not
244	shown), all OSC-PLS-DA models presented acceptable values for all quality and validation
245	parameters, indicative that they were able to discriminate samples from baseline. These OSC-
246	PLS-DA models (baseline vs. each time collection point) explained between 27.9 and 41.2% of
247	the metabolite intensity variation (R^2X) and between 75.3 and 97.3% of the time point variation
248	($R^{2}Y$). In our work prediction values Q^{2} were between 62.1 and 93.6% after cross-validation,
249	indicating good predictive ability of the models.
250	Permutation tests allowed assessment of overfitting. Models were considered valid as the
251	average of the R^2 values of the permuted models were less than half the R^2 value of the original
252	model, indicating that more than half of the explained variability was not due to change [46].
253	p(corr) values were calculated for each of the models and are presented SI section 2.4 (Table
254	S4). Three variables (P1A, P1B and P9B) were discriminant for all time points and were
255	selected as plasma biomarkers to monitor EVOO intake. Two other variables were
256	discriminatory for one time point (SI section 2.4 Table S4) and nine variables were
257	discriminant for two to four time points (SI section 2.4 Table S4).
258	
259	Urine samples
260	Following the same approach, thirty-two compounds were selected in urine as variables for PLS
261	analysis (Table 4). With the exception of the model with all samples evaluated at the same time
262	(data not shown), all OSC-PLS-DA models presented acceptable values for all quality and

- 263 validation parameters, indicative that they were able to discriminate samples when compared
- with baseline samples (Table 5). These OSC-PLS-DA models (baseline vs. each time collection
- point) explained between 48.0 and 61.0% of the metabolite intensity variation (R^2X) and

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
23	
24	
25	
20	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
20	
38	
39	
40	
41	
42	
43	
11	
44	
40	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
50	

between 80.0 and 100% of the time point variation (R^2Y), with prediction values Q^2 between
77.6 and 99.4% after cross-validation. The obtained values of permutation tests were considered
acceptable. p(corr) values were calculated for each of the models and are presented in SI section
2.4 (Table S5). Nine variables were discriminant for all time points when compared with
baseline samples (U2, U9D, U9F, U9G, U9H, U11A, U11B, U11D and U11E). These variables
were selected as urinary biomarkers to monitor EVOO intake. Other four variables were
discriminant for one time point (SI section 2.4 Table S5) and eighteen variables where
discriminant for two or three time points (SI section 2.4 Table S5).
Absorption and excretion profile of selected plasma and urinary biomarkers
Absorption profiles of the discriminant plasma biomarkers presented maximum levels between
0.5 and 2h after EVOO intake, depending on each volunteer (Figure 1). In Figure 2 are shown
the excretion profiles of the nine discriminant urinary biomarkers, all hydroxytyrosol
derivatives. Maximum concentrations in human urine were reached in the time period of 0-4h
after oil intake and mean values for the nine volunteers are presented. The total amount excreted

- (24h) of each selected biomarker per volunteer is presented in Figure 3.

Discussion

Within this work HRMS was used as a tool to identify, with a high selectivity and low error, the detected metabolites in plasma and urine samples after EVOO intake. ESI negative ionization mode was selected as it is more sensitive than the positive ionization mode [23, 47]. Moreover this approach overcomes complex sample preparation procedures related with GC-MS analysis [48].

Data obtained from UPLC-HRMS analysis of samples were treated by PLS-DA in order to maximize the separation of observations (plasma and urine samples) belonging to the different classes that have previously been defined (different time points in the study). This procedure allowed to establish a model to predict the class (variable Y) from the compounds measured in the UPLC-HRMS analysis (X variables). Orthogonal signal correction (OSC), a multivariate

294	pre-processing data filter, was used before proceeding with the PLS-DA to eliminate the signal
295	information (X) that is unrelated (orthogonal) to the classes (Y) [49, 50]. Using this approach it
296	was possible, to select biomarkers that were the best predictors of the class vector.
297	The OSC-PLS-DA models with all samples evaluated at the same time did not meet quality
298	criteria. This could be due to the low number of variables and/or due to criteria used for
299	variables inclusion (absence at baseline). Therefore, further models were performed at each time
300	point to analyse the separation of samples of each time point compared with baseline samples.
301	Using this approach three plasma secoiridoid compounds (elenolic acid + H_2 detected at two
302	retention times; p -HPEA-EA + H ₂ + glucuronide) and nine urinary (3,4-DHPEA-EA, 3,4-
303	DHPEA-EA + H ₂ +glucuronide detected at four retention times, and methyl 3,4-DHPEA-EA +
304	H ₂ + glucuronide detected at four retention times) secoiridoid compounds were selected as
305	biomarkers for monitoring EVOO intake in human intervention trials, as they were discriminant
306	for all time collection points when compared to baseline. Moreover other secoiridoids were
307	identified in plasma and urine as enabling discrimination of one or more time points. It is worth
308	noting that although other phenolic compounds and metabolites were monitored in plasma and
309	urine samples, the secoiridoids group clearly stood apart in terms of sample discrimination,
310	results in agreement with others [23].
311	In our study the results from the <i>in vitro</i> experiments with microssomes showed that
312	secoiridoids 3,4-DHPEA-EA and <i>p</i> -HPEA-EA were stable, when incubated with liver
313	microsomes, with half-lives longer than 6h. A search for metabolites, allowed us to detect
314	compounds, identified as the hydrogenated forms of the parent compounds. Although there are
315	differences between rat and human microsomal activity, hydrogenation seems to be an
316	important Phase I route of metabolism for these secoiridoids. This evidence was supported by
317	results obtained in the human intervention as hydrogenated metabolites were detected in plasma
318	for elenolic acid, a structural unit of phenolic secoiridoids. Therefore, the detection of elenolic
319	acid in plasma (hydrogenated form) could be related with hydrolysis of oleuropein and
320	ligstroside aglycones in the gastric or intestinal environment, as evidenced after in vitro
321	digestion of EVOO. Discriminating metabolites resulting from Phase I metabolism, concerning

1		
3	322	hydroxylation and hydration, were also detected in plasma such as p -HPEA-EDA + H ₂ O and
4 5	323	3,4-DHPEA-EA + OH. These compounds discriminated samples for two to four time collection
6 7	324	points. Our results are in accordance with others [23], that identified these metabolites as
8 9	325	enabling discrimination in human urines before and after EVOO intake.
10	326	Absorption and metabolism of the secoiridoids 3,4-DHPEA-EDA and 3,4-DHPEA-EA was
12 13	327	studied before [12], by using perfused segments of <i>jejunum</i> and <i>ileum</i> , and hydrogenation
14 15	328	followed by glucuronidation of these compounds was reported. Authors attributed the reduced
16 17	329	metabolite forms to the action of NADPH-dependent aldo-keto reductases present in the small
19 20	330	intestine. In our study, hydrogenated forms of p-HPEA-EDA and p-HPEA-EA glucuronides
20 21 22	331	were also detected in plasma. Moreover, p -HPEA-EA + H ₂ + glucuronide was selected within
23 24	332	this work as a discriminating plasma metabolite.
25 26	333	In urine, 3,4-DHPEA-EA + H ₂ + glucuronide and methyl 3,4-DHPEA-EA + H ₂ + glucuronide
27 28	334	were selected as biomarkers of EVOO intake for all time collection points. The higher polarity
29 30	335	of 3,4-DHPEA-EA and methyl 3,4-DHPEA-EA hydrogenated glucuronides compared with p-
31 32	336	HPEA-EDA and <i>p</i> -HPEA-EA corresponding metabolites, might explain their presence in urine
33 34	337	and not in plasma. As the action site of NADPH-dependent aldo-keto reductases is in the
35 36	338	elenolic acid unit [12] the same reactions can take place in oleuropein or ligstroside aglycones.
37 38	339	Moreover hydrogenated metabolites of <i>p</i> -HPEA-EA and 3,4-DHPEA-EA glucuronides were
39 40	340	selected before as human urinary biomarkers for EVOO intake [23].
41 42	341	It is worth noting the selection of 3,4-DHPEA-EA as discrimination marker in urine. This
43 44	342	typical EVOO phenolic compound was also selected as marker in plasma, however not for all of
45 46	343	the collection points. Other urinary discrimination markers included 3,4-DHPEA-EA + H_2 +
47 48	344	glucuronide and methyl-3,4-DHPEA-EA + H_2 + glucuronide. The presence of methylated forms
49 50	345	might be explained by the action of catechol-O-methyl-tranferase that catalyzes the transfer of a
51 52	346	methyl group from S-adenosyl-L-methionine to phenolic compounds having an o-diphenolic
53 54	347	structure [51], although methyl 3,4-DHPEA-EA was also present in the EVOO.
55 56	348	In our study, glucuronide metabolites of <i>p</i> -HPEA-EDA, 3,4-DHPEA-EDA and methyl 3,4-
57 58	349	DHPEA-EDA, were detected as major metabolites in urine, as were glucuronides of methyl 3,4-
59 60		13

2
2
3
4
5
6
7
1
8
9
10
11
10
12
13
14
15
16
10
17
18
19
20
20
21
22
23
24
24
25
26
27
20
20
29
30
31
22
52
33
34
35
36
00
37
38
39
40
41
42
43
44
1 F
40
46
47
48
10
49
50
51
52
52
55
54
55
56
57
51
FC
58
58 59

350	DHPEA-EDA + OH, methyl 3,4-DHPEA-EA + H_2 and 3,4-DHPEA-EA + H_2 /OH/ H_2 O.
351	Glucuronides of <i>p</i> -HPEA-EDA, 3,4-DHPEA-EA + H ₂ /OH/ H ₂ O, and methyl 3,4-DHPEA-EDA
352	+ OH were previously identified in human urine samples after intake of EVOO [23].
353	Glucuronides of secoiridoids 3,4-DHPEA-EDA and 3,4-DHPEA-EA derivatives were detected
354	in human plasma samples after a bioavailability study with VOO [16]. In our study glucuronides
355	of hydrogenated forms of <i>p</i> -HPEA-EDA and <i>p</i> -HPEA-EA were also detected in plasma as well
356	as glucuronide of methyl 3,4-DHPEA-EDA+H ₂ O. UDP-glucuronosyltransferases are
357	membrane-bounded enzymes that are located in the endoplasmic reticulum in many tissues and
358	catalyze the transfer of a glucuronic acid from UDP-glucuronic acid to phenolic compounds or
359	xenobiotics [51].
360	Metabolites of the secoiridoid group were detected with the same exact mass but at different
361	retention times, suggesting the presence of isomers, which could be justified by the ring opening
362	in the secoiridoid structure, due to keto-enolic tautomeric equilibrium [52]. The presence of two
363	putative groups of isomers for secoiridoid derivatives as elenolic acid, oleuropein and
364	ligstroside aglycones was previously reported [36].
365	Maximum absorption levels of the plasma biomarkers were detected between 0.5 and 2h and
366	results are in accordance with others (maximum at 1h) [16]. Maximum excretion of urinary
367	biomarkers occurred in the first 4h after EVOO intake and results are in accordance with others
368	(maximum between 2 - 4h) [23]. Variability of results among volunteers was high for the
369	selected biomarkers in plasma and urine which is reflected in the standard deviations obtained.
370	Bioavailability of phenolic compounds not only depends on their concentration in the VOO but
371	is also affected by the individual genomic profile with impact on enzymatic activity involved in
372	the digestion and metabolism process. In fact polymorphism expression of conjugation enzymes
373	[51] or individual variations in digestive enzymes [53] or bile salts [54] might justify the
374	variations observed.
375	VOO phenolics undergo rapid absorption and fast renal elimination as evidenced in the
376	absorption and excretion profiles of the selected biomarkers. Accumulation of metabolites in
377	target tissues, studied before [55], could be considered when investigating the potential

Molecular Nutrition and Food Research

bioactivity of VOO phenolic compounds. In this work, the lack of pure standards did not allow
the calculation of a mass balance between the ingested EVOO phenolics, plasma and urinary
metabolites and pharmacokinetic data.

The use of secoiridoids as biomarkers to monitor EVOO intake has the advantage of specificity. While phenolic acids, phenolic alcohols and flavonoids occur in many fruits and vegetables belonging to various botanical families, secoiridoids are present exclusively in plants belonging to the family of Oleaceae including the olive tree Olea europaea L. [8]. Results of this work highlight the importance of secoiridoids as biomarkers of EVOO intake. These biomarkers would allow monitoring compliance of following the dose in interventions aimed to evaluate health benefits of EVOO intake in accordance with the EFSA claim [5]. Although secoiridoids are the major components in the phenolic fraction of EVOO [56], we have to take into account that several factors influence its content in EVOO. Olive tree cultivars, alternate bearing of the olive tree, environmental conditions, maturity of the fruits or technological factors are parameters that influence chemical composition of EVOO and therefore increase variability in the phenolic composition [1, 8, 57, 58]. The combination of digestion models with in vitro approaches of hepatic metabolism (e.g.: incubation with HepG2 cells or liver microsomes) can be useful in producing metabolites from EVOO. Recently it was demonstrated the use of Caco-2 cells as bioreactors for generation of phase II metabolites of hydroxytyrosol [59]. This approach would allow us to confirm the identity of biomarkers selected in this work. After identification it would be possible to produce biomarkers as authentic standard allowing absolute calibration of these compounds in samples. Moreover the use of HRMS/MS would enable structural clarification of the putatively identified isomers. The secoiridoid metabolites detected in plasma and urine samples from volunteers were able to discriminate between different time points after EVOO intake. The most common metabolic reactions were Phase I hydrogenation and Phase II glucuronidation. The selected secoiridoid

- 403 biomarkers can be added to the ones already described. Due to the variability in absorption,
- 404 metabolism and elimination of compounds, future studies should include broader populations to

account for inter-individual variability. The role of the identified metabolites in beneficial health

2	
2	
3	
4	
5	
6	
7	
<i>'</i>	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
11	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
20	
32	
33	
34	
35	
36	
30	
37	
38	
39	
40	
11	
41	
42	
43	
44	
45	
10	
40	
47	
48	
49	
50	
50	
51	
52	
53	
54	
55	
00	
56	
57	
58	
59	
60	
υu	

1

405

406	effects requires further investigation.
407	
408	Authors contributions: S.S., M.E.F, E.C., W.M. and M.R.B designed the research. S.S.
409	conducted research, analyzed data and prepared the first draft of the manuscript. M.G.A
410	performed statistical analysis. All authors: were responsible for the interpretation of data,
411	critical review of the manuscript and approved the final manuscript.
412	
413	This study was supported by QREN project Azeite+Global n° 12228, iNOVA4Health and
414	National Programme for Scientific Re-equipment for the acquisition of the LC-MS/MS
415	equipment that is part of the Portuguese National Mass Spectrometry Network (Contract
116	RNFM_ REDE/1518/REM/2005)
410	$\mathbf{K} = \mathbf{K} = $
417	The week over house dealers and we could be a finite wort
418	The authors have declared no conflict of interest.
419	
420	References
421	
422 423	[1] Tripoli, E., Giammanco, M., Tabacchi, G., Di Majo, D., <i>et al.</i> , The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. <i>Nutrition</i>
424	research reviews 2005, 18, 98-112.
425	[2] Covas, M. I., Olive oil and the cardiovascular system. <i>Pharmacological research : the official</i>
426	journal of the Italian Pharmacological Society 2007, 55, 175-186.
427	[3] Lopez-Miranda, J., Perez-Jimenez, F., Ros, E., De Caterina, R., <i>et al.</i> , Olive oil and health:
428	summary of the II international conference on olive oil and health consensus report, Jaen and
429	Cordoba (Spain) 2008. Nutrition, metabolism, and cardiovascular diseases : NNICD 2010, 20,
430	204-254. [1] Urni-Sarda M. Casas R. Chiva-Blanch G. Romero-Mamani F. S. <i>et al.</i> Virgin olive oil and
431	[4] Orpi-Sarda, M., Casas, N., Chiva-Banch, G., Komero-Mainani, E. S., et di., Virgin bive on and nuts as key foods of the Mediterranean diet effects on inflammatory biomakers related to
433	atherosclerosis Pharmacological research : the official journal of the Italian Pharmacological
434	Society 2012, 65, 577-583.
435	[5] Silva, S., Bronze, M. R., Figueira, M. F., Siwy, J., et al., Impact of a 6-wk olive oil
436	supplementation in healthy adults on urinary proteomic biomarkers of coronary artery
437	disease, chronic kidney disease, and diabetes (types 1 and 2): a randomized, parallel,
438	controlled, double-blind study. The American journal of clinical nutrition 2015, 101, 44-54.
439	[6] Scientific Opinion on the substantiation of health claims related to polyphenols in olive and
440	protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865),
441	maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of
442	normal blood pressure (ID 3781), "anti-inflammatory properties" (ID 1882), "contributes to the

1		
2		
3	443	upper respiratory tract health" (ID 3468), "can help to maintain a normal function of
4	444	gastrointestinal tract" (3779), and "contributes to body defences against external agents" (ID
5	445	3467) pursuant to Article 13(1) of Regulation (EC) No 1924/20061. EFSA Journal 2011, 9 (4).
0	446	[7] Scientific Opinion on the substantiation of health claims related to olive oil and
/	447	maintenance of normal blood LDL-cholesterol concentrations (ID 1316, 1332), maintenance of
0	448	normal (fasting) blood concentrations of triglycerides (ID 1316, 1332), maintenance of normal
9	449	blood HDL-cholesterol concentrations (ID 1316, 1332) and maintenance of normal blood
10	450	glucose concentrations (ID 4244) pursuant to Article 13(1) of Regulation (EC) No 1924/2006.
12	451	EFSA Journal 2011 9 (4).
12	452	[8] Servili, M., Montedoro, G., Contribution of phenolic compounds to virgin olive oil quality.
14	453	European Journal of Lipid Science and Technology 2002, 104, 602-613.
15	454	[9] Perez-Jimenez, F., Ruano, J., Perez-Martinez, P., Lopez-Segura, F., Lopez-Miranda, J., The
16	455	influence of olive oil on human health: not a question of fat alone. Molecular nutrition & food
17	456	research 2007, 51, 1199-1208.
18	457	[10] Harwood J., A. R., Handbook of olive oil analysis and properties 2000.
19	458	[11] Preedy, V. R., Watson, R. R., <i>Olives and olive oil in health and disease prevention</i> . Elsevier,
20	459	
21	460	[12] Pinto I Paiva-Martins F. Corona G. Debnam F. S. <i>et al.</i> Absorption and metabolism of
22	460	olive oil secoiridoids in the small intestine. The British journal of nutrition 2011, 105, 1607-
23	401	1618
24	402	1010. [12] Aranzazu Solar M. D. P. Alba Marià Shikha Saha Carolina S.M. Eurniss, Daul A. Kroon
25	403	[15] Aranzazu Soler, IVI. P. N., Alba Macia, Shikila Sana, Caroline S.W. Fulliss, Faul A. Kroon,
26	404	when a subscription of the second stability and evaluation of the metabolism and transport of onve on shareds in the burger small intesting, enithelial Case 2/TCZ call line. Food chamistry 2010
27	405	phenois in the numan small-intestinal epithelial Caco-2/TC7 cell line. Food chemistry 2010,
28	466	
29	467	[14] Rubio, L., Macia, A., Valis, R. M., Pedret, A., et al., A new hydroxytyrosol metabolite
30	468	identified in human plasma: hydroxytyrosol acetate sulphate. Food Chem 2012, 134, 1132-
31	469	1136.
32	470	[15] Corona, G., Tzounis, X., Assunta Dessi, M., Deiana, M., et al., The fate of olive oil
33	471	polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-
35	472	dependent biotransformation. Free radical research 2006, 40, 647-658.
36	473	[16] Suarez, M., Valls, R. M., Romero, M. P., Macia, A., et al., Bioavailability of phenols from a
37	474	phenol-enriched olive oil. The British journal of nutrition 2011, 106, 1691-1701.
38	475	[17] Manna, C., Galletti, P., Maisto, G., Cucciolla, V., et al., Transport mechanism and
39	476	metabolism of olive oil hydroxytyrosol in Caco-2 cells. FEBS letters 2000, 470, 341-344.
40	477	[18] de la Torre, R., Bioavailability of olive oil phenolic compounds in humans.
41	478	Inflammopharmacology 2008, 16, 245-247.
42	479	[19] Tuck, K. L., Freeman, M. P., Hayball, P. J., Stretch, G. L., Stupans, I., The in vivo fate of
43	480	hydroxytyrosol and tyrosol, antioxidant phenolic constituents of olive oil, after intravenous and
44	481	oral dosing of labeled compounds to rats. <i>The Journal of nutrition</i> 2001, 131, 1993-1996.
45	482	[20] Gonzalez-Santiago, M., Fonolla, J., Lopez-Huertas, E., Human absorption of a supplement
46	483	containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its
47	484	transient association with low-density lipoproteins. <i>Pharmacological research</i> 2010, <i>61</i> , 364-
48	485	370.
49	486	[21] Visioli E Galli C Grande S Colonnelli K <i>et al</i> Hydroxytyrosol excretion differs
50	487	between rats and humans and depends on the vehicle of administration. The lournal of
51	488	nutrition 2003 133 2612-2615
52	489	[22] Miro-Casas F. Covas M. J. Farre M. Fito M. et al. Hydroxytyrosol disposition in
53	100	Lezy mile casas, e., covas, m. i., ranc, mil, rico, mil, et al., nyaroxytyrosor aisposition in
54	450	101110113. Cillicul Chemistry 2003, 43, 343-332. [22] Garcia-Villalha R. Carrasco-Dancorho A. Novedemskova E. Mauhoroda O. A. et el
55	491	Exploratory analysis of human uring by IC ESITOE MS after high intake of alive aily
00 57	432	induction analysis of number of notwoods. Analytical and biographytical shewister 2010.
58	495	anderstanding the metabolism of polyphenois. Analytical and bioanalytical chemistry 2010,
59	494	<i>370</i> , 403-473.

 [24] Mateos, R., Goya, L., Bravo, L., Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. Journal of agricultural and food chemistry 2005, 53, 9897-9905. [25] Miro Casas, E., Farre Albadalejo, M., Covas Planells, M. I., Fito Colomer, M., et al., Tyrosol bioavailability in humans after ingestion of virgin olive oil. *Clinical chemistry* 2001, 47, 341-343. [26] Vissers, M. N., Zock, P. L., Roodenburg, A. J., Leenen, R., Katan, M. B., Olive oil phenols are absorbed in humans. The Journal of nutrition 2002, 132, 409-417. [27] Dominguez-Perles, R., Aunon, D., Ferreres, F., Gil-Izquierdo, A., Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. European journal of nutrition 2015. [28] D'Archivio, M., Filesi, C., Vari, R., Scazzocchio, B., Masella, R., Bioavailability of the polyphenols: status and controversies. International journal of molecular sciences 2010, 11, 1321-1342. [29] de la Torre, R., Covas, M. I., Pujadas, M. A., Fito, M., Farre, M., Is dopamine behind the health benefits of red wine? European journal of nutrition 2006, 45, 307-310. [30] Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B., Reflections on univariate and multivariate analysis of metabolomics data. *Metabolomics* 2013, 10. [31] Gromski, P. S., Muhamadali, H., Ellis, D. I., Xu, Y., et al., A tutorial review: Metabolomics and partial least squares-discriminant analysis--a marriage of convenience or a shotgun wedding. Analytica chimica acta 2015, 879, 10-23. [32] Madsen, R., Lundstedt, T., Trygg, J., Chemometrics in metabolomics--a review in human disease diagnosis. Analytica chimica acta 2010, 659, 23-33. [33] Caruso, D., Colombo, R., Patelli, R., Giavarini, F., Galli, G., Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). Journal of agricultural and food chemistry 2000, 48, 1182-1185. [34] Obied, H. K., Bedgood, D. R., Jr., Prenzler, P. D., Robards, K., Chemical screening of olive biophenol extracts by hyphenated liquid chromatography. Analytica chimica acta 2007, 603, 176-189. [35] Fu, S., Arraez-Roman, D., Menendez, J. A., Segura-Carretero, A., Fernandez-Gutierrez, A., Characterization of isomers of oleuropein aglycon in olive oils by rapid-resolution liquid chromatography coupled to electrospray time-of-flight and ion trap tandem mass spectrometry. Rapid communications in mass spectrometry : RCM 2009, 23, 51-59. [36] Vichi, S., Cortes-Francisco, N., Caixach, J., Insight into virgin olive oil secoiridoids characterization by high-resolution mass spectrometry and accurate mass measurements. Journal of chromatography. A 2013, 1301, 48-59. [37] Garcia-Aloy, M., Llorach, R., Urpi-Sarda, M., Jauregui, O., et al., A metabolomics-driven approach to predict cocoa product consumption by designing a multimetabolite biomarker model in free-living subjects from the PREDIMED study. Molecular nutrition & food research 2015, *59*, 212-220. [38] Vissers, M. N., Zock, P. L., Katan, M. B., Bioavailability and antioxidant effects of olive oil phenols in humans: a review. European journal of clinical nutrition 2004, 58, 955-965. [39] Day, A. J., Mellon, F., Barron, D., Sarrazin, G., et al., Human metabolism of dietary flavonoids: identification of plasma metabolites of quercetin. Free radical research 2001, 35, 941-952. [40] Guantai, E. M., Ncokazi, K., Egan, T. J., Gut, J., et al., Enone- and chalcone-chloroguinoline hybrid analogues: in silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. Journal of medicinal chemistry 2011, 54, 3637-3649. [41] Margout, D., Gattacceca, F., Moarbess, G., Wein, S., et al., Pharmacokinetic properties and metabolism of a new potent antimalarial N-alkylamidine compound, M64, and its

1		
2		
3	547	corresponding bioprecursors. European journal of pharmaceutical sciences : official journal of
4	548	the European Federation for Pharmaceutical Sciences 2011, 42, 81-90.
5	549	[42] Obach, R. S., Prediction of numan clearance of twenty-nine drugs from nepatic
7	550	microsomal intrinsic clearance data: An examination of in vitro nait-life approach and
8	551	nonspecific binding to microsomes. Drug metabolism and disposition: the biological fate of
9	552	<i>chemicals</i> 1999, 27, 1350-1359.
10	553	[43] Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., <i>et al.</i> , The antioxidant/anticancer
11	554	potential of phenolic compounds isolated from olive oil. European journal of cancer 2000, 36,
12	555	1235-1247.
13	556	[44] Stamatakis, G., Tsantila, N., Samiotaki, M., Panayotou, G. N., et al., Detection and isolation
14	557	of antiatherogenic and antioxidant substances present in olive mill wastes by a novel filtration
15	558	system. J Agric Food Chem 2009, 57, 10554-10564.
16	559	[45] Bendini, A., Cerretani, L., Carrasco-Pancorbo, A., Gomez-Caravaca, A. M., et al., Phenolic
17	560	molecules in virgin olive oils: a survey of their sensory properties, health effects, antioxidant
18	561	activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679-
19	562	1719.
20	563	[46] Borel, P., Desmarchelier, C., Nowicki, M., Bott, R., Morange, S., & Lesavre, N.,
21	564	Interindividual variability of lutein bioavailability in healthy men: characterization, genetic
22	565	variants involved, and relation with fasting plasma lutein concentration. The American journal
23	566	of clinical nutrition 2014, 100, 168-175.
24	567	[47] Garcia-Villalba, R., Larrosa, M., Possemiers, S., Tomas-Barberan, F. A., Espin, J. C.,
26	568	Bioavailability of phenolics from an oleuropein-rich olive (Olea europaea) leaf extract and its
27	569	acute effect on plasma antioxidant status: comparison between pre- and postmenopausal
28	570	women. European journal of nutrition 2014, 53, 1015-1027.
29	571	[48] Suarez, M., Macia, A., Romero, M. P., Motilva, M. J., Improved liquid chromatography
30	572	tandem mass spectrometry method for the determination of phenolic compounds in virgin
31	573	olive oil. <i>Journal of chromatography</i> . A 2008, 1214, 90-99.
32	574	[49] Pujos-Guillot, E., Hubert, J., Martin, JF., Lyan, B., Quintana, M., Manach, C. , Mass
33	575	spectrometry-based metabolomics for the discovery of biomarkers of fruit and vegetable
34	576	intake: citrus fruit as a case study. <i>Journal of Proteome Research</i> 2013, 12, 1645–1659.
35	577	[50] Trygg, J., Holmes, E., & Lundstedt, T., Chemometrics in metabolomics. Journal of
36	578	Proteome Research 2007, 6, 469-479.
37	579	[51] Manach, C., Scalbert, A., Morand, C., Remesy, C., Jimenez, L., Polyphenols: food sources
38	580	and bioavailability. The American journal of clinical nutrition 2004, 79, 727-747.
39	581	[52] Fu. S., Arraez-Roman, D., Segura-Carretero, A., Menendez, J. A., et al., Qualitative
40	582	screening of phenolic compounds in olive leaf extracts by hyphenated liquid chromatography
41	583	and preliminary evaluation of cytotoxic activity against human breast cancer cells. Analytical
42	584	and biognalytical chemistry 2010, 397, 643-654
44	585	[53] Lindahl A. Lingell A. L. Knutson I. Lennernas H. Characterization of fluids from the
45	586	stomach and proximal jejunum in men and women <i>Pharmaceutical research</i> 1997 14 497-
46	587	502
47	588	[54] Kalantzi I. Goumas K. Kalioras V. Abrahamsson B. et al. Characterization of the
48	580	buman unner gastrointestinal contents under conditions simulating
49	500	hiopyailability/biogguivalance studies. <i>Dharmacoutical research</i> 2006, 22, 165, 176
50	501	[55] Longz do Las Hazas M. C. Publo L. Krotopoulas A. do la Torro P. et al. Doso offect on
51	591	the untake and accumulation of hydroxytyrocal and its metabolites in target ticsues in rate
52	592	Melacular nutrition & food records 2015
53	593	iviolecului Iluliiluoli & juuli leseululi 2013.
54	594	[30] Sanchez de Wednia, V., Priego-Capole, F., de Castro, M. D., Characterization of
55	595	Inchovanietal virgin olive olis by prieriois profiling. <i>Talanta</i> 2015, <i>132</i> , 424-432.
56	590	[57] Council, I. O., <i>World Olive Encyclopaedia</i> , International Olive Oli Council, Barcelona, Spain
5/ 50	597	1990.
00 50		
60 60		10
00		19

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
20	
20	
21	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
31	
30 20	
39 40	
40 //1	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
5/	
58	
59	
60	

598 599 600 601 602 603 604	 [58] Vinha A. F., F. F., Silva B.M., Valentão P., Gonçalves A., Pereira J., Oliveira M. B., Seabra R.M, Andrade P.B., Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. <i>Food Chemistry</i> 2005, <i>89</i>, 561-568. [59] Catalan, U., Lopez de Las Hazas, M. C., Rubio, L., Fernandez-Castillejo, S., <i>et al.</i>, Protective effect of hydroxytyrosol and its predominant plasmatic human metabolites against endothelial dysfunction in human aortic endothelial cells. <i>Molecular nutrition & food research</i> 2015, <i>59</i>, 2523-2536.
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	
625	

2			
3	627	Figure 1 - Plasma absorption-time profiles of variables P1A (elenolic acid $+$ H ₂), P1B (elenol	ic
4 5	628	acid + H ₂ detected at a different retention time) and P9B (<i>p</i> -HPEA-EA+H ₂ +glucuronide) for	
6 7	629	volunteers (1 to 9) and mean values. Data are expressed as normalized areas (ppm)	
8	625		
9 10	630		
11 12	631	Figure 2 - Excretion profile of discriminatory biomarkers identified in urine after EVOO intal	<u>ce</u>
13			
14 15	632	(μg excreted expressed as hydroxytyrosol equivalents). Data are expressed as mean \pm SD	
16 17	633		
18	62.4		
19 20	634	Figure $3 - 1$ otal excretion of discriminatory biomarkers identified in urine (0-24h) per volunt	eer
21	635	(<i>n</i> =9) after EVOO intake (µg of hydroxytyrosol equivalents)	
22 23	636		
24 25	637		
26			
27 28	638		
29	639		
30	640		
32 33	641		
34			
35 36	642		
37 38	643		
39	644		
40 41	645		
42 43	6.46		
44	646		
45 46	647		
47	648		
48 49	649		
50 51	650		
52	טכס		
53 54	651		
55 56	652		
57	653		
58 59			
60			21

Table 1 – Phenolic compounds and elenolic acid in EVOO used in the human intervention

657 identified by LC-MS/MS

Retention time (min)	[M-H] ⁻ m/z	Ion Formula	MS/MS m/z	Compound	EVOO (mg/kg)
3.6	153	$C_8H_9O_3$	123, 95	Hydroxytyrosol	3.75
5.3	137	$C_8H_9O_2$	119, 106	Tyrosol	2.09
19.3	377	$C_{19}H_{21}O_8$	275, 307	3,4-DHPEA-EA*	51.49
16.7	319	$C_{17}H_{19}O_6$	195, 183	3,4-DHPEA-EDA*	9.78
18.3	391	$C_{20}H_{23}O_8$	377	Methyl 3,4-DHPEA- EA*	4.15
15.6	335	$C_{17}H_{19}O_7$	199, 155	OH - deacetoxy oleuropein aglycone*	1.12
17.4	393	$C_{19}H_{21}O_{9}$	317	10-OH oleuropein aglycone*	5.67
21.0	361	$C_{19}H_{21}O_7$	291, 259	<i>p</i> -HPEA-EA**	203.08
18.5	303	$C_{17}H_{19}O_5$	285, 179	<i>p</i> -HPEA-EDA**	30.08
14.3	241	$C_{11}H_{13}O_6$	139	Elenolic acid*	10.04
17.4	285	$C_{15}H_9O_6$	133	Luteolin	3.19
18.7	269	$C_{15}H_9O_5$	151	Apigenin	0.70
17.6	357	$C_{20}H_{21}O_{6}$	151, 136	Pinoresinol*	0.49
17.6	415	$C_{22}H_{23}O_8$	235, 151	Acetoxipinoresinol*	0.24
11.2	151	$C_8H_7O_3$	136	Vanillin	0.14

*Quantified as hydroxytyrosol equivalents; **quantified as tyrosol equivalents.

Table 2 - Retention time, theoretical and experimental m/z, error and ion formula obtained in

666 negative mode for compounds detected in plasma (P) and considered as variables for OSC-PLS-

667 DA and corresponding abbreviations

Variables included	Retention	Theoretical <i>m/z</i>	Experimental	Error	Ion Formula	Abbreviatio
in OSC-PLS-DA	time (min)		m/z ^a	(ppm) ^a		
Elenolic acid + H ₂	10.35	243.0874	243.0862	-4.9	C11H15O6	P1A
Elenolic acid + H ₂	10.97	243.0874	243.0863	-4.5	$C_{11}H_{15}O_6$	P1B
3,4-DHPEA-EDA	13.34	319.1187	319.1174	-4.2	$C_{17}H_{19}O_6$	P2
p-HPEA-EDA + H ₂ O	13.01	321.1344	321.1333	-3.2	$C_{17}H_{21}O_6$	P3
3,4-DHPEA-EA	9.70	377.1242	377.1250	2.2	$C_{19}H_{21}O_8$	P4
3,4-DHPEA-EA+OH	13.68	393.1191	393.1175	-4.0	$C_{19}H_{21}O_{9}$	P5A
3,4-DHPEA-EA+OH	13.94	393.1191	393.1173	-4.5	$C_{19}H_{21}O_{9}$	P5B
p-HPEA-EDA + H ₂ + glucuronide	9.97	481.1715	481.1700	-3.2	$C_{23}H_{29}O_{11}$	P6A
p-HPEA-EDA + H ₂ + glucuronide	10.24	481.1715	481.1701	-2.9	$C_{23}H_{29}O_{11}$	P6B
p-HPEA-EDA + H ₂ + glucuronide	10.56	481.1715	481.1701	-2.9	$C_{23}H_{29}O_{11}$	P6C
3,4-DHPEA-EDA+OH+glucuronide	11.14	511.1457	511.1480	4.4	$C_{23}H_{27}O_{13}$	P7
Methyl 3,4-DHPEA-EDA + H ₂ O + glucuronide	10.12	527.1770	527.1753	-3.3	$C_{24}H_{31}O_{13}$	P8A
Methyl 3,4-DHPEA-EDA + H ₂ O + glucuronide	10.35	527.1770	527.1756	-2.7	$C_{24}H_{31}O_{13}$	P8B
Methyl 3,4-DHPEA-EDA + H ₂ O + glucuronide	10.71	527.1770	527.1755	-2.9	$C_{24}H_{31}O_{13}$	P8C
<i>p</i> -HPEA-EA + H ₂ +glucuronide	11.73	539.1770	539.1757	-2.4	$C_{25}H_{31}O_{13}$	P9A
<i>p</i> -HPEA-EA + H ₂ + glucuronide	11.94	539.1770	539.1758	-2.3	$C_{25}H_{31}O_{13}$	P9B
p-HPEA-EA + H ₂ + glucuronide	12.15	539.1770	539.1759	-2.1	$C_{25}H_{31}O_{13}$	P9C
Apigenin+CH ₃ +glucuronide	11.33	459.0933	459.0949	3.5	$C_{22}H_{19}O_{11}$	P10
668 ^a mean value.						
669 ^b letters account for putati	ve isomers.					
670 Compounds highlighted in	n bold enabl	ed plasma samp	oles discrimina	tion after I	EVOO intake,	for
671 all collection points, as fo	und by OSC	C-PLS-DA				
672						
673						

679 samples

	OSC Filter OSC-PLS-DA									Permutation	
Model								test	t		
	NÂ	Â	remaining SS (%)	eigen- N value	Ν	R ² X N (cum)	R ² Y (cum)	Q ² (cum)	<i>p</i> -value	R ²	Q ²
t0h vs. t0,5h	1	90.00	79.76	3.441	1	0.315	0.973	0.936	1.07x10 ⁻⁹	0.117	-0.251
t0h vs. t1h	1	90.00	72.12	4.739	1	0.412	0.911	0.850	6.72x10 ⁻⁷	0.074	-0.239
t0h vs. t2h	1	90.00	72.00	4.760	1	0.389	0.879	0.801	5.56x10 ⁻⁶	0.123	-0.224
t0h vs. t4h	1	90.00	67.04	4.943	1	0.364	0.866	0.779	1.22x10 ⁻⁵	0.140	-0.203
t0h vs. t6h	1	90.00	71.70	3.962	1	0.279	0.753	0.621	6.90x10 ⁻⁴	0.131	-0.157

680 N, number of components in OSC and PLS-DA model, respectively; Â displays the angle

between the component and the Y variable; SS, sum of squares, indicating the % of the original

682 variance in the X-block that remains in the corrected X-matrix; $R^2X(cum)$ and $R^2Y(cum)$ are the

683 cumulative modelled variation in the X and Y matrix, respectively; $Q^2(cum)$ is the cumulative

684 predicted variation in the Y matrix; the *p*-value from CV-ANOVA, based on the cross-validated

685 predictive residuals, is listed for both models (significant result indicates a valid model).

Table 4 - Retention time, theoretical and experimental m/z, error and ion formula obtained in

693 negative mode for compounds detected in urine (U) and considered as variables for OSC-PLS-

694 DA and corresponding abbreviations

Variables included	Retention	Theoretical	Experimental	Error	Ion Formula	Abbreviation
in OSC-PLS-DA	time (min)	m/z	m/z^{a}	(ppm) ^a		
<i>p</i> -HPEA-EA +H ₂	23.06	363.1449	363.1443	-1.7	C19H23O7	U1
3,4-DHPEA-EA	22.86	377.1242	377.1233	-2.2	$C_{19}H_{21}O_8$	U2
3,4- DHPEA-EA + OH +Sulfate	16.40	473.0759	473.754	-1.2	$C_{19}H_{21}O_{12}S$	U3A
3,4-DHPEA-EA + OH +Sulfate	16.89	473.0759	473.0751	-1.7	$C_{19}H_{21}O_{12}S \\$	U3B
Luteolin + CH ₃ +glucuronide	12.80	475.0882	475.0905	4.8	$C_{22}H_{19}O_{12}$	U4
<i>p</i> -HPEA-EDA +glucuronide	15.48	479.1559	479.1548	-2.2	$C_{23}H_{27}O_{11}$	U5A
<i>p</i> -HPEA-EDA +glucuronide	16.39	479.1559	479.1549	-2.1	$C_{23}H_{27}O_{11}$	U5B
3,4-DHPEA-EDA+glucuronide	15.18	495.1508	495.1498	-2.0	$C_{23}H_{27}O_{12}$	U6
Methyl 3,4-DHPEA-EDA +glucuronide	16.88	509.1665	509.1653	-2.2	$C_{24}H_{29}O_{12}$	U7A
Methyl 3,4-DHPEA-EDA +glucuronide	18.08	509.1665	509.1653	-2.3	$C_{24}H_{29}O_{12}$	U7B
Methyl 3,4-DHPEA-EDA + OH+glucuronide	13.09	525.1614	525.1619	2.9	$C_{24}H_{29}O_{13}$	U8A
Methyl 3,4-DHPEA-EDA + OH+glucuronide	13.15	525.1614	525.1623	1.8	$C_{24}H_{29}O_{13}$	U8B
Methyl 3,4-DHPEA-EDA + OH+glucuronide	16.17	525.1614	525.1608	-1.0	$C_{24}H_{29}O_{13}$	U8C
Methyl 3,4 DHPEA-EDA + OH+glucuronide	16.50	525.1614	525.1607	-1.3	$C_{24}H_{29}O_{13}$	U8D
3,4-DHPEA-EA + H ₂ +glucuronide	13.49	555.1719	555.1707	-2.3	$C_{25}H_{31}O_{14}$	U9A
3,4-DHPEA-EA + H ₂ +glucuronide	13.71	555.1719	555.1706	-2.3	$C_{25}H_{31}O_{14}$	U9B
3,4-DHPEA-EA + H ₂ +glucuronide	13.82	555.1719	555.1706	-2.3	$C_{25}H_{31}O_{14}$	U9C
3,4-DHPEA-EA + H ₂ +glucuronide	16.50	555.1719	555.1707	-2.3	$C_{25}H_{31}O_{14}$	U9D
3,4-DHPEA-EA + H ₂ +glucuronide	16.61	555.1719	555.1706	-2.3	$C_{25}H_{31}O_{14}$	U9E
3,4-DHPEA-EA + H ₂ +glucuronide	16.87	555.1719	555.1706	-2.3	$C_{25}H_{31}O_{14}$	U9F
3,4-DHPEA-EA + H ₂ +glucuronide	17.76	555.1719	555.1706	-2.4	$C_{25}H_{31}O_{14}$	U9G
3,4-DHPEA-EA + H ₂ +glucuronide	18.09	555.1719	555.1706	-2.3	$C_{25}H_{31}O_{14}$	U9H
3,4-DHPEA-EA + OH+glucuronide	14.33	569.1512	569.1533	3.7	$C_{25}H_{29}O_{15}$	U10A
3,4-DHPEA-EA + OH+glucuronide	14.68	569.1512	569.1518	1.0	$C_{25}H_{29}O_{15}$	U10B
3,4-DHPEA-EA + OH+glucuronide	14.80	569.1512	569.1539	4.8	$C_{25}H_{29}O_{15}$	U10C
Methyl 3,4-DHPEA-EA + H ₂ +glucuronide	17.69	569.1876	569.1865	-1.9	$C_{26}H_{33}O_{14}$	U11A
Methyl 3,4-DHPEA-EA + H ₂ +-glucuronide	17.89	569.1876	569.1865	-1.9	$C_{26}H_{33}O_{14}$	U11B
Methyl 3,4-DHPEA-EA + H ₂ +glucuronide	17.97	569.1876	569.1864	-2.0	$C_{26}H_{33}O_{14}$	U11C
Methyl 3,4-DHPEA-EA + H ₂ +glucuronide	19.33	569.1876	569.1865	-1.9	C ₂₆ H ₃₃ O ₁₄	U11D
Methyl 3,4-DHPEA-EA + H ₂ +glucuronide	19.66	569.1876	569.1868	-1.4	$C_{26}H_{33}O_{14}$	U11E
3,4-DHPEA-EA + H ₂ O+glucuronide	12.99	571.1668	571.1660	-1.5	$C_{25}H_{31}O_{15}$	U12A
3,4-DHPEA-EA + H ₂ O+glucuronide	13.52	571.1668	571.1658	-1.9	C ₂₅ H ₃₁ O ₁₅	U12B

^a mean value.

^b letters account for putative isomers.

697 Compounds highlighted in bold enabled urine samples discrimination after EVOO intake, for all

698 collection points, as found by OSC-PLS-DA.

Table 5 – Summary of parameters for assessing the OSC-PLS-DA modeling quality in urine

701 samples

	05	SC Filter	•		05	SC-PLS-I	DA		Permutation test		
Model	N	NÂ	remaining	ing eigen-	N	R^2X R	$\mathbf{R}^{2}\mathbf{Y}$	Q ² (cum)	<i>p</i> -value	R ²	Q ²
			SS (%)	value		(cum)	(cum)				
t0h vs. t0-4h	1	89.99	80.35	3.538	1	0.573	0.800	0.776	1.36×10^{-05}	0.096	-0.216
t0h vs. t4-8h	1	90.00	75.18	4.219	1	0.610	1.000	0.994	3.02x10 ⁻¹⁶	0.032	-0.260
t0h vs. t8-15h	1	90.00	68.95	5.589	1	0.480	0.998	0.988	5.07x10 ⁻¹⁵	0.029	-0.277
t0h vs. t15-24h	1	90.00	68.40	4.740	1	0.560	0.997	0.986	8.84x10 ⁻¹⁴	0.008	-0.266

N, number of components in OSC and PLS-DA model, respectively; Â displays the angle

between the component and the Y variable; SS, sum of squares, indicating the % of the original

variance in the X-block that remains in the corrected X-matrix; $R^2X(cum)$ and $R^2Y(cum)$ are the

cumulative modelled variation in the X and Y matrix, respectively; $Q^2(cum)$ is the cumulative

706 predicted variation in the Y matrix; the p-value from CV-ANOVA, based on the cross-validated

707 predictive residuals, is listed for both models (significant result indicates a valid model).

Plasma absorption-time profiles of variables P1A (elenolic acid + H2), P1B (elenolic acid + H2 detected at a different retention time) and P9B (p-HPEA-EA+H2+glucuronide) for volunteers (1 to 9) and mean values. Data are expressed as normalized areas (ppm)

86x166mm (96 x 96 DPI)

238x91mm (96 x 96 DPI)

Total excretion of discriminatory biomarkers identified in urine (0-24h) per volunteer (n=9) after EVOO intake (μ g of hydroxytyrosol equivalents)

282x98mm (96 x 96 DPI)

Secoiridoids are the major components contributing to the phenolic content of extra virgin olive oil (EVOO). Healthy volunteers (n=9) ingested 50 mL of EVOO in a single dose containing 6 mg/20 g of hydroxytyrosol and its derivatives. High resolution mass spectrometry and multivariate analysis enabled the identification of plasma and urinary secoiridoid compounds as biomarkers of EVOO intake.