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Multifractal Wavelet Filter of Natural Images
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Natural images are characterized by the multiscaling properties of their contrast gradient, in addition
to their power spectrum. In this Letter we show that those properties uniquely define an intrinsic wavelet
and present a suitable technique to obtain it from an ensemble of images. Once this wavelet is known,
images can be represented as expansions in the associated wavelet basis. The resulting code has the
remarkable properties that it separates independent features at different resolution level, reducing the
redundancy, and remains essentially unchanged under changes in the power spectrum. The possible
generalization of this representation to other systems is discussed.

PACS numbers: 87.57.Nk, 42.66.Lc, 47.53.+n, 87.19.Dd
I. Introduction.— Given the complexity and degree of
redundancy of natural images, the early visual system had
to find good coding procedures to represent the visual
stimuli internally. To achieve this goal, the visual system
must have learned the regularities present in the environ-
ment where the organism lived [1]. If there are image
features that tend to appear together, a cell responding qua-
sioptimally to them is rather likely to exist. To find such a
representation one has first to understand the statistical
properties of visual scenes common in the environment.
In particular, the relevance of the second order statistics
has been pointed out some time ago [2], and internal
representations that eliminate these correlations have been
discussed [3]. However, even if whitening represents an
improvement of the code, it still leaves much geometrical
structure that should be dealt with more properly [4].
A more systematic study of statistical regularities that
go beyond the two-point correlations has began rather
recently [5–7]. A novel approach to understand the
statistical properties of natural images has been proposed
in [6] where the non-Gaussian statistics of changes in
contrast has been characterized and explained by means
of a stochastic multiplicative process: Contrast changes
at a given scale are obtained from those at a coarser scale
by multiplication with an independent random variable.
This implies a linear relation between the logarithms of
the variables at two different scales (this property has
also been discussed in [8], although the existence of
a multiplicative process was not noticed). A very rich
geometrical structure has emerged from those studies:
contrast changes are organized in such a way that pixels
in the image can be classified according to the strength of
the singularities of the contrast gradient [7]. It was also
checked that the multiplicative process is present in very
different sets of images and in color natural images [9].

In this Letter we show that when those findings are
taken into account in an image model there appears a very
compact representation of the visual world. In particular,
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a wavelet filter that guarantees that variations in contrast
at different scales are related by a multiplicative process
can be derived experimentally from a data set of natural
images, with the only assumption of the existence of such
a filter. Furthermore, the code that it defines has eliminated
a great deal of redundancy.

II. Wavelet basis and multiresolution analysis.—We
start by considering the projection of the contrast c� �x�
on a dyadic wavelet set C̃j �k� �x� � C̃�2j �x 2 �k�. The
wavelet Cj �k focuses on the details of the image at the
scale r , where r � 22j , j [ Z , at the sampling points
�x0 � 22j �k. Here �k � �k1, k2�, with k1, k2 [ Z [10].
If C̃ defines a wavelet basis, the wavelet projections
Tr

C̃
c��x0� of the field of luminosity contrast,

Tr
C̃

c� �x0� � r22
Z

d �x C̃r � �x 2 �x0�c��x� � r22�C̃r , �x0 jc� ,

(1)

characterize completely the image. This is the reason for
the name “multiresolution analysis”: the wavelet projec-
tion is a description of c� �x� at the point �x0 when the
image is observed at a variable scale r . This type of analy-
sis reaches a compromise between localization in position
and in spatial frequency [10]. If the discrete basis is com-
plete, then the contrast can be expanded in a wavelet basis
orthogonal to C̃ using the wavelet projections as coeffi-
cients. The dual basis Cj �k verifies that

�C̃j �kjCj0 �k0� � 222jdjj0d�k �k0 (2)

and the contrast c� �x� can then be expressed as

c� �x� �
X
j, �k

aj �kCj �k� �x� , (3)

where aj �k � T22j

C̃
c�22j �k� � 22j�C̃j �kjc�. The wavelet ba-

sis generated by C will be called the representation ba-
sis. Its dual basis, defined by C̃ will be referred to as the
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analyzer basis. Once one of these bases is known, the other
is completely defined by Eq. (2).

Multiscaling in natural images: In [7] it was experimen-
tally proved that there exists a certain class of wavelets,
such that some of their low order moments are zero, for
which

�jTr
C̃

cjp� � aprtc
p (4)

(the angular brackets denote the average over an ensemble
of images), a property known as self-similarity (SS). It was
also found [6] that the SS exponents tp have a nontrivial
dependence on p which can be explained by means of a
stochastic multiplicative process (see, e.g., [11]). In terms
of the wavelet coefficients aj �k , this process is expressed as

aj �k � hj �kaj21,��k�2� , (5)

where � �k� denotes the vector with components given by
the integer part (rounding down) of those of �k. In [6,7]
Eq. (5) was understood in the statistical sense, where the
variables hj �k are statistically independent of the aj21,� �k�2�.
The SS exponents tp define completely the distribution
of the random variables hj �k and vice versa. Besides, the
distribution of the h’s depends only on the ratio between
the two scales of the wavelet projections [6]. Here this
ratio has been fixed at 2 for any pair of consecutive scales.
This implies that all the hj �k’s are identically distributed.

In this work we go beyond those results by showing
that natural images possess an intrinsic wavelet for which
Eq. (5) is fulfilled point by point. This means that the
equality holds for any image, at any scale and position,
and that the variables hj �k can be extracted directly from

hj �k �
aj �k

aj21,� �k�2�
. (6)

In order to obtain these variables and to verify their sta-
tistical properties, one has first to determine this wavelet.
Under the assumptions that the h’s obtained from Eq. (6)
are scale independent and equally distributed variables, the
representation wavelet C can be experimentally obtained
from a statistical analysis of the image ensemble. This
will be shown in the next section. The validity of these
two hypotheses on the h’s has to be verified a posteriori,
once the wavelet is known. This is done in Section IV
as follows: first the analyzer wavelet C̃ is obtained from
the representation wavelet C. In turn, C̃ can be used to
evaluate the coefficients aj �k’s and from them the hj �k’s.
Once these are known it is finally checked that they are
indeed scale-independent, identically distributed random
variables, so checking the self-consistency of the multi-
plicative process model.

III. The representation mother wavelet.—We suppose
that the contrast field obtained from our image data set can
be expanded as a superposition of wavelets, Eq. (3), and
that the aj �k’s verify Eq. (5), where the hj �k’s are scale-
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independent equally distributed variables. Since the
images have finite size, we will take j $ 0 where C0�0 cov-
ers the whole image and it represents the mother wavelet,
C0�0 � C. For the same reason, the range of �k � �k1, k2�
at the scale j is bounded as k1, k2 � 0, 1, . . . , 2j 2 1.

Averaging c��x� at each point �x, it is found that the av-
erage contrast can be represented as a simple wavelet su-
perposition: C � �x� � �c� � �x� ~ a0�0

P
j,�k jhj

j
Cj �k� �x�. Here

jhj is the first order moment of the distribution of the jhj’s,
and we have used the assumptions that all the hj �k’s have
the same marginal distribution and are independent across
the scales. By Fourier transforming this field, Ĉ � �f �, one
easily obtains the Fourier transform of the representation
wavelet, Ĉ� �f �, that reads

Ĉ� �f � �
1

a0�0

"
Ĉ � �f � 2

jhj

4
L� �f �

L�
�f
2 �

Ĉ

µ �f
2

∂#
, (7)

where L� �f � � �1 2 e22pif1 � �1 2 e22pif2�. This ex-
pression is very appealing. The right-hand side compares
the average contrast at two consecutive scales (related by
a factor of 2), and it expresses that the wavelet is obtained
as an observation of the scale transformation properties
of the images. The average jhj has an a priori known
value: jhj �

1
2 [7]. This allows one to use Eq. (7) with

no a priori knowledge about the data.
To obtain experimentally the representation wavelet,

Eq. (7) was applied to a large ensemble of natural images.
The data were 200 1024 3 1024 images selected at
random from van Hateren’s data set [12]. Figure 1 shows
the representation wavelet obtained with this procedure.
It exhibits two clear features: it is right-left symmetric

FIG. 1. Representation wavelet C for the image ensemble.
The function is represented in gray levels, and the darkest points
indicate the sites where it takes its smallest values.
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and roughly up-down antisymmetric with a sharp central
discontinuity (see Fig. 2). The first property is expected:
our world remains statistically unchanged when it is
reflected from left to right. The rough up-down antisym-
metry and the related discontinuity are probably due to
the sharp contrast between the sky and the ground.

IV. The projection into the experimental basis.—Once
the analyzer wavelet is obtained, it can be used to evalu-
ate the coefficients aj �k and from them, using Eq. (6), the
coefficients hj �k . Then, it is possible to check whether the
hj �k are scale independent, identically distributed variables.
In the affirmative case, this fact self-consistently demon-
strates that Eq. (7) is the intrinsic wavelet we are looking
for. It is immediate to check that the signs of the h’s are
independent of their absolute values, jhj, and also scale
independent, so it is necessary to verify only the indepen-
dence of the jhj’s.

The mutual dependence among the jhj �kj’s was esti-
mated by computing the correlation coefficients between
two jhj’s. As the number of possible pairs is very large,
only two types of correlations were considered, which
should be maximal by construction: those between con-
secutive scales ( j 2 1 and j) at equivalent positions, and
those between consecutive spatial positions ( �k and �k 1 �d,
where the components of �d take only the values 0 and 1)
at a fixed scale j.

Both correlation coefficients, denoted as rj and rj �d , re-
spectively, take values in �21, 1� and give a dimensionless
measure of the degree of statistical dependence. The ob-
served values of rj are very close to 0 (jrjj , 1022, j .

2), what confirms rather well the independence of the hj �k’s
under changes of scale. On the contrary, the correlation
coefficients rj �d are by no means negligible, although they
are extremely short ranged: the variables hj �k and hj �k0 are
independent when they are more than one pixel apart; after
that distance the two-point correlation rj �d decays dramati-
cally. It is important to note that there is no need of spatial
independence of the hj �k’s in our wavelet model. For this
reason, although short ranged, the observed dependence
is a significant source of information about the remaining
statistical structure at a fixed resolution layer. On the other
hand, the h’s define a system of almost completely inde-
pendent variables.

To confirm the validity of the wavelet representation,
Eqs. (3) and (7), one has still to check that the h’s are
identically distributed. Figure 3 exhibits the distribution of
ln jhjj for different scales j. The correspondence between
them is really very good.

V. Wavelet transparency and decorrelation.— It has
been frequently argued that the signal that arrives to the
primary visual cortex has been already decorrelated in
previous stages of the visual system [3,13]. In this case,
V1 would take care of coding more complex aspects
of images. In this regard, the way in which the mother
wavelet is constructed guarantees a remarkable property
of transparency to the power spectrum: it defines a code
that is somewhat independent of the second order statistics
of the images. The power spectrum of natural images ex-
hibits a power law behavior, S� �f � 	 f2�22e� [2]. Under
the assumption of translational invariance, the application
of the decorrelating filter to the contrast is equivalent to
multiplication in the Fourier domain by f12e�2. Denoting
the decorrelated contrast as Dc� �x�, it is immediate to see
that it has a representation similar to Eq. (3),

Dc� �x� �
X
j �k

a
0

j �k
DCj �k� �x� , (8)

where DC indicates the application of the decor-
relating operator to the representation wavelet and
a

0

j �k
� 2j�12e�2�aj �k . Defining now h

0

j �k
� 212e�2hj �k it

is concluded that the decorrelated images also possess a
random multiplicative process. The new representation
wavelet DC can be obtained from an ensemble of decor-
related images by means of Eq. (7). It is known that the
value of the exponent e has fluctuations from image to
image [14]. The relevance of the wavelet transparency is
that if the visual stimulus has been decorrelated before it
0
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FIG. 2. The wavelet C along the horizontal (left) and the vertical (right) axes.
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FIG. 3. Distribution of ln jhj j at the scales j � 2 (diamonds),
3 (crosses), 4 (squares), 5 (3), 6 (triangles), and 7 (crossed 3).

reaches V1, this area can use the type of filters described
in this paper regardless of the precise exponent of the
power spectrum.

VI. Conclusions.—We have shown that images can
be represented as multiresolution objects in terms of an
appropriate wavelet basis C, in which each resolution
level is an independent image. One of the advantages
of this representation is that it is based on the observed
properties of the contrast gradient [6,7], what in turn leads
to an automatic reduction of the redundancy. At the same
time the spatial correlations at a given scale are short
ranged, but still informative.

Once the wavelet is known, it is possible to devise a
compression technique based on the properties of this rep-
resentation. This would have two important advantages
with respect to other wavelet representations (see, e.g.,
[15]): first that the scale layers are independent, and sec-
ond that there exists a simple model for the distribution of
coefficients [6–8] that can be used in the coding.

These results have been obtained with the simplest
wavelet expansion, but the tools presented in this Letter
can be taken as the starting point to look for more realistic
visual filters. This search should be directed by the ex-
perimental observation that cells in V1 are edge detectors.
From this perspective, the expansion in Eq. (3) should be
generalized to include an orientational degree of freedom.
Filters of this type have been proposed in [16] and
found from an independent component analysis of natural
images [17]. These studies should be combined with the
use of overcomplete basis, this introduces redundancy but
the representation becomes stable under small changes in
the images [18].

This analysis could also be carried out over any physical
system with multiscaling properties, Eq. (4) (for instance,
turbulent flows in fully developed turbulence [11] ). For all
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these systems Eq. (7) could be applied to obtain the associ-
ated representation wavelet C. However, it would be nec-
essary to check the statements of scale independence and
identical distribution for the projection coefficients hj �k . If
both properties hold, the compact code so obtained would
be a valuable tool, and the interpretation of the possible re-
maining structure at each scale would be very meaningful.
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