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Algebraic Decay of Velocity Fluctuations in a Confined Fluid
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Computer simulations of a colloidal particle suspended in a fluid confined by rigid walls show tha
at long times, the velocity correlation function decays with anegativealgebraic tail. The exponent
depends on the confining geometry, rather than the spatial dimensionality. We can account for the
by using a simple mode-coupling theory which exploits the fact that the sound wave generated b
moving particle becomes diffusive. [S0031-9007(97)03163-3]
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In 1872, as part of his kinetic theory of gases, Boltz
mann [1] introduced the “molecular chaos hypothesis”—
the assumption that successive collisions experienced b
fluid particle are uncorrelated. For a quantitative descri
tion of molecular motion in fluids it is convenient to use
the velocity correlation function (v.c.f.). The v.c.f., which
we denote byCastd, is the average of the initial veloc-
ity of a particle multiplied with its velocity at a later time
t, Castd  kyas0dyastdl. The molecular chaos hypothe-
sis implies that the velocity correlation function decay
exponentially.

It therefore came as a surprise when, in 1970, Ald
and Wainwright [2] reported that it did not. They found
that in a hard sphere fluid the velocity correlation functio
decays algebraically with a power that depended
the dimensionalityd of the system. They explained
their observation of this “long-time tail” in terms of
hydrodynamics. This predicts that the momentum of
particle decays by two mechanisms. First, emission of
sound wave: a fraction of the initial momentum is carrie
away rapidly by a propagating sound mode. This mod
does not contribute to the long-time tail. The remainin
fraction of the momentum is transported away diffusively
The diffusive transport of momentum is responsible for a
algebraic long-time tail of the formCastd , t2dy2. For a
colloidal particle of typical size (one micron), suspende
in water, sound propagation only influences the sho
time decay of the v.c.f. (times less than a nanosecon
The time scale for the long-time tail is controlled by
the kinematic viscosity of the fluid and is on the orde
of microseconds. Where we subsequently refer to “lon
times,” we mean thishydrodynamiclong time. The time
it takes a colloidal particle to significantly move is stil
longer (,1023 s).

In this Letter we consider the dynamics of a colloida
particle suspended in a fluid confined by rigid walls
Because of the friction exerted by the walls, one wou
expect that the long-time hydrodynamic tail will be los
and the v.c.f. will decay exponentially. This was indee
the conclusion reached by Bocquet and Barrat [3],
their theoretical analysis of a particle suspended in a flu
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contained between two plates. Here we show that,
our surprise, on a hydrodynamic time scale a long-tim
tail is recovered. What is more, this long-time tail has
different physical origin—and sign—than the tail found
in an unbounded fluid.

First, we describe the results of the computer simula
tions. We used a lattice Boltzmann model to describ
the fluid. The state of the fluid is specified by the av
erage number of particles,nsc, r, td, with velocity c, at
each lattice siter. The time evolution of the distribu-
tion functions is described by the discretized analog of th
Boltzmann equation [4]. This involves propagation an
collision. Collisions are specified such that the time evo
lution of the hydrodynamic fields satisfies the linearize
Navier-Stokes equations for an isothermal, compressib
fluid [4]. The boundary conditions at the (stationary) con
fining walls could be varied between stick and slip. In al
cases, stick boundary conditions were imposed on the
terface between the colloidal particle and fluid. The equ
tions of motion were integrated using the self-consiste
method described in Ref. [5]. We calculated the velocit
correlation function by giving an initial velocity,yas0d, to
a colloidal particle in an otherwise quiescent lattice Boltz
mann fluid. There are no spontaneous fluctuations in th
system. However, correlatingyas0d with the subsequent
velocity yastd is, according to Onsager’s regression hy
pothesis, equivalent to calculating the v.c.f. in a “real
fluctuating system. Our units are such that the mass
the lattice-gas particle, the lattice spacing, and the tim
step are all unity, the kinematic viscosityn of the fluid
was equal to1

6 , the densityr was 24, and the speed of
soundc was 1y

p
2. The mass of the object was set to

correspond to neutral buoyancy. In all cases the v.c.f. w
only calculated for times less than the time it takes for
sound wave to cross the system, so there are no finite-s
effects to consider.

The first geometry we considered was a cylindrica
tube. In Fig. 1 we show the v.c.f., calculated in a
direction along the axis of the tube, for a colloida
particle located at the center. We have expressed time
dimensionless units,t  tnyr2, wherer is the particle
© 1997 The American Physical Society 3785
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FIG. 1. Normalized velocity correlation functionCxstdyCxs0d
of a colloidal particle with radiusr  2.5 in a cylindrical tube
with radiusR  4.5 (drawn line). The dashed line denotes
line with Cxstd , 21yt3y2. The reduced timet is defined by
t  tnyr2.

radius. For an incompressible fluid this is the on
relevant parameter. However, if compressibility effec
are important, one should also consider the ratiocryn,
which is the time it takes transverse momentum to diffu
a particle radius divided by the time it takes sound
travel the same distance. In the simulation this rat
is 10.6 (for a colloidal particle in water the ratio is
of order1000, whereas for olive oil it is10). The
most noticeable feature of the v.c.f. is that it becom
negative. In the absence of the tube, the v.c.f. is posit
at all times. We do not see an exponential decay
as the inset shows the asymptotic decay is algebr
with the form Cxstd , 21yt3y2. We observed no such
effect for the component of the v.c.f. perpendicular
the tube axis. In this case the decay was exponent
To examine the effect of dimensionality, we studied
two-dimensional system, consisting of a disk in a flu
confined between two walls. Again the same qualitati
behavior was found; the v.c.f. becomes negative a
decays algebraically. The asymptotic decay has the fo
Cxstd , 21yt3y2. This is the same as the result w
obtained for the tube in three dimensions. To exami
the effect of the confining geometry, we studied a thre
dimensional fluid contained between two plates. In th
case we still observed a negative long-time tail for th
v.c.f., parallel to the plates, but now with an expone
22 instead of23y2. This suggests that the exponent o
the long-time tail depends on the number of dimensio
which are not geometrically confined,dp, rather than
on the actual spatial dimension. In order to shed mo
light on the mechanism underlying this behavior, w
repeated the calculation for the two walls, but chang
the boundary conditions at the walls. The algebraic dec
persists as long as the walls exert friction. Only fo
pure slip boundary conditions do we recover the usu
3786
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behavior of the v.c.f. of an effectively one dimensiona
system, namely, exponential decay parallel to the tu
axis. For a three dimensional fluid between parallel plat
the v.c.f. decays as1yt in the same limit. From this we
concluded that the existence of velocity gradients clo
to the walls, induced by the boundary conditions, ar
essential for the negative long-time tail.

In order to clarify the origin of such algebraic tails, we
considered the long-time decay of a velocity perturbatio
in an initially quiescent fluid. For simplicity, we discuss
the two-dimensional case with an initial perturbatio
vsr, 0d  sssy0dsrd, 0ddd. The evolution of this disturbance
is determined by the usual hydrodynamic equations,

≠r

≠t
1 r0= ? v  0 , (1)

≠v
≠t

1 a=r 2 n=2v 2 j== ? v  0 , (2)

where vsr, td and rsr, td are the disturbance velocity
and density field, respectively,r0 is the equilibrium
density, n the shear viscosity,j the bulk viscosity,
and a  c2yr0, with c the velocity of sound [for a
three dimensional fluid,j in Eq. (2) is replaced by
j 1 ny3]. Although stick boundary conditions should be
supplemented to Eqs. (1) and (2), we will introduce the
in an effective way. In fact, we assume that at long time
the transverse component of the velocity field has almo
relaxed (≠xyx ¿ ≠yyy), and we keep they dependence
of yx (note that for slip, this last requirement is no longe
necessary). The solution of this problem reads, in Fouri
space,

ỹxskx , ky , vd 
ivy0

2v2 1 ivsGk2
x 1 nk2

y d 1 c2k2
x

, (3)

with G  n 1 j, the sound wave damping coefficient
Because of the anisotropy induced by they dependence
of the x component of the velocity, this equation show
that purely diffusive modes can be excited in the tube
4c2k2

x , sGk2
x 1 nk2

y d2, implying that, for a fixed value
of ky , there will always be akp

x such that whenkx , kp
x

only diffusive modes show up. In general, due to th
fact that there exists a minimumky (because of the finite
width of the tube), there will always exist a fraction of the
modes that are overdamped and will behave diffusivel
In the hydrodynamic regime (kx ! 0) the modes in the
system are

v1 , ink2
y 1 i

µ
G 2

c2

nk2
y

∂
k2

x 1 O sk4
xd , (4)

v2 , i
c2

nk2
y

k2
x 1 O sk4

xd . (5)

The modev1 induces a perturbation which decays expo
nentially with time because of the minimum value ofky.
However, in the limitkx ! 0 thev2 mode gives rise to a
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diffusive perturbation. The prefactor multiplyingk2
x can

be interpreted as an effective diffusion coefficient whic
characterizes the diffusion of density perturbations, whic
scales as

Dp ,
c2R2

n
, (6)

whereR is half the width of the channel. The possibility
of exciting such overdamped sound modes has be
discussed in Ref. [6], where the hydrodynamics of a th
fluid layer in contact with a solid substrate is modele
as a 2D fluid with an extra dissipation force accountin
for the liquid-solid interaction. Recently, it has bee
argued that sound waves in fluid membranes may a
be overdamped [7]. This suggests that the dynamics
particles embedded in such membranes will exhibit th
same features reported in this Letter.

The power law characterizing the decay of this secon
mode can be obtained by transforming back the velocity
real space and time from Eq. (3). An asymptotic analys
of this time decay leads to

yxstd , 2
y0

p
n t3y2

1 O st25y2d . (7)

This is in agreement with the simulations of the two
dimensional system. An analogous analysis for the thre
dimensional fluid between two plates shows that

yxstd , 2
y0

t2 1 O st23d , (8)

again in agreement with the simulation [8].
The derivation considers a fluid element, but the resu

should not depend on the specific way the momentu
has been introduced, it only depends on the amount
momentum which is inserted. By changing the viscosi
of the fluid, we have also verified that the tails scale wit
the viscosity as predicted by Eqs. (7) and (8).

In order to investigate the diffusive decay of sound, pr
dicted by Eq. (6), we performed a simulation in which w
actually measured this effective diffusion constant. To d
this we increased the density of the fluid at a point in th
center of a two dimensional slit, and computed the se
ond moment of the evolving spatial density distribution
The diffusion coefficient was obtained by differentiation
Dp 

1
2

d
dt kr2stdl. The diffusion coefficient is plotted in

Fig. 2, as a function of the kinematic viscosity. Changin
the channel width and the viscosity, we find

Dp 
c2sR2 2 1y4d

3n
1

1
2

, (9)

which is in agreement with Eq. (6) (except for the factor
of 21y4 [4] and 1y2 [9] which are, in fact, lattice
artifacts).

This analysis allows us to give a more intuitive pictur
for the appearance of the negative algebraic decay. T
initial motion of the particle in the tube sets up a densit
dipole in the fluid. If we consider that only overdampe
h
h

en
in
d
g
n
lso
of
e

d
to
is

-
e-

lt
m
of

ty
h

e-
e
o
e
c-
.
:

g

s

e
he
y
d

FIG. 2. The effective diffusion coefficient of density per
turbations Dp as a function of 1yn, where n is the di-
mensionless kinematic viscosity. Results were obtained in
two-dimensional slit of half widthR  4.5. The points denote
the simulation results, and the line is a guide to the eye.

modes are present in the system, this density dipole w
decay diffusively,

rsx, td 
x exps2x2y4Dptdp

4psDptd3
, (10)

wherex is the distance from the particle along the tub
and the density profile in the transverse direction
essentially flat. This leads to a mass flux around the orig
which is proportional to the gradient in densityjs0, td ,
2≠xrs0, td. The particle (or fluid element) which cause
the initial dipole will now (at long times) be enslaved to
this mass flux, and the flow related to the flux will be th
velocity of the particle [ystd , 21yt3y2]. For the particle
diffusing between two plates (in three dimensions), th
diffusion of the density will be two dimensional, and
arguing along the same lines, we findystd , 21yt2.
This shows that the long-time tail is driven by a pressu
relaxation mechanism. From here we argue that this res
is general and that

Cxstd , 2
1

t11dpy2
. (11)

The requirement for finding this behavior is that th
geometry overdamps sound modes. The result in Eq. (
differs from the velocity correlation function found by
Bocquet and Barrat [3], where a simple mode-couplin
approach was used [10], which neglected the coupling
velocity with sound at long times. We also note that th
form of v.c.f. we observe is the same as that found
a purely diffusive system—the Lorentz gas [11]. Th
physical origins of the two effects are, however, qui
different.

By integrating the v.c.f. we can calculate the diffusio
coefficient for a particle in a tube to see whether th
long-time tail contributes to the diffusion coefficient. Th
results are shown in Fig. 3, normalized by the diffusio
3787
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FIG. 3. Normalized diffusion coefficient of a particle with
radiusr in the center of a cylindrical tube with radiusR. The
points denote simulation results, and the line corresponds to
centerline approximation (Ref. [12]).

coefficient in the absence of the tubeD0. Also plotted
is the centerline approximation [12], calculated assumi
a purely incompressiblefluid (neglecting sound effects).
The simulations lead to the same diffusion coefficie
as predicted by the theory for incompressible fluids.
fact, this must be the case because the long-time
originates from the compressible modes. These mod
do not affect the integral of the v.c.f.—the contributio
from Eq. (3) vanishes in the limitv ! 0. The diffusion
coefficient is determined by the decay of transver
velocity perturbations [3,13] which, in a confined system
is exponential. So, while compressibility effects domina
the long-time dynamics, they still do not contribute to th
diffusion coefficient.

Experimentally, one can expect to observe the lon
time tail most easily if all the modes are overdamped, th
is, whenk2

y .
2c
n kx. If we consider a colloidal particle

of radiusr in a cylindrical tube of radiusR and lengthL,
this condition is satisfied ifµ

r
R

∂2

.
4
p

cr
n

r
L

. (12)

If we consider r
L , 1024, r

R , 1
3 , for water (c ø

1.5 3 105 cmys, n ø 1022 cm2ys) we obtain the restric-
tion thatr , 5 3 1025 cm, which is reasonable for col-
loidal particles. For a more viscous fluid, such as oliv
oil, the estimate isr , 5 3 1023 cm. Here we consid-
ered a single particle in a tube, but, if particle-partic
interactions within the pore are small compared wi
particle-wall interactions, the analysis also holds for a su
pension of colloidal particles. A rough estimate of the a
3788
the

ng

nt
In
tail
es

n

se
,

te
e

g-
at

e

le
th
s-

p-

propriate volume fraction,f, for which such condition is
satisfied is given in Ref. [14]:f ,

2
3

r
R , with f the solute

volume fraction in the pore.
In summary, our simulations show that the v.c.f. of

colloidal particle in a fluid confined by rigid walls can
display a negative long-time tail. The mode-couplin
analysis suggests that the mechanism driving the lon
time tail is the diffusive decay of density perturbation
that would normally decay by sound propagation. Th
simulations support this. At long-times sound propagatio
plays no part for a particle in an unbounded fluid—in
confined fluid it is the dominant effect.
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