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Abstract: We prove the existence of Sullivan minimal models of operad algebras
for a quite wide family of operads in the category of complexes of vector spaces

over a field of characteristic zero. Our construction is an adaptation of Sullivan’s

original step by step construction to the setting of operad algebras. The family of
operads that we consider includes all operads concentrated in degree 0 as well as their

minimal models. In particular, this gives Sullivan minimal models for algebras over

Com, Ass, and Lie, as well as over their minimal models Com∞, Ass∞, and Lie∞.
Other interesting operads, such as the operad Ger encoding Gerstenhaber algebras,

also fit in our study.
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1. Introduction

The classical construction of Sullivan minimal models of commutative
differential graded algebras over a field k of characteristic zero is done
step by step by a process of “attaching cells”, called KS-extensions (from
Koszul–Sullivan) or Hirsch extensions. The data of these KS-extensions
is encoded in a graded vector space together with a linear differential,
whereas the multiplication of the algebra comes for free, thanks to the
notion of free algebra. With this in mind, it is natural to ask whether
the cell attachment construction can be extrapolated to a more general
context. An obvious candidate is the category of P -algebras, where P is
an operad in the category of complexes of k-vector spaces.

While P -algebras can behave very badly, in the sense that opera-
tions with negative degrees can undo the work of previous steps in a cell
attachment procedure, many interesting operads given in nature (i.e. ge-
ometry, topology, and physics) behave badly, but in a somewhat tame
way that we precise here:

Let P be an operad in cochain complexes of k-vector spaces. We
will always assume that P is connected (P (1) = k) and that it is either
reduced (P (0) = 0) or unitary (P (0) = k). Let r ≥ 0 be an integer. We
say that P is r-tame if for all n ≥ 2, we have that

P (n)q = 0 for all q ≤ (1− n)(1 + r).

Note that r-tame implies (r + 1)-tame. Examples of 0-tame operads
are: Ass, Com, and Lie, every operad concentrated in degree 0 and
the operads Ass∞, Com∞, and Lie∞. More generally, minimal models
of reduced r-tame operads are r-tame. An example of 1-tame operad
is Ger, the one encoding Gerstenhaber algebras.

In the category of P -algebras, there is a notion of free P -algebra gen-
erated by a graded k-vector space. From this notion, we define KS-ex-
tensions of free P -algebras analogously to the rational homotopy setting
of Com-algebras. We say that a P -algebra M is a Sullivan minimal
P -algebra if it is the colimit of a sequence of KS-extensions starting
from P (0), ordered by non-decreasing positive degrees. A Sullivan mini-
mal model of a P -algebra A is a Sullivan minimal P -algebraM, together
with a morphism f : M → A of P -algebras whose underlying map of
cochain complexes induces an isomorphism in cohomology; i.e., a quasi-
isomorphism of P -algebras. As a warning, let us remark that here and
elsewhere along the paper, f and all algebra morphisms are morphisms
in the strict sense, not ∞-morphisms.

As in the rational homotopy setting, we require cohomological con-
nectedness for our algebras. A P -algebra A is called 0-connected if
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Hi(A) = 0 for all i < 0 and the unit map η : P (0) → A induces an
isomorphism P (0) ∼= H0(A). Let r ≥ 0. Then A is called r-connected if,
in addition, we have that H1(A) = · · · = Hr(A) = 0. We prove:

Theorem 4.6. Let P be an r-tame operad. Then every r-connected
P -algebra A has a Sullivan minimal model f : M → A with M0 =
P (0) and Mi = 0 for all i < r with i 6= 0. Furthermore, if A is (r +
1)-connected and H∗(A) is of finite type, then M is of finite type.

Note that in the particular case P =Com we recover Sullivan’s theorem
of minimal models for commutative differential graded algebras over k.
We also obtain Sullivan minimal models for 0-connected P -algebras,
when P is one of the operads Ass, Lie, Com∞, Ass∞, or Lie∞ among
others. Furthermore, the above result gives Sullivan minimal models for
1-connected Ger-algebras. All these minimal models are unique:

Theorem 5.3. Let P be an r-tame operad and A an r-connected P -al-
gebra. Let f : M→ A and f ′ : M′ → A be two Sullivan minimal models
of A. Then there is an isomorphism g : M →M′, unique up to homo-
topy, such that f ′g ' f .

Remarks 1.1. A few remarks are in order:

(1) Relation with existing Sullivan minimal models. Sullivan’s clas-
sical construction of minimal models for commutative differential
graded algebras has been adapted to several other algebraic set-
tings. Examples are Quillen’s models of differential graded Lie al-
gebras [Qui], the models for chain differential graded (Lie) algebras
of Baues–Lemaire [BL] and Neisendorfer [Nei], the theory of Leib-
niz algebras of [Liv2] and, more closely related to our approach,
the minimal models of chain P -algebras, where P is a Koszul op-
erad concentrated in degree 0, developed by Livernet in her PhD
Thesis [Liv1]. As we show in Section 7, our results are equally
valid for cochain and chain algebras, after minor modifications are
taken into account. In particular, our work generalizes all of the
above mentioned studies. Furthermore, the results of this paper
make precise some of the ideas contained in [Sul2], where Sulli-
van defines triangular P -algebras as free P -algebras with a partial
ordering on their generators and sketches a theory of triangular
resolutions.

(2) Koszul duality theory. For Koszul quadratic P -algebras, there is
a theory of quasi-free resolutions which give minimal models in
some situations (see [LV], [Mil1], [Mil2]). While there is a cer-
tain overlap of algebras for which both Koszul duality theory and
our Sullivan algorithm for algebras over tame operads apply, let
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us mention some notable differences. First, to know whether an
operad is Koszul or not, can prove to be very difficult (see [MSS,
Remark 3.98]). The theory developed in this paper doesn’t require
operads to be Koszul, not even quadratic. In particular, there is no
restriction on the height of the relations among their generators. In
contrast, we do impose some restrictions on the arity-degree range
of the elements of the operad, but this condition is straightforward
to verify. Second, while Koszul duality theory applies to quadratic
algebras satisfying certain conditions, our algorithm applies to all
sufficiently connected P -algebras, once the operad P is proven to
be tame. Furthermore, we produce minimal models for both uni-
tary, P (0) = k, and non-unitary, P (0) = 0, algebras, while Koszul
duality theory applies only to the latter case. Lastly, let us men-
tion that in Koszul duality theory, minimal models are constructed
via the cobar resolution of the associated coalgebra, while, in this
paper, we give “step by step” minimal models, following Sullivan’s
classical approach. This may be useful, for instance, to compute
partial minimal models up to a certain degree and extract homo-
topical information.

(3) Kadeishvili’s models. There are many results in the literature about
“minimal models” for operad algebras in the ∞-sense. Promi-
nently, Kadeishvili [Kad] defined minimal models of A∞-algebras
as A∞-algebras with trivial differential. Similarly, there is the ho-
motopy transfer theorem for P∞-algebras (see [LV]) and the theory
of minimal models for operad algebras developed in [CL]. As it
is well-known, minimal models à la Kadeishvili do not correspond
to minimal models à la Sullivan, the main differences being that,
for the first ones, morphisms are ∞-morphisms and minimality is
a vanishing condition on the differential, while for the later, mor-
phisms are strict and minimality involves freeness and a certain
behavior of the (not-necessarily trivial) differential. However, a
characterizing property is shared by the two approaches: every
quasi-isomorphism between minimal algebras is an isomorphism.

(4) Minimal models of operads. Every reduced operad P in the cate-
gory of complexes of k-vector spaces such that H(P )(1) = k has a
minimal model (defined as a free operad whose differential is de-
composable). Here we study minimal models of the algebras, and
not of the operads themselves. However, there is a relation be-
tween the two problems that we address in this paper. The idea is
that one can consider the category of algebras above all operads as
a fibred category. We show that minimal objects in this category
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are given by those objects that are both minimal on the fiber and
the base. This provides a global invariance of our minimal models.

We explain the contents of the paper. In Section 2 we collect well-
known results on operads and operad algebras. In Section 3 we develop
the basic homotopy theory of operad algebras. In Section 4 we introduce
r-tame operads and prove the existence of minimal models for algebras
over these operads. We also show that the minimal model of every
r-tame operad is r-tame, and give some examples. Section 5 deals with
the uniqueness of our minimal models. In Section 6 we study the fibred
category of algebras over all operads and give global minimal models in
this case. Lastly, in Section 7 we explain the case of chain operad algebras
(with homological degree) and compute an example of Ger∞ minimal
model.

2. Preliminaries

In this first section, we recall some main constructions for operads and
operad algebras in the category of cochain complexes of vector spaces
over a field of characteristic 0 and fix notation. For preliminaries on
operads, we refer to [MSS], [LV], [Fre], and [KM]. We refer to [GrMo],
[FHT], and the original paper of Sullivan [Sul1] for a review of rational
homotopy theory.

Throughout this paper, let k denote a field of characteristic 0.

2.1. Operads in cochain complexes. We will consider unital sym-
metric operads in the category of unbounded cochain complexes of vector
spaces over k. Denote by Op the category of such operads.

Given an operad P in Op we will denote by

γPl;m1,...,ml
: P (l)⊗ P (m1)⊗ · · · ⊗ P (ml) −→ P (m1 + · · ·+ml)

its structure morphisms and by η : k→ P (1) its unit. These morphisms
satisfy equivariance, associativity, and unit axioms (see [MSS, Defini-
tion I.4]). Alternatively, we can use the equivalent data of partial com-
position operations

◦i : P (m)⊗ P (n) −→ P (m+ n− 1).

An operad P is called unitary if P (0) = k is concentrated in degree 0.
It is called reduced if P (0) = 0. We will say that P is connected if
P (1) = k is concentrated in degree 0. In this paper we will always
consider connected operads that are either unitary or reduced.

2.2. Operad algebras. Let P ∈ Op be an operad. Denote by AlgP
the category of P -algebras. For a P -algebra A, we will denote by
θA(l) : P (l) ⊗Σl

A⊗l → A its structure morphisms. These are subject
to natural associativity and unit constraints (see [KM]).
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Since every P -algebra has an underlying cochain complex, we have
a notion of quasi-isomorphism in AlgP given by those morphisms of
P -algebras whose underlying morphism of cochain complexes induces an
isomorphism in cohomology.

We next recall some constructions in the category of P -algebras that
will be used in the sequel.

2.3. Functorial properties (c.f. [LV, 5.2.14]). Every morphism of op-
erads F : P → Q induces a reciprocal image or restriction of scalars
functor F ∗ : AlgQ → AlgP defined on objects B ∈ AlgQ by the com-

positions θF∗B(l) = θB(l) ◦ (F (l) ⊗ id⊗lB ) : P (l) ⊗Σl
B⊗l → B. Note

that F ∗ preserves quasi-isomorphisms and surjective morphisms, since
the underlying complexes remain unchanged.

2.4. Tensor product. Let P,Q ∈ Op be two operads. Their point-
wise tensor product is the operad P ⊗ Q whose arity l is the cochain
complex P (l) ⊗ Q(l). Given a P -algebra A and a Q-algebra B, their
tensor product as cochain complexes A ⊗ B has a natural structure of
(P⊗Q)-algebra. The operad Com being the unit of our tensor product of
operads, one has P⊗Com = P and hence the tensor product A⊗K of any
P -algebra A with a Com-algebra K is always a P -algebra. This gives a
bifunctor AlgP×AlgCom → AlgP defined on objects by (A,K) 7→ A⊗K.

2.5. Free algebras (c.f. [LV, Section 5.2.5]. Let P ∈ Op be an operad
and let V be a graded vector space. If we forget the differential of P ,
the free P -algebra generated by V is the P -algebra

P 〈V 〉 =
⊕
m≥0

(P (m)⊗Σm
V ⊗m)

with the structure maps θ(m) : P (m) ⊗Σm
P 〈V 〉⊗m → P 〈V 〉 given by

the composition of the shuffle isomorphism followed by the structure
morphisms γ of P :

P (l)⊗ (P (m1)⊗Σm1
V ⊗m1)⊗ · · · ⊗ (P (ml)⊗Σml

V ⊗ml)

Sh∼=
��

P (l)⊗ (P (m1)⊗ · · · ⊗ P (ml))⊗Σm1
×···×Σml

V ⊗(m1+···+ml)

γl;m1,...,ml⊗1

��
P (m1 + · · ·+ml)⊗ V ⊗(m1+···+ml)

By the universal property of the free P -algebra [LV], for any linear map
f : V → A of degree 0, there exists a unique morphism of P -algebras
P 〈V 〉 → A that restricted to V agrees with f .
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Remark 2.1. Note that the formula for the free P -algebra generated by V
also makes sense if P carries a non-trivial differential. Also, it has the
universal property of a free object in the category of P -dg algebras for
graded vector spaces V with zero differentials and k-linear graded maps
f : V → ZA.

2.6. Cone of a morphism. Given a morphism f : A → B of P -alge-
bras, we denote by C(f) the cone of f . This is the cochain complex
given by C(f)n = An+1⊕Bn with differential d(a, b) = (−da,−fa+db).
The morphism f is a quasi-isomorphism of P -algebras if and only if
H∗(C(f)) = 0.

3. Basic homotopy theory of operad algebras

Throughout this section we let P ∈ Op be a fixed operad in the cat-
egory of cochain complexes of vector spaces over k. We first introduce
KS-extensions of P -algebras and prove that they satisfy the lifting prop-
erty with respect to surjective quasi-isomorphisms. Then, we give some
main properties of homotopies between morphisms of P -algebras.

Remark 3.1. In general, in order to define extensions one would require
the not easy notion of tensor product of P -algebras (see [Hin2], [SU],
[MS], [Lod], for instance). Fortunately, in our case it suffices to consider
tensor products of free (non-differential) algebras.

Definition 3.2. Let n>0 be an integer. Let A=P 〈V 〉∈AlgP be free as
graded algebra. A degree n KS-extension of A is the free graded P -algebra

A td P 〈V ′〉 := P 〈V ⊕ V ′〉,
where V ′ is a graded vector space of homogeneous degree n and d : V ′ →
Zn+1(A) a k-linear map. The differential on AtdP 〈V ′〉 is defined as the
only P -derivation extending d. This derivation squares to zero because
so do its restrictions to P , A, and V ′.

We have the following universal property for KS-extensions:

Lemma 3.3. Let AtdP 〈V ′〉 be a KS-extension of a free P -algebra A =
P 〈V 〉, and let f : A→ B be a morphism of P -algebras. A morphism f ′ :
A td P 〈V ′〉 → B extending f is uniquely determined by a linear map
ϕ : V ′ → B of degree 0 satisfying dϕ = fd.

Proof: By the universal property of free algebras we get f ′ : P 〈V ⊕V ′〉 →
B. To prove that it is compatible with the differentials of A td P 〈V ′〉
and B, it suffices to check this on the restriction to V ′. We have f ′ ◦
d|V ′ = f ◦ d = d ◦ ϕ = d ◦ f ′|V ′ .

KS-extensions satisfy the lifting lemma with respect to surjective
quasi-isomorphisms:
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Lemma 3.4. Let i : A→ A td P 〈V 〉 be a KS-extension of degree n and

A
f //

i

��

B

wo
����

A td P 〈V 〉
g //

g′
::t

t
t

t
t

C

a solid commutative diagram of P -algebra morphisms, where w is a sur-
jective quasi-isomorphism. Then, there is a P -algebra morphism g′ mak-
ing both triangles commute.

Proof: Consider the solid diagram of k-vector spaces

Zn(C(1B))

1⊕w
����

V

µ

66

λ // Zn(C(w))

where λ = (f ◦ d, g|V ). Since w is a surjective quasi-isomorphism, this
is well defined and 1 ⊕ w is surjective. Therefore there exists a dotted
arrow µ = (α, β) making the diagram commute. It is straightforward to
see that the image of the linear map (d, β) : V → An+1⊕Bn is included
in Zn(C(f)). According to the universal property of KS-extensions of
Lemma 3.3, we may obtain g′ as the morphism induced by g|A together
with β : V → Bn.

Definition 3.5. A Sullivan P -algebra is the colimit M = ∪i≥0M[i] of
a sequence

M[0] = P (0) −→M[1] = P 〈V [1]〉 −→M[2] =M[1] td P 〈V [2]〉 −→ · · ·
of KS-extensions of non-negative degrees, starting from P (0) = P 〈0〉.
Proposition 3.6. Let C be a Sullivan P -algebra. For every solid dia-
gram of P -algebras

A

wo
����

C

g
??

f // B

in which w is a surjective quasi-isomorphism, there exists g making the
diagram commute.

Proof: Assume that C ′ → C = C ′tdP 〈V 〉 is a KS-extension of degree n,
and that we have constructed g′ : C ′ → A such that wg′ = f ′, where f ′

denotes the restriction of f to f ′. The existence of g extending g′ now
follows from Lemma 3.4.
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Remark 3.7. The above proposition says that Sullivan P -algebras are
cofibrant objects in the Quillen model structure of the category of P -al-
gebras of [Hin1]. In fact, Sullivan P -algebras correspond to the standard
cofibrations of Hinich.

The following are standard consequences of Proposition 3.6. The
proofs are straightforward adaptations of the analogous results in the
setting of Com-algebras (see Section 11.3 of [GrMo], see also Section 2.3
of [Cir] for proofs in the abstract setting of categories with a functorial
path).

Denote by k[t, dt] the Com-algebra with a generator t in degree zero,
a generator dt in degree one, and d(t) = dt. We have the unit ι and eval-
uations δ0 and δ1 at t = 0 and t = 1 respectively, which are morphisms
of Com-algebras satisfying δ0 ◦ ι = δ1 ◦ ι = 1.

Definition 3.8. A functorial path in the category of P -algebras is de-
fined as the functor

−[t, dt] : AlgP −→ AlgP

given on objects by A[t, dt] = A⊗k[t, dt] and on morphisms by f [t, dt] =
f ⊗ k[t, dt], together with the natural transformations

A
ι // A[t, dt]

δ1 //

δ0
// A ; δk ◦ ι = 1

given by δk = 1⊗ δk : A[t, dt]→ A⊗ k = A and ι = 1⊗ ι : A = A⊗ k→
A[t, dt].

Note that the map ι is a quasi-isomorphism of P -algebras while the
maps δ0 and δ1 are surjective quasi-isomorphisms of P -algebras.

The functorial path gives a natural notion of homotopy between mor-
phisms of P -algebras:

Definition 3.9. Let f, g : A→ B be two morphisms of P -algebras. An
homotopy from f to g is given by a morphism of P -algebras h : A →
B[t, dt] such that δ0 ◦h=f and δ1 ◦h=g. We use the notation h : f'g.

The homotopy relation defined by a functorial path is reflexive and
compatible with the composition (see for example [KP, Lemma I.2.3].
Furthermore, the symmetry of Com-algebras k[t, dt] → k[t, dt] given by
t 7→ 1− t makes the homotopy relation into a symmetric relation. How-
ever, the homotopy relation is not transitive in general. As in the rational
homotopy setting of Com-algebras, we have:

Proposition 3.10. The homotopy relation between morphisms of P -al-
gebras is an equivalence relation for those morphisms whose source is a
Sullivan P -algebra.
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Proof: It only remains to prove transitivity. Let C be a Sullivan P -alge-
bra and consider morphisms f, f ′, f ′′ : C → A together with homotopies
h : f ' f ′ and h′ : f ′ ' f ′′. Consider the pull-back diagram in the
category of P -algebras

A[t, dt, s, ds]

δ0t

##

δ1s

((
π

&&
M

y
��

// A[t, dt]

δ0t
��

A[s, ds]
δ1s

// A

To see that the map π is surjective, note that if a(s, ds) and b(t, dt) are
polynomials such that a(1, 0) = b(0, 0), representing an element in M,
then

π(a(s, ds) + b(st, dt)− b(0, 0)) = (a(s, ds), b(t, dt)).

It is straightforward to see that all the P -algebras in the above diagram
are quasi-isomorphic and that π is a quasi-isomorphism. Consider the
solid diagram

A[t, dt, s, ds]

πo
����

C

g

66

(h,h′)

//M

Then by Proposition 3.6, there exists a dotted arrow g such that πg =
(h, h′). Let h+̃h′ := ∇g, where ∇ : A[t, dt, s, ds] → A[t, dt] is the map
given by t, s 7→ t. This gives the desired homotopy h+̃h′ : f ' f ′′.

Denote by [A,B] the set of homotopy classes of morphisms of P -alge-
bras f : A→ B.

Proposition 3.11. Let C be a Sullivan P -algebra. Any quasi-isomor-
phism w : A→ B of P -algebras induces a bijection w∗ : [C,A]→ [C,B].

Proof: We first prove surjectivity. Consider the mapping path of w,
given by the pull-back

M(w)

yπ1

��

π2 // B[t, dt]

δ0

��
A

w // B
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Define maps p := π1 : M(w) → A, q := δ1π2 : M(w) → B, and j :=
(1, ιw) : A→M(w). We obtain a solid diagram

A

j

��
w

~~

M(w)

p

OO

qo
����

C

g′
<<

f // B

where q is a surjective quasi-isomorphism and qj = w. By Proposi-
tion 3.6, there exists g′ such that qg′ = f . Let g := pg′. Then we
have f = qg′ = δ1π2g

′ and wg = wπ1g
′ = δ0π2g

′. Therefore [wg] = [f ]
and w∗ is surjective.

To prove injectivity, let f0, f1 : C → A be such that h : wf0 ' wf1.
Consider the pull-back diagram

A[t, dt]

(δ0,δ1)

""

w[t,dt]

((
w

%%
M(w,w)

y
��

// B[t, dt]

(δ0,δ1)

��
A×A

w×w
// B ×B

One may verify that w is a quasi-isomorphism. Let H = (f0, f1, h) and
consider the solid diagram

A[t, dt]

wo
��

C

G

77

H //M(w,w)

Since w∗ is surjective, there exists a dotted arrow G such that wG ' H.
It follows that f0 ' δ0G ' δ1G ' f1. Then f0 ' f1 by Proposition 3.10.

4. Sullivan minimal models

In this section, we prove the existence of Sullivan minimal models of
P -algebras, for a quite wide family of operads in the category of cochain
complexes of k-vector spaces.

We first introduce the notion of r-tame operad. For this class of
operads, r-connected P -algebras will have Sullivan minimal models.
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Definition 4.1. Let r ≥ 0 be an integer. An operad P ∈ Op is called
r-tame if for all n ≥ 2,

P (n)q = 0 for all q ≤ (1− n)(1 + r).

Note that r-tame implies (r+1)-tame for all r ≥ 0. Below we represent
the condition for being an r-tame operad, for r = 0 and r = 1. Elements
of r-tame operads are allowed to be non-zero in the arity-degree range
determined by the blank squares below, except for the identity id ∈
P (1) = k, and P (0) ∈ {0,k} which are denoted by ∗ and live in arity-
degree (1, 0) and (0, 0) respectively.

degree

.

.

.

1

0

−1

−2

−3

−4

−5

−6

−7

...

∗ ∗

0 1 2 3 4 5 6 7 8 · · · arity

0-tame operads.

degree

.

.

.

1

0

−1

−2

−3

−4

−5

−6

−7

...

∗ ∗

0 1 2 3 4 5 6 7 8 · · · arity

1-tame operads.
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Definition 4.2. Let r ≥ 0 be an integer. A Sullivan r-minimal P -alge-
bra is the colimitM = ∪i≥0M[i] of a sequence of KS-extensions starting
from P (0), ordered by non-decreasing degrees bigger than r:

M[0] = P (0) −→M[1] = P 〈V [1]〉 −→M[2] =M[1] td P 〈V [2]〉 −→ · · ·
with r < deg(V [n]) ≤ deg(V [n+ 1]) for all n ≥ 1. A Sullivan r-minimal
model for a P -algebra A is a Sullivan r-minimal P -algebra M together
with a quasi-isomorphism f : M→ A.

As in the rational homotopy setting, to prove the existence of Sullivan
minimal models we will restrict to the case when our P -algebras are
cohomologically connected (which we will call connected for short from
now on).

Definition 4.3. A P -algebra A is called 0-connected if Hi(A) = 0 for
all i < 0 and the unit map η : P (0)→ A induces an isomorphism P (0) ∼=
H0(A). Let r ≥ 0. Then A is called r-connected if, in addition, H1(A) =
· · · = Hr(A) = 0.

For the construction of Sullivan minimal models we will use the follow-
ing two lemmas. The first of these lemmas ensures that free P -algebras
generated by positively-graded vector spaces, are positively-graded when
P is tame.

Lemma 4.4. Let V =
⊕

i>r V
i be a graded vector space with degrees > r.

If P is r-tame then P 〈V 〉0 = P (0) and P 〈V 〉k = 0 for all k ≤ r with
k 6= 0. In particular, P 〈V 〉 is r-connected.

Proof: Let k ∈ Z. The degree k-part of P 〈V 〉 may be written as

P 〈V 〉k = P (0)k ⊕

(∑
i>r

P (1)k−i ⊗Σ1 V
i

)

⊕

 ∑
n≥2,

i1,...,in>r

P (n)qn ⊗Σn V
i1 ⊗ · · · ⊗ V in

 ,

where qn = k− i1−· · ·− in ≤ k−n(1 + r). Since P (0)k = 0 for all k 6= 0
and P (1)k−i = 0 for all k 6= i, it suffices to see that for all n ≥ 2 and
all k ≤ r we have P (n)qn = 0. Since P is r-tame, it suffices to prove that
qn≤q∗n :=(1−n)(1 + r). Let n ≥ 2 be fixed and assume that k≤r. Then

qn = k− i1− · · · − in ≤ k−n(1 + r) ≤ r−n(1 + r) = q∗n− 1 < q∗n.

The second lemma characterizes the good behavior of r-tame operads
with respect to KS-extensions and is inspired in Lemma 10.4 of [GrMo].
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Lemma 4.5. Let V =
⊕

r<i≤p V
i be a graded vector space with 0 ≤ r <

i ≤ p. Let V ′ be a graded vector space of homogeneous degree p and let P
be an r-tame operad. Then:

(1) P 〈V ⊕V ′〉k = P 〈V 〉k for all k < p and P 〈V ⊕V ′〉p = P 〈V 〉p⊕V ′.
(2) If r + 1 < p and V r+1 = 0 then P 〈V ⊕ V ′〉p+1 = P 〈V 〉p+1.

Proof: For all k ∈ Z we may write

P 〈V ⊕ V ′〉k

P 〈V 〉k
=

∑
n≥1

P (n)qn ⊗Σn
V ′⊗n



⊕

 ∑
n≥2, 1≤j≤n−1
r<i1≤···≤ij≤p

P (n)q
′
n⊗Σn

V i1⊗ · · · ⊗V ij ⊗ V ′⊗(n−j)

 ,

where qn = k − pn and q′n = k − i1 − · · · − ij − p(n− j). We first show

that for n ≥ 2 and k ≤ p, we have P (n)qn = P (n)q
′
n = 0. Since P is

r-tame, it suffices to see that both qn and q′n are smaller or equal than
q∗n := (1− n)(r + 1). Since r < p, we have

qn = k − pn ≤ p(1− n) ≤ (1− n)(1 + r) = q∗n.

Note that q′n attains its maximum when k = p, j = n−1, and i1 = · · · =
ij = r + 1. Then

q′n ≤ p+ (1− n)(1 + r)− p = q∗n.

This proves that for k ≤ p we have

P 〈V ⊕ V ′〉k

P 〈V 〉k
∼= P (1)k−p ⊗ V ′.

Now (1) follows from the fact that P (1)k−p = 0 for all k 6= p and
P (1)0 = k.

Assume that p > r + 1 and V r+1 = 0. Then in the above formula for
P 〈V ⊕ V ′〉p+1/P 〈V 〉p+1 we have: if n > 1 then

qn = p+ 1− pn = p(1− n) + 1 ≤ (r + 2)(1− n) + 1 = q∗n + 2− n ≤ q∗n
and q1 = 1 6= 0.

Note that now q′n attains its maximum when j = n−1 and i1 = · · · =
ij = r + 2. Then for all n ≥ 2 we have

q′n=p+1−i1−· · ·−ij−p(n−j) ≤ p+1+(r+2)(1−n)−p=q∗n+(2−n) ≤ q∗n.
Therefore all the contributions vanish and (2) is satisfied.
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Theorem 4.6. Let P be an r-tame operad. Then every r-connected
P -algebra A has a Sullivan r-minimal model f : M → A with M0 =
P (0) and Mi = 0 for all i < r with i 6= 0. Furthermore, if A is
(r + 1)-connected and H∗(A) is of finite type, then M is of finite type.

Proof: We follow the steps of the classical proof of existence of Sullivan
minimal models for Com-algebras (see [GrMo, Theorem 10.3] for the
case of simply connected Com-algebras and [GrMo, Theorem 13.1] or
[GeMa, Theorem V.8.11] for the non-simply connected case).

We will construct, inductively over the degree n ≥ 0, a sequence of free
P -algebrasM[n] together with morphisms of P -algebras fn : M[n]→ A
satisfying the following conditions:

(an) The P -algebra M[n] Sullivan r-minimal and is either equal to
M[n−1] or a composition of KS-extensions of degree n ofM[n−1].
The morphism fn extends fn−1.

(bn) The map Hifn is an isomorphism for all i ≤ n and a monomor-
phism for i = n+ 1.

Then the morphism f : ∪n fn : ∪nM[n] → A will be a Sullivan r-
minimal model for A. Indeed, condition (an) implies thatM is Sullivan
r-minimal and that Mn =M[k]n for all k ≥ n. From (bn+1) it follows
that Hn(C(f))=Hn(C(fn+1))=0. Therefore f is a quasi-isomorphism.

Let M[0] = P (0). The unit map η : P (0) → A gives a morphism
of P -algebras f0 : M[0] → A. For all 0 < i ≤ r we let M[i] = M[0]
and fi = f0. Since A is r-connected, conditions (ai) and (bi) are satisfied
for all i ≤ r.

Assume inductively that we have a morphism of P -algebras fn−1 :
M[n− 1]→ A satisfying (an−1) and (bn−1). Condition (bn−1) is equiv-
alent to the vanishing of Hi(C(fn−1)) for all i < n. Let

V [n, 0] := Hn(C(fn−1))

and consider it as a graded vector space of homogeneous degree n. Take
a section of the projection Zn(C(fn−1)) � V [n, 0] to obtain a linear
differential d : V [n, 0]→ Zn+1M[n−1] and a linear map ϕ : V [n, 0]→ An

such that dϕ = fn−1d. We then let

M[n, 0] :=M[n− 1] td P 〈V [n, 0]〉
and denote by fn,0 : M[n, 0]→ A the extension of fn−1 by ϕ.

By Lemma 4.4, M[n, 0] is an r-connected P -algebra. Furthermore,
by (1) of Lemma 4.5 we have that M[n, 0]k = M[n − 1]k for all k < n
and M[n, 0]n = M[n − 1]n ⊕ V [n, 0]. In particular, we have Hifn,0 =
Hifn−1 for all i < n. Hence by induction hypothesis, Hifn,0 is an
isomorphism for all i < n. We next prove that Hnfn,0 is an isomorphism.
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Denote by j0 : M[n − 1] → M[n, 0] the inclusion. The morphism of
cones (id, fn,0) : C(j0) → C(fn−1) induces an isomorphism in degree n
cohomology

Hn(id, fn,0) : Hn(C(j0))→ Hn(C(fn−1)).

Indeed, sinceM[n, 0]n =M[n−1]n⊕V [n, 0], every element in Zn(C(j0))
may be written as (x, x′+ v) where x, x′ ∈M[n− 1] and v ∈ V [n, 0] are
such that dx = 0 and dx′ + dv = x. The map Hn(id, fn,0) is then given
by

[(x, x′ + v)] 7−→ [(x, fn−1x
′ + ϕv)].

To prove surjectivity, note that if [(x, a)] ∈ Hn(C(fn−1)), then there
exists v ∈ V [n, 0] with dv = x and ϕv = a. Therefore [(x, v)] ∈
Hn(C(j0)) maps to [(x, a)]. To prove injectivity, note that every ele-
ment in Hn(C(j0)) admits a representative of the form (dv, v). Then
the condition (dv, ϕv) = D(x, a) = (dx, fn−1x− da) implies that v = 0.

Now, consider the morphism of long exact sequences in cohomology

Hn−1(C(j0))

��

//Hn(M[n−1])

��

//Hn(M[n, 0])

��

//Hn(C(j0))

��

//Hn+1(M[n−1])

��
Hn−1(C(fn−1)) //Hn(M[n−1]) //Hn(A) //Hn(C(fn−1)) //Hn+1(M[n−1])

Since Hn−1(C(j0)) = 0 and Hn(id, fn,0) is an isomorphism, it follows
from the five lemma that Hnfn,0 is an isomorphism.

To make Hn+1fn,0 into a monomorphism, let

V [n, 1] := Ker(Hn+1fn,0) = Hn(C(fn,0))

and
M[n, 1] =M[n, 0] td P 〈V [n, 1]〉,

where V [n, 1] is considered as a vector space of homogeneous degree n and
as in the previous step, we take a section of the projection Zn(C(fn,0))�
V [n, 1] to define a differential on V [n, 1] and a map fn,1 : M[n, 1]→ A.

Denote by j1 :M[n, 0]→M[n, 1] the inclusion. Let [x]∈Hn+1(M[n, 0]).
If [x] ∈ Ker(Hn+1fn,0) then we may write fn,0x = da for some a ∈ A.
The pair [(x, a)] gives an element v ∈ M[n, 1] with dv = x. This proves
that we have an inclusion

Ker(Hn+1fn,0) ⊂ Ker(Hn+1j1).

We iterate the above process by letting

V [n, i] = Ker(Hn+1fn,i−1) = Hn(C(fn,i−1))

and
M[n, i] =M[n, i− 1] td P 〈V [n, i]〉,
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until Ker(Hn+1fn,i) = 0. If this never happens, we letM[n] := ∪iM[n, i]
and define fn : M[n] → A by fn|M[n,i] = fn,i. Reasoning as before, we
obtain an inclusion

Ker(Hn+1fn,i) ⊂ Ker(Hn+1ji+1),

where ji :M[n,i−1]→M[n,i] denotes the inclusion. Let x∈Ker(Hn+1fn).
Then it has a representative xi ∈ Hn+1fn,i for some i. But then the
inclusion Ker(Hn+1fn,i) ⊂ Ker(Hn+1ji+1) implies that the image of xi
in Hn+1fn,i+1 is trivial. Hence x = 0. This proves that Ker(Hn+1fn) =
0. Since Hifn,i is an isomorphism for each i ≤ n, it follows that Hnfn
is an isomorphism. Therefore (bn) is satisfied. This ends the inductive
step.

If A is (r + 1)-connected, then we can take M[r + 1] = M[r] and
(ar+1) and (br+1) are satisfied. For n > r + 1, by Lemma 4.5 we have
that M[n, 0]n+1 =M[n − 1]n+1. This implies that Ker(Hn+1fn,0) = 0
and henceM[n] =M[n, 0] =M[n−1]tdP 〈V [n, 0]〉. If H∗(A) has finite
type, then V [n, 0] is finite dimensional and M[n] has finite type.

Let us review a few examples where Theorem 4.6 applies.

The operads Ass, Com, and Lie encoding differential graded associa-
tive, commutative and Lie algebras respectively are generated by opera-
tions in arity-degree (2, 0). Therefore they are concentrated in degree 0.
We have:

degree

.

.

.

1

0

−1

−2

−3

−4

−5

−6

−7

∗ ∗ • • • • • • • · · ·

0 1 2 3 4 5 6 7 8 · · ·
arity

The operads Ass, Com, and Lie are 0-tame.
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The above operads have minimal models, encoding the infinity-ver-
sions of their algebras. These are depicted in the following table.

degree

.

.

.

1

0

−1

−2

−3

−4

−5

−6

−7

∗ ∗ • • • • • • • · · ·

• • • • • • · · ·

• • • • • · · ·

• • • • · · ·

• • • · · ·

• • · · ·

• · · ·

· · ·

0 1 2 3 4 5 6 7 8 · · ·
arity

The operads Ass∞, Com∞, and Lie∞ are 0-tame.

Corollary 4.7. Let P be one of the operads Ass, Com, Lie, Com∞,
Ass∞, or Lie∞. Then every 0-connected P -algebra has a Sullivan min-
imal model. Also, every 1-connected P -algebra with finite type cohomol-
ogy has a Sullivan minimal model of finite type.

More generally, every reduced operad P such that H(P )(1) = k has a
minimal model (see Theorem 3.125 in [MSS]). We next prove that min-
imal models of reduced r-tame operads are r-tame. We first introduce
some notation.

Definition 4.8. Let P ∈ Op. Given w ∈ P (n)q, we will denote by
|w| := (n, q) its arity-degree. We will say that w is r-tame if q > (r +
1)(1−n). Note that P is r-tame if and only if all its non-trivial elements
of arity ≥ 2 are r-tame.

Lemma 4.9. Every free operad P ∈ Op generated by r-tame elements
is r-tame.

Proof: It suffices to show that if w,w′ ∈ P are r-tame, then their partial
compositions w ◦iw′ are also r-tame. Let |w| = (n, q) and |w′| = (n′, q′).
Then

q+q′ ≥ (r+1)(1−n)+1+(r+1)(1−n′)+1 = (r+1)(1−(n+n′−1))+2.

Since |w◦iw′| = (n+n′−1, q+q′), this implies that w◦iw′ is r-tame.
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Proposition 4.10. Let P ∈ Op be a reduced r-tame operad. Then its
minimal model is r-tame.

Proof: From the construction of minimal models of Theorem 3.125 in
[MSS], we easily deduce that for any reduced operad P with H(P )(1) =
k, there is a minimal model M → P where M = ∪n≥2Mn is constructed
inductively over the arity n and satisfies:

(i) M2 is freely generated by elements of P (2), with M2(0) = 0 and
M2(1) = k.

(ii) For n > 2, Mn is obtained as a free extension of Mn−1 by subspaces
A(n, q) ⊆ P (n)q in arity-degree (n, q) and subspaces B(n, q) ⊆
Mn−1(n)q in arity-degree (n, q − 1).

For our purposes, it is not necessary to know neither which elements we
are adding nor what are their differentials. We only need to keep track
of their possible arities and degrees.

If P is r-tame, then M2 is clearly r-tame. Assume inductively that
Mi is r-tame for all i < n. Property (ii) tells us that Mn is obtained
as a free extension of Mn−1 by subspaces A(n, q) ⊆ P (n)q in arity-
degree (n, q) and subspaces B(n, q) ⊆Mn−1(n)q in arity-degree (n, q−1).
Elements in A(n, q) are clearly r-tame. Let w ∈ B(n, q). Since Mn−1 is
generated by elements in arity < n, we may write w as a sum of partial
compositions of the form w′ ◦i w′′ where w′ and w′′ are r-tame elements
of Mn−1. Let |w′| = (n′, q′) and |w′′| = (n′′, q′′). Then |w′ ◦i w′′| =
(n′ + n′′ − 1, q′ + q′′) = (n, q) We get:

q = q′ + q′′ ≥ (r + 1)(1− n′) + 1 + (r + 1)(1− n′′) + 1

= (r + 1)(1− (n′ + n′′ − 1)) + 2 = (r + 1)(1− n) + 2.

This gives q − 1 > (r + 1)(1− n), which is precisely the condition for w
to be r-tame. This proves that Mn is r-tame and hence M is also
r-tame.

Corollary 4.11. Let P ∈ Op be a reduced r-tame operad and let P∞ →
P be a minimal model of P . Then every r-connected P∞-algebra has a
Sullivan r-minimal model. Also, every (r+1)-connected P∞-algebra with
finite type cohomology has a Sullivan r-minimal model of finite type.

An example of 1-tame operad is given by the operad encoding Ger-
stenhaber algebras: these are graded-commutative algebras with a Lie
bracket of degree −1 satisfying the Poisson identity. The ordinary mul-
tiplication has arity-degree (2, 0), while the Lie bracket has arity-de-
gree (2,−1). We have:
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degree

.

.

.

1

0

−1

−2

−3

−4

−5

−6

−7

∗ ∗ • • • • • • • · · ·

• • • • • • • · · ·

• • • • • • · · ·

• • • • • · · ·

• • • • · · ·

• • • · · ·

• • · · ·

• · · ·

0 1 2 3 4 5 6 7 8 · · ·
arity

The Gerstenhaber operad Ger is 1-tame.

Corollary 4.12. Every 1-connected Ger-algebra (resp. Ger∞-algebra)
has a Sullivan minimal model and every 2-connected Ger-algebra (resp.
Ger∞-algebra) with finite type cohomology has a Sullivan minimal model
of finite type.

Remark 4.13. In the last section of this paper, we will study chain P -al-
gebras for operads of chain complexes; that is, both with positive ho-
mological degrees and differential of degree −1. In this setting, the
generator corresponding to the Lie bracket in the Gerstenhaber operad
has arity-degree (2, 1). In particular, Ger is a 0-tame operad and the
restriction to 1-connected algebras is no longer necessary.

5. Uniqueness of the minimal model

In this section we prove the uniqueness of Sullivan minimal models.
The proof is parallel to that in the setting of Com-algebras. As in the
previous section, the key ingredient is Lemma 4.5.

Lemma 5.1. Let P be an r-tame operad and let f : A→M be a quasi-
isomorphism of r-connected P -algebras, with M a Sullivan r-minimal
P -algebra. Then there exists a morphism of P -algebras g : M→ A such
that fg = idM.

Proof: We rewrite the proof of Gómez Tato (see Lemma 4.4 of [Góm]) for
Com-algebras in the P -algebra setting (see also Theorem 14.11 of [FHT]
and [Roi3], [Roi1] for a categorical version).

By definition, we may write M = M′ td P 〈V 〉 where M′ is a free
P -algebra generated by a graded vector space V ′ of degrees r < i ≤ p
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and V is a graded vector space of homogeneous degree p, with p > 0.
Assume inductively that we have a morphism of P -algebras g′ : M′ → A
such that fg′ = 1M′ . Then g′ is injective. The morphism f induces a
morphism of cochain complexes (not of P -algebras!)

f : A/g′(M′) −→M/M′

which is a quasi-isomorphism. By Lemma 4.5 we have that (M/M′)p−1=
0 and that (M/M′)p = V . This gives a surjection at the level of cocycles

π : Zp(A/g′(M′)) −−� Zp(M/M′) = V.

We obtain a linear map ϕ : V → Ap such that fϕ = 1V to a morphism
g : M → A by taking sections of the projections A → A/g′(M′) and π
and considering the composition

V = (M/M′)p −→ Zp(A/g′(M′) ↪−−→ (A/g′(M′))p −→ Ap.

For a proof of this last fact taking elements and checking that everything
works fine see the proof of Theorem 14.11 in [FHT]. By Lemma 3.3,
the map ϕ extends f ′ to a morphism f : M→ A.

As a classical consequence of Lemma 5.1 we have:

Lemma 5.2. Let P be an r-tame operad and let f : M → M′ be a
quasi-isomorphism of Sullivan r-minimal P -algebras. Then f is an iso-
morphism.

Proof: By Lemma 5.1 we have a morphism g : M′ →M such that fg =
idM′ . By the two out of three property, g is also a quasi-isomorphism.
Again, by Lemma 5.1 we have a morphism g′ : M → M such that
gg′ = idM. Therefore g is both injective and surjective and hence an
isomorphism and we have f = g−1.

The main result of this section is the following:

Theorem 5.3. Let P be an r-tame operad and let A be an r-connected
P -algebra. Let f : M→ A and f ′ : M′ → A be two Sullivan r-minimal
models of A. Then there is an isomorphism g : M→M′, unique up to
homotopy, such that f ′g ' f .

Proof: By Proposition 3.11 we obtain g, uniquely defined up to homo-
topy, such that f ′g ' f . By Lemma 5.2, g is an isomorphism.

Let Ho(AlgrP ) denote the localized category of r-connected P -algebras
with respect to the class of quasi-isomorphisms. Denote by SMinrP /'
the category of r-connected Sullivan minimal P -algebras, whose mor-
phisms are homotopy classes of morphisms of P -algebras. We have:
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Corollary 5.4. Let P be an r-tame operad. The category AlgrP of
r-connected P -algebras is a Sullivan category in the sense of [GNPR].
In particular, the inclusion of minimal algebras induces an equivalence
of categories

SMinrP /'
∼−→ Ho(AlgrP ).

Proof: For every P -algebra A, the choice of a minimal modelM gives a
well-defined functor A 7→ M between the homotopy categories, which is
the quasi-inverse of the functor induced by the inclusion.

6. Algebras over variable operads

Let P be an operad and A a P -algebra. Given two minimal mod-
els F : P∞ → P and F ′ : P ′∞ → P , we may consider the reciprocal
images F ∗(A) and F ′∗(A) of A in the categories of P∞-algebras and
P ′∞-algebras respectively. In this section, we compare the minimal mod-
els of these reciprocal images. This problem is better understood in the
fibred category of algebras over all operads, which we next introduce.

Definition 6.1. Denote by Alg the category whose objects are
pairs (P,A) with P ∈ Op and A ∈ AlgP and whose morphisms (F, f) :
(P,A) → (Q,B) are given by a morphism F : P → Q of operads, to-
gether with a morphism f : A→ F ∗(B) of P -algebras. The composition
of morphisms (F, f) : (P,A) → (Q,B) and (G, g) : (Q,B) → (R,C) is
defined by (G, g) ◦ (F, f) := (G ◦ F, F ∗(g) ◦ f). Objects in Alg will be
called algebras (over variable operads).

Following the main theorem of [Roi2] and taking into account the
remarks of [Sta], one can produce a Quillen model category structure
on Alg, from the ones on Op and AlgP (see [BM], [Hin1]). However,
since here we are only interested in minimal models, we don’t need the
whole power of a Quillen model structure. As we have seen, in order to
talk about and prove existence of minimal models it suffices to consider
weak equivalences (quasi-isomorphisms). If, on top, we want to study
uniqueness, we also need a notion of homotopy.

Definition 6.2. A morphism (F, f) : (P,A)→ (Q,B) in Alg is said to
be a quasi-isomorphism if F : P → Q is a quasi-isomorphism of operads
and f : A→ F ∗(B) is a quasi-isomorphism of P -algebras.

Using the notion of principal extension of an operad [MSS, Defini-
tion 3.138], we define Sullivan operads as done with operad algebras:

Definition 6.3. A Sullivan operad is the colimit of a sequence of prin-
cipal extensions of arities > 1, starting from 0.
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Definition 6.4. We will say that a pair (R,C) ∈ Alg is a Sullivan
algebra if R is a Sullivan operad and C is a Sullivan R-algebra.

Proposition 6.5. Let (R,C) be a Sullivan algebra. Then for every solid
diagram in Alg

(P,A)

(W,w)

����
(R,C)

(G,g)

;;

(F,f) // (Q,B)

where (W,w) is a surjective quasi-isomorphism, there exists (G, g) mak-
ing the diagram commute.

Proof: Since R is a Sullivan operad, by Lemma 3.139 of [MSS] there
exists a morphism G : R→ P such that W ◦G = F . Consider the solid
diagram of P -algebras

G∗(A)

G∗(w)
����

C

g

<<

f // F ∗(B)

Note that since G∗W ∗ = F ∗, this is well-defined. Since C is a Sulli-
van R-algebra and G∗(w) is a surjective quasi-isomorphism, by Propo-
sition 3.6 there is a morphism g making the diagram commute.

Definition 6.6. A functorial path in the category Alg is defined as the
functor

−[t, dt] : Alg −→ Alg

given on objects by (P,A)[t, dt] = (P [t, dt], A[t, dt]) and on morphisms
by (F, f)[t, dt] = (F [t, dt], f [t, dt]), together with the natural transfor-
mations

(P,A)
(I,ι) // (P [t, dt], A[t, dt])

(∆1,δ1)//

(∆0,δ0)

// (P,A) ; (∆k, δk)◦(I, ι) = id(P,A) .

Note that if F : P → Q is a morphism of operads then F [t, dt]∗ =
F ∗[t, dt].

The path gives a natural notion of homotopy between morphisms
in Alg. As in Section 3, the following are classical consequences of
Proposition 6.5.
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Proposition 6.7. The homotopy relation between morphisms in Alg is
an equivalence relation for those morphisms whose source is a Sullivan
algebra.

Proof: The proof follows verbatim the proof of Proposition 3.10, using
Proposition 6.5.

Denote by [(P,A), (Q,B)] the set of homotopy classes of morphisms
of algebras from (P,A) to (Q,B).

Proposition 6.8. Let (R,C) be a Sullivan algebra. Any quasi-iso-
morphism (W,w) : (P,A)→ (Q,B) induces a bijection (W,w)∗ : [(R,C),
(P,A)]→ [(R,C), (Q,B)].

Proof: The proof follows verbatim the proof of Proposition 3.11.

We now study the existence and uniqueness of minimal models in Alg.

Definition 6.9. We will say that (P∞,M) ∈ Alg is a Sullivan r-min-
imal algebra if P∞ is a minimal operad which is r-tame and M is a
Sullivan r-minimal P∞-algebra. A Sullivan r-minimal model for a pair
(P,A) is a Sullivan r-minimal algebra (P∞,M) together with a quasi-
isomorphism (P∞,M)→ (P,A).

Theorem 6.10. Let P be a reduced r-tame operad and let A be an r-
connected P -algebra. Then (P,A) has a Sullivan r-minimal model.

Proof: By Theorem 3.125 of [MSS], every reduced operad P ∈ Op
with H(P )(1) = k has a minimal model F : P∞ → P . Since P (1) =
k this hypothesis is clearly satisfied. Furthermore, P∞ is r-tame by
Proposition 4.10. Since F ∗(A) is an r-connected P∞-algebra, by Theo-
rem 4.6 there is a Sullivan minimal P∞-algebraM together with a quasi-
isomorphism f : M→ F ∗(A). The morphism (F, f) : (P∞,M)→ (P,A)
is a Sullivan r-minimal model of (P,A).

Lemma 6.11. Let (F, f) : (P∞,M)→(P ′∞,M′) be a quasi-isomorphism
of Sullivan r-minimal algebras. Then (F, f) is an isomorphism.

Proof: Since F : P∞ → P ′∞ is a quasi-isomorphism of minimal operads,
it is an isomorphism (see Theorem 3.119. of [MSS]). Therefore F ∗

preserves Sullivan minimal algebras and hence f : M → F ∗M′ is also
an isomorphism.

Remark 6.12. Note that Proposition 6.8 together with Lemma 6.11 make
Sullivan minimal algebras in Alg, minimal in an abstract categorical
sense (c.f. [Roi3], [Roi1], [GNPR]).
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Theorem 6.13. Let A be an r-connected P -algebra. Let

(F, f) : (P∞,M) −→ (P,A) and (F ′, f ′) : (P ′∞,M′) −→ (P,A)

be two Sullivan r-minimal models of (P,A). Then there is an isomor-
phism

(G, g) : (P∞,M) −→ (P ′∞,M′),
unique up to homotopy, such that (F ′, f ′) ◦ (G, g) ' (F, f).

Proof: By Proposition 6.8 we obtain (G, g), uniquely defined up to ho-
motopy, such that (F, f) ◦ (G, g) ' (F ′, f ′). By Lemma 5.2, (G, g) is an
isomorphism.

Denote by Algr the category whose objects are pairs (P,A) where
P is a reduced r-tame operad and A is an r-connected P -algebra and
by Ho(Algr) the localized category with respect to quasi-isomorphisms.
Also, let SMinr/' denote the category of Sullivan r-minimal algebras,
whose morphisms are homotopy classes of morphisms in Alg. We have:

Corollary 6.14. The category Algr is a Sullivan category in the sense
of [GNPR]. In particular, the inclusion of minimal algebras induces an
equivalence of categories

SMinr/' ∼−→ Ho(Algr).

7. Chain operad algebras and one example

In this section, we verify that our results are also valid for chain operad
algebras, i.e., algebras over operads in the category of chain complexes
of k-vector spaces (with homological grading).

Note that the proofs of Sections 3, 5, and 6 don’t depend on any
specific behavior of the degree of differentials. In particular, all state-
ments and proofs admit automatic translations to the chain setting just
by replacing the word cochain by the word chain everywhere in the text,
together with the following minor changes:

(1) In the Definition 3.2 of a KS-extension of a free P -algebra A by
a graded vector space V ′ of degree n, the linear map is d : V ′ →
Zn−1(A) (instead of Zn+1).

(2) The cone of a morphism f : A→ B is in the chain setting given by
C(f)n = An−1 ⊕Bn with d(a, b) = (−da, db− f(a)).

(3) In the definition of the algebra k[t, dt], dt has degree −1.

We next revise the construction of Sullivan minimal models of Sec-
tion 4. Let us remark that in the chain setting, we keep the same def-
inition of r-tame operad as in Definition 4.1. We also keep the same
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definition of Sullivan minimal P -algebra as a colimit of a sequence of
KS-extensions ordered by non-decreasing degrees. Note that the key
Lemmas 4.4 and 4.5 are still valid in the chain setting, since neither the
statements nor the proofs involve any differentials.

Theorem 7.1. Let P be an r-tame operad in chain complexes (with
homological degree). Then every r-connected P -algebra A has a Sullivan
r-minimal model f : M→ A with M0 = P (0) and Mi = 0 for all i < r
with i 6= 0. Furthermore, if A is (r+ 1)-connected and H∗(A) is of finite
type, then M is of finite type.

Proof: The proof is analogous to that of Theorem 4.6 with minor changes,
as done by Neisendorfer in [Nei] in the case of chain Lie algebras. Let
M[0] = H0(A) and define f0 : M[0]→ A by taking a section of the pro-
jection Z0(A)� H0(A). Then Hif0 is trivially an isomorphism for i < 0
and an epimorphism for i = 0.

Assuming we have constructed fn−1 : M[n − 1] → A with M[n −
1] a Sullivan minimal P -algebra generated in degrees < n and fn−1 a
morphism such that Hifn−1 is an isomorphism for i < n − 1 and an
epimorphism for i = n− 1, we build M[n] in two steps:

(1n) The map f ′n : M[n]′ → A is obtained from fn−1 : M[n − 1] →
A after killing the kernel of fn−1 in degree n. This is done by
successively attaching KS-extensions of degree n−1 (in the (r+1)-
connected case, only one KS-extension is needed).

(2n) The map fn : M[n] → A is obtained from f ′n : M[n]′ → A after
killing the cokernel of f ′n in dimension n + 1. This is done by a
attaching KS-extension of degree n+ 1 with trivial differential.

Now, the resulting Sullivan P -algebra M = ∪nM[n] is not mini-
mal, since KS-extensions are not ordered by degree. We next show that
steps (2n) and (1n+1) can be permuted. Consider the sequence

· · · → M[n]′ −→M[n] =M[n]′ t0 P 〈Un+1〉 −→M[n+ 1]′

=M[n] td P 〈Vn〉 −→ · · · .
Since the differential on Un+1 is trivial, it suffices to show that

d : Vn −→ Zn−1(M[n− 1] \ P 〈Un+1〉).
This is a direct consequence of the fact that M[n + 1]n−1 = M[n]′n−1,
by Lemma 4.5.

To end the paper, we compute the minimal model of the chains of
some double loop spaces C∗Ω

2X as Ger∞-algebras. We will use the the
following result, valid for either the chain or cochain setting:
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Proposition 7.2. Let P be an operad with zero differential, P∞ its min-
imal model, A a P∞-algebra such that HA = P 〈V 〉 is a free P -algebra,
also with zero differential. Then P∞〈V 〉 is the minimal model of A as a
P∞-algebra.

Proof: We have a k-linear lifting s,

ZA //

����

A

V //

s

55

P 〈V 〉 HA

Composed with the natural inclusion ZA ↪→ A, s will induce a morphism
of P∞-algebras ρ : P∞〈V 〉 → A, which is a quasi-isomorphism, since

H(P∞〈V 〉) = H

⊕
n≥0

P∞(n)⊗Σn
V ⊗n

 =
⊕
n≥0

(HP∞(n)⊗Σn
HV ⊗n)

=
⊕
n≥0

(P (n)⊗Σn V
⊗n) = P 〈V 〉 = HA.

Example 7.3. For every connected pointed topological space X its dou-
ble loop space Ω2X has an action of the little disk operad D2, [BV].
Hence, the singular chain complex C∗Ω

2X is an algebra over the operad
of the chain complex C∗D2, and the homology H∗Ω

2X is an algebra over
the operad H∗D2. This is true with any coefficients, in particular over Q.
From now on, we assume rational coefficients everywhere.

By the results of Cohen’s thesis [CLM], the homology H∗D2 is iso-
morphic to the Gerstenhaber operad: H∗D2

∼= Ger. Therefore every
homology H∗Ω

2X carries a natural structure of a Ger-algebra. Further-
more, Tamarkin [Tam] showed that C∗D2 is a formal operad; that is,
its minimal model in the sense of Markl is also the minimal model of its
homology. This gives quasi-isomorphisms

Ger ∼= H∗D2
∼←− Ger∞

∼−→ C∗D2.

In particular, we have that every C∗D2-algebra is naturally a Ger∞-alge-
bra. More specifically, C∗Ω

2X has a natural structure of a Ger∞-algebra.
We will compute the minimal model of some of these C∗Ω

2X as such.
For this, we rely on the fact that the rational homology H∗(Ω

2Σ2X)
of the double loop space of the double suspension of X is free as a Ger-
stenhaber algebra, over the reduced homology of X (see [Get, Section 1],
cf. [GJ, Theorem 6.1], and the generalization in [SW, Theorem 6.5]):

H∗(Ω
2Σ2X) ∼= Ger〈H̃∗X〉.
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By Proposition 7.2, we obtain a Sullivan minimal model as a Ger∞-al-
gebra

ρ : Ger∞〈H̃∗X〉
∼−→ C∗(Ω

2Σ2X).

For instance, for n > 2, the minimal model of Ω2Sn+1 = Ω2Σ2Sn−1 is the
free Ger∞-algebra Ger∞〈en−1〉 on a single generator en−1 in degree n−1.
See [Gin, Theorem 3.6], for a handy description of Ger∞-algebras.

This answers, we believe, a question of Getzler–Jones [GJ, Section 6]
about Sullivan minimal models for double loop spaces being unable to
reflect the Gerstenhaber structure.
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