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Self-Similarity Properties of Natural Images Resemble Those of Turbulent Flows
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We show that the statistics of an edge type variable in natural images exhibits self-similarity prop-
erties which resemble those of local energy dissipation in turbulent flows. Our results show that self-
similarity and extended self-similarity hold remarkably for the statistics of the local edge variance, and
that the very same models can be used to predict all of the associated exponents. These results suggest
using natural images as a laboratory for testing more elaborate scaling models of interest for the statisti-
cal description of turbulent flows. The properties we have exhibited are relevant for the modeling of the
early visual system: They should be included in models designed for the prediction of receptive fields.
[S0031-9007(97)05190-9]
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The existence of self-similarity (SS) is well known in
both natural images [1] and fully developed turbulenc
[2]. Quite recently, there has been an increase of inter
in both fields. In turbulent flows, the notion of “extended
self-similarity” (ESS) [3–5] has been introduced, an
several models proposed predicting correctly the releva
SS exponents from only one or two parameters [6,7
Our main motivation for studying the statistics of natura
images is its relevance for the modeling of the ear
visual system. In particular, the epigenetic developme
could lead to the adaptation of visual processing to th
statistical regularities in the visual scenes [8–13]. Mo
of these predictions on the development of receptive fiel
have been obtained using a Gaussian description of
environment contrast statistics. However, non-Gaussi
properties such as the ones found by [14,15] could
important. To gain further insight into non-Gaussia
aspects of natural scenes we investigate whether th
exhibit the rich structure found in turbulent flows.

Scaling properties of natural images have been stud
by several authors. They have found [1,16,17] that th
power spectrum of luminosity contrast follows a powe
law of the form Ss fd ~

1
j fj22h , although the value ofh

can have rather large fluctuations [18]. The magnitude
these fluctuations depends on the diversity of the imag
in the data set. A more detailed—although different—
analysis of the scaling properties of image contra
was done by [14,15] who also noted analogies wi
the statistics of turbulent flows. Additional luminosity
analysis was also done by Ruderman [19], providing som
evidence of multiscaling behavior. There is, however, n
model to explain the intriguing scaling behavior observe

However, in turbulent fluids the unpredictable charact
of signals has led to a large amount of effort in order t
develop statistical models (see, e.g., Ref. [20]). Qualit
tive and quantitative theories of the statistical propertie
of fully developed turbulence elaborate on the original a
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gument of Kolmogorov [2]. The cascade of energy fro
one scale to another is described in terms of local ene
dissipation per unit mass within a box of linear sizer.
This quantity,er , is given by

ersxd ~
Z

jx2x0j,r
dx0

X
ij

f≠iyjsx0d 1 ≠jyisx0dg2, (1)

whereyisxd is the ith component of the velocity at point
x. Self-similaritywill hold if, for some range of scalesr,
one finds the scaling relation,

kep
r l ~ rtp , (2)

where kep
r l denotes thepth moment of the energy

dissipation that is the average offersxdgp over all possible
values ofx. In fluid dynamics this property holds in the
so-called “inertial range” [20]. A more general scalin
relation, calledextended self-similarity,has been found to
be valid in a much larger scale domain, even if the inert
range does not exist [3,4]. This scaling can be defined

kep
r l ~ keq

r lrsp,qd, (3)

where rsp, qd is the ESS exponent of thepth moment
with respect to theqth moment. Notice that if SS holds
then tp  tqrsp, qd. In the following we will refer all
the moments toke2

r l.
The basic field in turbulence is the velocity from

which one defines the local energy dissipation. Th
largest contributions toer come from abrupt changes in
velocities. For images, the basic field is the contrastcsxd
that we define as the difference between the luminos
and its average. A natural candidate for a variable ana
to the local energy dissipation is a quantity which takes
largest contributions from the places where large chang
in contrast occur. This is precisely a measure of t
existence of edges below the scale under considerat
Edges are indeed well known to be very important
© 1998 The American Physical Society
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characterizing images [21]. A recent numerical analys
suggests that natural images are composed of statistic
independent edges [22].

We choose to study two variables, defined at positi
x  sx1, x2d and at scaler. The variableeh,r sxd takes
contributions from edges transverse to ahorizontal seg-
ment of sizer,

eh,rsxd 
1
r

Z x11r

x1

µ
≠csx0d

≠y

∂2
É
x0h y,x2j

dy . (4)

A vertical variableey,r sxd is defined similarly from an
integration over the vertical direction. From here we s
that el,rsxd sl  h, yd is the local linear edge variance
along the directionl at scaler.

We have analyzed the scaling properties of the loc
linear edge variances in a set of 45 images taken in
wood of 256 3 256 pixels each (see [15] for technica
details concerning these images). With these data,
can explore scales up tor , 64 pixels.

First, we show that SS holds in a range of scalesr
with exponentsth,p andty,p . This is illustrated in Fig. 1,
where the logarithm of the moments of the vertical an
horizontal edge variances [as defined in Eq. (4) for t
horizontal case] is plotted as a function of lnr. Next,
we test ESS. The results are shown in Fig. 2, where
linear behavior of lnkep

l,rl vs lnke2
l,r l is observed in both

the horizontal (l  h) and the vertical (l  y) directions.
One can see that ESS is valid in a wider range than S
This is similar to what is found in turbulence, wher
this property has been used to obtain a more accur
estimation of the exponents of the structure functions (s
e.g., [23]). The horizontal and vertical exponentsrhsp, 2d
and rysp, 2d, estimated with a least squares regressio
are shown in Fig. 3 as a function ofp. From Figs. 1–
3, one sees that the horizontal and vertical directio
have similar statistical properties, which was not expect
(e.g., trees tend to increase luminosity correlations in t
vertical direction). The SS exponents differ, as can
seen in Fig. 1. What is even more surprising is that E
not only holds for the statistics in both directions, bu
it does it with thesameESS exponents, i.e.,rhsp, 2d ,
rysp, 2d, within our numerical accuracy.

Let us now consider scaling models to predict th
p dependence of the ESS exponentsrlsp, 2d. Since
ESS holds, the SS exponentstl,p can be obtained from
the rlsp, 2d’s by measuringtl,2. The simplest scaling
hypothesis is that, for a random variableer sxd observed
at the scaler [such asel,r sxd], its probability distribution
Pr fersxd  eg can be obtained from any other scaleL by

Pr sed 
1

asr, Ld
PL

µ
e

asr , Ld

∂
. (5)

From this, one derives thatasr , Ld  f kep
r l

kep
L l g

1yp for anyp,
and thatrsp, 2d ~ p. If SS holds, thentp ~ p: For tur-
bulent flows this corresponds to the Kolmogorov predi
is
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FIG. 1. Test of SS. We plot lnkep
l,rl vs lnr for p  2, 3, and

5, and for r from 8 to 64 pixels. (a) Horizontal direction,
l  h; (b) vertical direction, l  y. The relative error is
uniform and about 8%. The value of the SS exponentstp
extracted from the larger behavior areth,2  20.20 6 0.01,
th,3  20.51 6 0.02, and th,5  21.19 6 0.06 for the hori-
zontal direction, andty,2  20.26 6 0.04, ty,3  20.62 6
0.03, andty,5  21.47 6 0.06 for the vertical direction. The
solid lines are the slope given by these exponents. This line
behavior does not hold at smallr. A numerical analysis
indicates that it is a finite resolution effect although it could
be masking a different, smallr regime. There is also an upper
bound that has prevented us from going beyondr , 64.

tion for the SS exponents [2]. The nonlinear behavio
observed in Fig. 3 shows that this naive scaling is vio
lated (this is similar to what was observed in turbulenc
[24], where the nonlinear behavior was interpreted as ev
dence of the multifractal character of the turbulent flow
[25]). This discrepancy becomes more dramatic if Eq. (5
is expressed in terms of a normalized variable. Takin
e`

r  limp!`kep11
r lykep

r l, the new variable is defined as
fr  er ye`

r . If Pr s fd is the distribution offr the scaling
relation, Eq. (5), readsPrs fd  PLs fd. That this identity
does not hold can be observed in Fig. 4. A way to genera
ize this scaling hypothesis is to say that, instead of havin
one value ofa as in (5), every value ofa contributes with
a given weight. One then has

Pr s fd 
Z

GrLsln ad
1
a

PL

µ
f
a

∂
d ln a . (6)

This scaling relation has been first introduced in th
context of turbulent flows [6,7,26,27]. One can see tha
Eq. (6) is an integral representation of ESS with gener
(not necessarily linear) exponents. Once a kernelGrL is
chosen thersp, 2d’s can be predicted.
1099
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FIG. 2. Test of ESS. We plot lnkep
l,rl vs lnke2

l,r l for p  3,
5, and 10. Data correspond to scales fromr  8 to r  64
pixels. The effect of finite size effects can again be observe
for r close to 64 pixels. (a) Horizontal direction,l  h;
(b) vertical direction,l  y. The solid lines are the slope
given by the calculated exponentsrsp, 2d.

The difference between Eqs. (5) and (6) can also b
phrased in terms of multiplicative processes [28,29]. In
stead offr , fL, we now havefr , afL, where the fac-

FIG. 3. ESS exponentsrsp, 2d, for the vertical and horizontal
variables. Each value ofrlsp, 2d was obtained by a linear
regression of lnkep

l,rl vs lnke2
l,r l for distancesr between 8 and

64 sl  y, hd. (a) Horizontal direction,rhsp, 2d; (b) vertical
direction, rysp, 2d. The solid line represents the fit with the
SL model. The best fit is obtained withby , bh , 0.50.
The error barsbp have been estimated by dividing the 45
images into 9 groups, evaluatingrlsp, 2d for each of them,
and computing the dispersion of these values. The errors gr
as p increases. This is because moments of higher order a
sensitive to the tail of the distribution of the local edge varianc
The fit is such that the following average quadratic erro

E 
P

p
frs p,2dexp2rs p,2dthg2

bp
, is minimized. We have checked

that a Gaussian data set of images does exhibit ESS althoug
cannot be explained by the SL model.
1100
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tor a itself becomes a stochastic variable determined b
the kernelGrLsln ad. Since the scaleL is arbitrary (scale
r can be reached from any other scaler 0), the kernel must
obey a composition law. This stochastic variable at sca
r can then be obtained through a cascade of infinitesim
processesGd ; Gr,r1dr .

Specific choices ofGd define different models of ESS.
The She-Leveque (SL) [6] model corresponds to a simp
process such thata is 1 with some probability1 2 s
and is a constantb with probability s. One can see that

s 
1

12b2 lns k f2
r1dr l

k f2
r l d and that this stochastic process yield

a log-Poisson distribution fora [30]. It also gives ESS
with exponentsrsp, qd that can be expressed in terms o
a single parameter (b) as follows [6]:

rsp, qd 
1 2 bp 2 s1 2 bdp
1 2 bq 2 s1 2 bdq

. (7)

We have tested the model with the ESS exponen
obtained with the image data set. The resulting fit fo
the SL model is shown in Fig. 3. Both the vertical and
horizontal ESS exponents can be fitted withb  0.50 6

0.03. More complex processes other than log-Poisso

FIG. 4. Verification of the validity of the integral representa-
tion of ESS, Eq. (6) with a log-Poisson kernel, for horizonta
local edge variance. The largest scale isL  64. Starting from
the histogramPLs fd (crosses), and using a log-Poisson distribu
tion with parameterb  0.50 for the kernelGrL, Eq. (6) gives
a prediction for the distribution at the scaler  16 (squares).
This has to be compared with the direct evaluation ofPr s fd
(diamonds). Similar results hold for other pairs of scales. Th
error bars have been estimated as follows: The data set w
divided in nine groups, as explained in the previous figure, an
the histograms at the scalesL and r were computed for each
group. Then for each group the histogram at scaleL was used
to obtain a prediction for the histogram at scaler. The differ-
ences between the predicted and computed values were squa
and averaged over the groups. Its square root gives a meas
of the error committedin the prediction,represented by the er-
ror bars. The test for the vertical case is as good as for th
horizontal variable.
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distributions, involving more than one parameter, have a
been studied. We have also tested the model propose
[7]. For our data, the best fit appears to be with the S
model, which is the simplest nontrivial model.

The integral representation of ESS [Eq. (6)], can also
tested directly on the probability distributionsPrs fd and
PLs fd evaluated from the data. In Fig. 4 we show th
prediction for the distribution at the scaler obtained from
the distribution at the scaleL. No new parameter is neede
for this.

The parameterb has allowed us to obtain all the ESS
exponentsrsp, 2d. In order to obtain the SS exponent
tp we need another parameter, e.g.,t2. Notice first that,
for large r , e`

r ~ rt2y12b ; r2D. From the definition
of e`

r , one sees that it is controlled by the tail of th
distribution Pr sed. This implies that the most singula
structure is the set of points whereer  e`

r . Now
a standard argument on multifractal scaling (see, e
[20,31]) will relate the exponentD to the dimensionD` of
this most singular structure. One findsD`  d 2

D

12b ,
whered  2 is the dimensionality of the problem. Sinc
tp  t2 rsp, 2d, a fit of tp determinesD. This was done
for both the vertical and horizontal variables, obtainin
Dh  0.4 6 0.2 and Dy  0.5 6 0.2 and leading to
D`,h  1.3 6 0.3 and D`,y  1.1 6 0.3. The quoted
errors are purely statistical, but other sources of erro
(e.g., the onset of the SS behavior) reduce the accura
As a result, we can say thatD`,y , D`,h , 1: The
most singular structures are almost one dimensional; t
reflects the fact that the most singular manifold consists
sharp edges.

In conclusion, we insist on the main result of this wor
which is the existence of nontrivial scaling propertie
for the local edge variances. This property appears v
similar to the one observed in turbulence for the loc
energy dissipation. In fact, we have seen that the
model predicts all of the relevant exponents and th
in particular, it describes the scaling behavior of th
sharpest edges in the image ensemble. A similar analy
could be performed taking into account color or motio
(analyzing video sequences). It would also be interest
to have a simple generative model of images which
apart from having the correct power spectrum as in [32]
would reproduce the self-similar properties found
this paper.
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lating discussions, and Zhen-Su She for a discussion
the link between the scaling exponents and the dimens
of the most singular structure. We thank Roland Badde
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knowledge Nicolas Brunel for his collaboration during th
early stages of this work. This work has been partly su
ported by the French-Spanish program, “Picasso,” and
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