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Abstract

We consider families of entire transcendental maps given by
Fλ,m(z) = λzm exp(z) where m ≥ 2. All these maps have a super-
attracting fixed point at z = 0 and a free critical point at z = −m.
In parameter planes we focus on the capture zones, i.e., we con-
sider λ values for which the free critical point belongs to the basin
of attraction of z = 0. We explain the connection between the dy-
namics near zero and the dynamics near infinity at the boundary
of the immediate basin of attraction of the origin, thus, joining
together exponential and polynomial behaviors in the same dy-
namical plane.

1. Introduction

In this paper, we combine symbolic dynamics with polynomial-like
theory to investigate the combinatorics of the Julia set of the families of
transcendental entire functions

(1.1) Fλ,m(z) = λzmez,

with m ≥ 2 and λ ∈ C \ {0}. The Julia set of an entire map f , J(f), is
the set of points where the family of iterates {fn} fails to be a normal
family. Its complement in C is an open set of the plane known as Fatou
set, where the dynamics is tame.

For all functions in (1.1), 0 is a critical and asymptotic value and
Fλ,m(−m) = λ(−m)m exp(−m) is a critical value. Therefore, these maps
belong to a general class of entire transcendental maps with only finitely
many critical and asymptotic values also known as critically finite. The
interest on critically finite maps resides in that they resemble rational
maps, as their Fatou set contains neither wandering nor Baker domains
(see [2], [14], [15] and [17]). In contrast, the point at infinity plays a
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crucial role. For instance, Picard’s Little Theorem says that an entire
function in any neighborhood of infinity assumes infinitely many times
each value in the complex plane with at most one exception.

The families Fλ,m have been previously considered in the literature.
In [4], Bergweiler considers functions related to Fλ,m to provide examples
of a Baker domain at a positive distance from any singular orbit. In [16],
Fagella and the first author present a thorough analysis of the topology
of capture zones in parameter plane and of Julia sets in dynamical plane.

As the exponential family Eλ(z) = λez is the transcendental version of
the quadratic family Qc(z) = z2+c, the family Fλ,2 is the transcendental
version of the one-parameter slice of the cubic family z 7→ z3 − 3a2z+ b,
given by

Ma(z) = z3 −
3

2
az2.

We review some of its properties here, for further details see [19]. It is
easy to see that Ma possesses a superattracting fixed point at z = 0 and
a free critical point at z = a. When a belongs to the basin of attraction
of the origin, we say that this critical point has been captured. The con-
nected components of the parameter space for which this phenomenon
occurs are thus called capture zones. Define the main capture zone as
the set of parameter values a for which the free critical point belongs to
the immediate basin of the origin. Roughly speaking, with the use of
internal and external rays, Milnor showed how the dynamics near zero
(conjugated to θ 7→ 2θ) meets the dynamics near infinity (conjugated
to θ 7→ 3θ) at the boundary of the immediate basin of attraction of the
origin. In [21] Roesch extended Milnor’s results to the family

Ma,m(z) = zm+1 −
m+ 1

m
azm.

We consider (1.1) as the transcendental version of Roesch’s family in
the following sense: for all nonzero values of λ, Fλ,m has a superattract-
ing fixed point at z = 0, and a free simple critical point at z = −m.

The dynamical behavior of the free critical point will be crucial to
describe the structure of the dynamical plane. Basically there are three
possibilities. Either z = −m is captured or it is associated to a Fatou
component different from the basin of z = 0, or it is not associated to
any Fatou component (landing on a periodic repelling point, escaping to
infinity, etc.).

In this paper we deal only with parameters in capture zones. The
topological description of Julia sets for these parameters has been previ-
ously addressed in a more general setting in [3], [20] where it has been
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shown that the Julia set consists of uncountable many path-components,
also known as hairs, and possibly with pinchings (see Section 2 for exact
definitions and results). Nevertheless, this topological description does
not give a full understanding of the combinatorics in the Julia set, and
this is precisely one of our main goals of the present work. In Propo-
sition A we address the topological description of Julia sets. Next, we
follow Milnor’s approach and study how the dynamics near zero meets
the dynamics of the tails of the Julia set near infinity. More specifically,
in Theorem B we show how the pinchings occur at the boundary of the
immediate basin of attraction of the origin. In order to present a clear
exposition we restrict its formulation to a particular case and discuss its
generalization in Theorem D. Finally, we completely describe accessible
points in the Julia set from the Fatou set in Theorem C.

The outline of the paper is as follows: in Section 2 we list definitions
and previous results concerning the topology of J(Fλ,m) and the fam-
ily Fλ,m. The statements of our main results are found at the end of
the section. The proof of Proposition A is found in Section 3. Then,
in Section 4 we prove Theorem B using a polynomial-like construction
around the origin and symbolic dynamics. The polynomial-like construc-
tion rigourously explains how Fλ,2 acts as z 7→ z2 around the origin. The
proof of Theorem C is found in Section 5. Finally in Section 6 we provide
a partial generalization of Theorem B by showing how Fλ,m acts as zm

around the origin for m > 2.
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2. Preliminaries and statement of the results

2.1. Julia sets of hyperbolic transcendental entire maps.

Nowadays there exists a comprehensive study related to dynamics and
topology of Julia sets for entire transcendental maps. Some of the early
prime works dealt mainly with complex exponential family Eλ(z) = λez,
[12], [11], [7], [22], while some generalizations to other entire tran-
scendental maps were also found in [12] and more recently in [3], [20].
Among several other topological results, it has been shown that under
certain assumptions, the Julia set of an entire transcendental map con-
sists, succinctly, by a Cantor set of curves extending to infinity in a
specific asymptotic direction, each one of them having a distinguished
landing point, called the endpoint. All points in these curves, except
for some particular endpoints, have forward orbits that tend to infinity
along the curves.

A formal characterization of the structure of the Julia set for some
entire transcendental maps appeared first in [12], where the authors
introduced the notion of an N -Cantor bouquet. For our purposes, we
review the dynamical construction here.

For a fixed N ∈ N, denote by

ΣN = {s = (s0s1s2 . . . ) | sj ∈ {0, 1, 2, . . . , N − 1} for each j},

the space of one-sided infinite sequences of N symbols and by σ the
right-shift map acting on ΣN .

Definition 2.1. An invariant set CN of J(f) is an N -Cantor bouquet
if there is a homeomorphism h : ΣN × [0,∞) → CN that satisfies the
following conditions:

(a) For the projection π : ΣN × [0,∞) → ΣN ,

π ◦ h−1 ◦ f ◦ h(s, t) = σ(s).

(b) For each s ∈ ΣN ,

lim
t→∞

h(s, t) = +∞.

(c) If t > 0, then for each s ∈ ΣN ,

lim
j→∞

f j(h(s, t)) = +∞.

Once s ∈ ΣN has been fixed, the curve {h(s, t) | t > 0} is called a tail
and h(s, 0) = zs is its endpoint. The union of a tail with its endpoint is
known as a hair associated to s and in this case, we say that the hair
lands at zs. For examples of non-landing hairs that instead accumulate
on an indecomposable continuum, see [10].
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In order to exemplify this definition, we sketch the construction of
an N -Cantor bouquet for Eλ(z) = λez, with λ ∈ (0, 1/e). We refer the
reader to the proof of Theorem 3.3 in [12] and Proposition 1.2 in [9]
for more details. For these parameters there exists a unique attracting
fixed point that traps the orbit of the unique asymptotic value z = 0,
therefore Eλ is hyperbolic. The horizontal lines Ik = {z ∈ C | Im(z) =
(2k + 1)π}, k ∈ Z, are infinitely many connected components of the
preimage of the negative real line R− under Eλ. Denote by Mk the open
strip bounded by Ik and Ik+1. A point z ∈ J(Eλ) has a well defined
itinerary s = (s0, s1, . . . ) if and only if Ek

λ(z) ∈ Msk
, k ≥ 0. Fix N and

take constants ξ and η such that the image under Eλ of each rectangle

Rk = {z ∈ C | ξ < Re(z) < η, (2k + 1)π < Im(z) < (2k + 3)π}

contains R = ∪Rk for k = 0, 1, . . . , N − 1. Since the exponential map
is expansive on R one can show that each point, with an orbit never
escaping from R, has a unique itinerary in ΣN and belongs to J(Eλ).
The set of non-escaping points is shown to be homeomorphic to ΣN and
constitute the endpoints of the bouquet.

Redefining constants ξ and η, it is possible to obtain for each s ∈
ΣN a sequence of rectangles Rsk

⊂ Msk
with increasing real part and

Rsk
⊂ Eλ(Rsk−1

). Similar arguments show the existence of a single point
in Rs0

with an orbit escaping to infinity from the right hand direction
following s. A continuity argument shows that in fact there exists a
continuous curve (or tail) inside Ms0

with same dynamics. Appropriate
pullbacks of the tail can be done to see how the tail limits to the left at
the endpoint associated to s, giving thus a full hair.

As ΣN+1 naturally contains ΣN , it follows that CN ⊂ CN+1 for
each N , and the set

C =
⋃

N≥0

CN

is known as a Cantor bouquet. In Figure 1(a) the Cantor bouquet of an
exponential map is shown, where all hairs land and extend to infinity
to the right. The main result in [12] is that for critically finite entire
maps that meet certain growth condition, the Julia set of f contains
a Cantor bouquet. This is the case for Eλ with 0 < λ < 1/e with a
unique attracting fixed point and the Fatou set coinciding with its basin
of attraction.

Surprisingly, it was shown in [1] that every Cantor bouquet associated
to the exponential family for 0 < λ < 1/e, as for λ sinh z and λ cosh z
(also with a completely invariant basins of attraction of a single fixed
point), are in fact homeomorphic to a unique topological abstract model
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called straight brush. This remarkable result leads to an alternative
definition of a Cantor bouquet as a set homeomorphic to a straight brush.
Although this equivalence is used sometimes in the literature, it is not
straightforward to argue that the Julia set of an entire transcendental
map is homeomorphic to the straight brush.

(a) An attracting fixed
point for λ=−0.05+1.14i.

(b) An attracting 2-cycle
for λ = −4 + 1.14i.

(c) An attracting 3-cycle
for λ = −1.06 + 1.89i.

Figure 1. The Julia set for Eλ(z) = λez is shown in white.

A key ingredient in the above descriptions of Julia sets is the existence
of an attracting fixed point and the Fatou set consisting only of its im-
mediate basin of attraction. With these assumptions, Barański studied
in [4] the structure of Julia sets for more general maps. More precisely,

Theorem 2.2 (Barański, 2007). Let f be an entire transcendental func-
tion of finite order so that all critical and asymptotic values are contained
in a compact subset of a completely invariant attracting basin of a fixed
point. Then J(f) consists of disjoint hairs homeomorphic to the half-
line [0,∞). In particular, all rays land on a distinguished endpoint.

Although Julia sets of entire transcendental functions may resemble a
union of hairs, some endpoints may become the landing points of more
than one hair. A multiple landing is commonly known as a pinching.
For the exponential family, the existence of an attracting cycle of pe-
riod two or higher provides sufficient conditions for pinchings, [5]. See
Figures 1(b)–(c). In order to understand this new kind of Julia sets, a
topological abstract model known as modified straight brush was given
in [6].

Recently, Rempe [20] has shown that these pinchings occur in dy-
namical planes for a large number of entire transcendental maps of finite
order belonging to class B (that is, the class of entire transcendental
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maps where Sing
(

f−1
)

is a bounded set). This result is a consequence
of a strong rigidity theorem on the escaping set of the map. The escaping
set, I(f), is the set of points whose orbits under f tend to infinity. For
an entire transcendental map, the Julia set coincides with the bound-
ary of I(f). It is worth noticing that all points on a tail belong to the
escaping set, while some endpoints may have escaping orbits too.

Roughly speaking, the rigidity theorem states that, if f, g ∈ B are
quasiconformally equivalent near infinity (that is, there exist quasicon-
formal maps φ, ψ : C → C that satisfy f ◦ φ = ψ ◦ g in a neighborhood
of infinity, [15]), then their escaping sets are quasiconformally conjugate
near infinity. In light of this, Rempe was able to study Julia sets of
hyperbolic maps in the class B, that is, entire maps with all its singular
values belonging to an attracting basin of a periodic point. For our pur-
poses (in particular, the proof of Proposition A), we merge Theorem 1.4
and Theorem 5.2 in [20] into the following result.

Theorem 2.3 (Rempe, 2009). Let f, g ∈ B be two hyperbolic maps of
finite order, quasiconformally equivalent near infinity. Assume also that
Sing(g−1) is contained in a compact subset of the completely invariant
basin of attraction of a fixed attracting point for g. Then f and g are
conjugate on their sets of escaping points and the conjugacy extends to a
continuous surjective map from J(g) onto J(f). In particular all hairs
land, and pinchings may also happen.

2.2. The family Fλ,m.

We state without proofs some results on the parameter and dynamical
plane of Fλ,m that we will strongly use in subsequent sections. Recall
that Fλ,m(z) = λzmez. Clearly, there exists a superattracting fixed point
at z = 0 for all choices of λ and m ≥ 2. Denote its basin of attraction
by

(2.1) A(0) = Aλ,m(0) = {z ∈ C | Fn
λ,m(z) → 0 as n→ ∞},

and its immediate basin by A∗(0) = A∗
λ,m(0). In [16] it is proved that

A∗(0) contains the disk Dε = {z ∈ C | |z| < ε} where ε depends on λ
and m. Moreover, Fλ,m has also a free simple critical point at z = −m.
With this in mind, define a capture zone as a connected component in
parameter plane given by

(2.2) Ck
m ={λ∈C | F k

λ,m(−m)∈A∗(0), F j
λ,m(−m) /∈A∗(0), 0≤j≤k−1},

for each m ≥ 2 and k ≥ 0. Any λ ∈ Ck
m is called a capture parameter. In

particular

(2.3) C0
m = {λ ∈ C | −m ∈ A∗(0)},
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is known as main capture zone. The next theorem gathers some of the
most important results related to the family Fλ,m and found also in [16].

Theorem 2.4. The following statements hold for all m ≥ 2.

(a) The main capture zone is a bounded component. If λ ∈ C0
m, then

A(0) = A∗(0).
(b) C1

m = ∅. In other words, Fλ,m(−m) ∈ A∗(0) if and only if −m ∈
A∗(0).

(c) C2
m is an unbounded component extending into the left or right hand

plane depending on m.
(d) For k > 2, Ck

m has infinitely many connected components extending
to infinity in an asymptotic direction.

(e) For k ≥ 2, if λ ∈ Ck
m then A(0) has infinitely many connected

components. All these components, except A∗(0), are unbounded.

In Figure 2 we illustrate the parameter plane of Fλ,m for m = 2 and 3.
The main capture zone is drawn in blue while other capture zones are
shown in red. The parameter values for which the orbit of the free critical
point does not converge to zero (so, it is not captured) but it is bounded
are drawn in orange. The parameter values for which the orbit of the
free critical point is unbounded are drawn in black. If m is even, capture
zones extend to +∞ as the real part of λ tends to +∞, whereas if m is
odd these strips extend to −∞ as the real part of λ tends to −∞.

(a) Range (−24, 8) × (−16, 16). (b) Range (−5, 11) × (−8, 8).

Figure 2. Parameter plane for (a) Fλ,2 and (b) Fλ,3.
Color codes are explained in the text.
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In Figures 3(a)–(c), we display the Julia set of Fλ,2 for two different
values of λ (Figure 3(c) is a magnification of Figure 3(b)). The immediate
basin of attraction of z = 0 is shown in blue (although it is not visible in
Figure 3(b)). The connected components A(0) \A∗(0) are shown in red
and the Julia set is in black. In Figure 3(a) λ is drawn from C0

2 and the
Julia set is a union of disjoint hairs. In Figures 3(b) and (c) the λ value
belongs to C2

2 and the Julia set is a union of hairs with pinchings located
at the boundary of the immediate basin of attraction of z = 0 (and all
its preimages).

(a) λ=0.32 + 0.82i.
Range (−15, 15)×(−15, 15).

(b) λ = −21 + 3i.
Range (−15, 15)×(−15, 15).

(c) λ = −21 + 3i.
Range (−.2, .2)×(−.2, .2).

Figure 3. The Julia set for Fλ,2. Color codes are ex-
plained in the text.

2.3. Statement of the results. Throughout this work, we only deal
with parameter values belonging to a capture zone. Under this assump-
tion, it is straightforward to argue that the Fatou set coincides with the
basin of attraction of z = 0, and consequently, its complement is the
Julia set. The first result follows almost immediately from Theorem 2.2
and Theorem 2.3.

Proposition A. Let λ ∈ Ck
m, m ≥ 2, k ≥ 0. Then the Julia set

of Fλ,m is the union of hairs each one of them homeomorphic to [0,∞).
Moreover, if k = 0 the hairs are pairwise disjoint, while if k ≥ 2 some
of the hairs may share the same (non-escaping) endpoint.

Our second, and main result of this article, relates to the case k ≥ 2,
as we explain how the pinchings occur by matching the dynamics of the
polynomial map z 7→ zm with the dynamics of z 7→ λez. The bridge be-
tween these dynamical behaviors is build by means of symbolic dynamics
and polynomial-like constructions, showing thus how tails of Fλ,m land,
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in particular, at the boundary of the basin of attraction of z = 0. See
Figure 3(c).

For simplicity and clarity in the exposition, we state and prove the
following result for particular values of m and k. We have chosen them
in order to capture the main arguments of the construction without
introducing overwhelming notation. In Section 6 we state a more general
case for arbitrary values of m and k and discuss the refinement of the
previous arguments that will constitute its proof.

Theorem B. Let Fλ,2(z) = λz2ez and assume that λ ∈ C3
2 . Then,

the boundary of A∗(0) is a quasi-circle and Fλ,2 restricted to ∂A∗(0)
is conjugate to θ 7→ 2θ on the unit circle. Each point in the boundary
of A∗(0) is an endpoint of a hair. Moreover there exists a domain Γ ⊂ C

such that

(a) If Fλ,2(−2) /∈ Γ, then each point in ∂A∗(0) is a landing point of a
unique hair, except the fixed point at ∂A∗(0) and all its preimages,
which are endpoints of exactly two hairs.

(b) If Fλ,2(−2) ∈ Γ, then each point in ∂A∗(0) is a landing point of a
unique hair, except the two periodic points of period two on ∂A∗(0)
and all their preimages, which are endpoints of exactly two hairs.

Our third result addresses the question of accessible points in J(Fλ,m)
from the Fatou set. Let f be an entire transcendental map. A point z0
in J(f) is accessible from the Fatou set if there is a continuous curve
γ : [0, 1) → C for which γ(t) lies in the Fatou set for all t and lim

t→1−

γ(t) =

z0. Notice that such a curve must therefore lie in a single component
of the Fatou set. The existence and characterization of non-accessible
points is an interesting problem by itself that arises not only in the
entire transcendental setting (see for example [8], [6]) but also in rational
dynamics, [18]. For instance, in the exponential family Eλ, for λ ∈
(0, 1/e), the only accessible points are the endpoints. We can draw a
result concerning the set of accessible points of the Julia set from the
basin of attraction of 0.

Theorem C. Let m ≥ 2 and k ≥ 2. The set of points in J(Fλ,m) that
are accessible can be completely characterized as follows.

(a) If λ ∈ C0
m, this set coincides with the set of all endpoints.

(b) If λ∈Ck
m, this set coincides with the set of endpoints lying in ∂A∗(0)

and all its preimages. On the other hand, for any natural num-
ber N there exists an N -Cantor bouquet that contains only non-
accessible points.
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Remark 2.5. Statement (a) in the above theorem has been already proved
in [3]. We include it here for completeness.

3. Proof of Proposition A

In Proposition A, the case when k = 0 follows directly from The-
orem 2.2, so we only consider k ≥ 2. From Theorem 2.3 it follows
that, if two maps are quasiconformally equivalent near infinity, then
their escaping sets are homeomorphic. In our case, let λ1 ∈ C0

m and

λ2 ∈ Ck
m for some k ≥ 2. Using φ1(z) = λ2

λ1

z and φ2(z) = z we have
that φ1 ◦ Fλ1,m = Fλ2,m ◦ φ2, showing thus that the maps are quasi-
conformally equivalent. Thus, Theorem 2.3 implies the existence of a
homeomorphism ψ : I(Fλ1,m) → I(Fλ2,m) between escaping sets that
extends to a surjective continuous map

ψ : J(Fλ1,m) → J(Fλ2,m).

Observe that the only points in J(Fλ1,m) which do not escape are con-
tained in the set of endpoints (e.g., repelling periodic points). Thus,
the homeomorphism ψ may only extend to a surjective continuous map.
Consequently J(Fλ2,m) consists only of landing hairs, and due to the lack

of injectivity of ψ, two or more endpoints in J(Fλ1,m) may be mapped
to the same endpoint in J(Fλ2,m) and thus producing a pinching.

4. Proof of Theorem B

We begin by showing that the boundary of A∗
λ,2(0) is a quasi-circle

using a polynomial-like construction (see [13] for an excellent exposition
on polynomial-like mappings). After that, we use symbolic dynamics to
show how the hairs land on ∂A∗

λ,2(0) and characterize the pinchings.
Before we start the proof, we describe a partition of the dynamical

plane derived from the components of the preimage of R− for all m ≥ 2
and any capture parameter λ. Hereafter, denote by Arg(·) ∈ (−π, π] the
principal argument. From the expression Fλ,m(z) = λzmez, it is easy to
see that

Arg(Fλ,m(z)) = Arg(λ) +mArg(z) + Im(z) (mod 2π),

so that, finding components of the preimage of R− is equivalent to solve
Arg(Fλ,m(z)) = π. Set r = |z| and α = Arg(z) so the above equation
becomes

r = ρk(α) =
(2k + 1)π −mα− Arg(λ)

sin(α)
,
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where α ∈ (−π, π) and k ∈ Z. Thus, for fixed λ and m, the components
of the preimage of R− are given by

(4.1) σk = ρk(α)eiα.

In Figure 4 we show some of these curves for m = 5. As their real
parts tend to +∞, all the σk are asymptotic to the horizontal lines
Im(z) = (2k + 1)π − Arg(λ). There are m of these curves that start
at the origin (namely, σ−j , . . . , σj−1 when m = 2j, or σ−j , . . . , σj when
m = 2j + 1), while all others start at −∞.

σ0

σ1

σ2

σ
−1

σ
−2

σ
−3

σ
−4

σ
−5

σ
−6

σ3

σ4

σ5

(a) Graphs of σk for m = 5. (b) The Julia set of Fλ,5 lying over
the graphs of σk .

Figure 4. Strips in dynamical plane.

The family of curves σk, k ∈ Z, divides the plane into infinitely many
regions or strips. One of these regions, denoted in what follows by W ,
contains R− and is bounded by four of these curves, namely, σj , σj−1,
σ−j and σ−(j+1) when m = 2j, and by σj+1, σj , σ−j and σ−(j+1), when
m = 2j + 1. We say that W has two arms in the far right-hand side
plane and refer to the upper and lower arms of W in the natural way.
All other regions, denoted by Mk, are bounded by σk and σk+1 with
k 6= j − 1,−j − 1 if m = 2j, and k 6= j,−j − 1 if m = 2j + 1.

From the above construction, it is clear that

Fλ,m : Mk → C \ R
−

is a bijective map for each k. Denote by

(4.2) Lk : C \ R
− →Mk
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the inverse of Fλ,m taking values in each Mk. In contrast, the map

Fλ,m : W → C \ R
−

is a covering map of degree 2, since contains the critical point z = −m
of multiplicity one. Before starting the polynomial-like construction, we
need the following result.

Lemma 4.1. Let λ be a parameter in C3
2 . Then the Fatou component

that contains Fλ,2(−2) does not intersect the negative real line.

Proof: We begin by assuming that |λ| > e. We first show that the
immediate basin of attraction of z = 0 is bounded, and consequently, if
U ⊂ F−1

λ,2(A∗(0)) denotes the connected component of the Fatou set that

contains F 2
λ,2(−2), then U is contained in a left-hand side plane.

An easy computation shows that if |z| = 1 or if Re(z) = −1, then
|Fλ,2(z)| > 1. Since z = 0 is a superattracting fixed point, there must
be a preimage of the unit disk inside itself and containing the immediate
basin. Moreover, since U contains a neighborhood of −∞, it cannot
cross Re(z) = −1 as points in this vertical line map outside |z| = 1 while
Fλ,2(U) is contained in A∗(0).

Denote by V the Fatou component in F−1
λ,2(U) that contains Fλ,2(−2).

We show that V cannot cut across R−. Again, an easy computation
shows that the image of R− ∪ {0} under Fλ,2 is the segment from z = 0
to z = Fλ,2(−2) contained in the straight line

y1(x) =
Im(λ)

Re(λ)
x, x ∈ R.

Since |λ| > e, there exists a value x0 = x0(λ) < −1 so the preimage
of the unit circle that lies in C \ D can be parametrized by the curves

y±(x) = ±

√

1

|λ|
e−x − x2, x ≤ x0,

(see [16] for further details). Since U maps inside the unit circle, it
follows that U lies to the left-hand side of the graphs y±(x), and so
Re(z) < x0 for all z ∈ U . If Re(Fλ,2(−2)) > x0, then V cannot cut
across R− since for every x ≤ 0, either 0 ≤ Re(Fλ,2(x)) (if Re(λ) ≥ 0),
or x0 < Re(Fλ,2(−2)) ≤ Re(Fλ,2(x)) < 0 (if Re(λ) < 0), and thus
Fλ,2(x) 6∈ U .



126 A. Garijo, X. Jarque, M. Moreno Rocha

Assuming Re(Fλ,2(−2)) ≤ x0, then

|Im(Fλ,2(−2))| > y+(Re(Fλ,2(−2))).

We claim that the straight line y1(x) cuts the graph of y±(x) only
once and from the above inequality, this crossing occurs at some x <
Re(Fλ,2(−2)). Indeed, it can be verified that the equation

1

|λ|
e−x − x2 =

(

Im(λ)

Re(λ)

)2

x2,

has a unique solution for x < −1 when |λ| > e, and consequently V has
an empty intersection with R−.

Observe that the boundedness of A∗(0) does not depend on the con-
dition |λ| > e. By Theorem 2.4, all connected components C3

2 are un-
bounded, thus a standard argument of continuous dependence of Julia
sets on the parameter λ moving inside a hyperbolic component shows
that A∗(0) must remain bounded for all parameter values in C3

2 . Similar
arguments as those given above show that U is contained in the left-hand
side plane and the result follows suit for all λ ∈ C3

2 .

Proposition 4.2. Let λ be a parameter in C3
2 and r > 0 large enough.

Then there exist open, bounded and simply connected domains Ur and Vr

of C such that 0 ∈ Ur ⊂ Vr and satisfying (Fλ,2, Ur, Vr) is a polynomial-
like mapping of degree 2. Moreover, the filled Julia set of (Fλ,2, Ur, Vr)

is a quasi-disk and coincides with A∗
λ,2(0).

Proof: Since λ ∈ C3
2 , we have that F 3

λ,2(−2) lies in the immediate basin

of 0. Consider a non-closed simple curve completely contained in A∗
λ,2(0),

joining 0 and F 3
λ,2(−2) and coinciding with an straight line inside Dε

(ref. Section 2.2). Pulling back this curve twice, it defines a simple
curve γ in the Fatou set joining +∞ and Fλ,2(−2) that cuts across each
straight line Re(z) = M once, for sufficiently large M > 0. The proof is
divided in three steps, and the third step in two cases.

The first step is to consider the preimage of γ in W . By Lemma 4.1 it
follows that γ ∩ R− = ∅, so each connected component of the preimage
of γ belongs to one of the Mi or to W . Now, since z = −2 is a simple
critical point, the preimage of γ consists of two simple curves that meet
only at that point. Denote these curves by α and β and note that they
extend to +∞ along a different arm of W . To fix notation, let α be
the curve extending along the lower arm and β the one extending in the
upper arm.
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Figure 5. Dynamical plane of Fλ,2 divided into fun-
damental domains. The curves α and β are drawn in
dotted lines. The components of the preimages of α
and β in each Mk, denoted by αk and βk, are drawn in
dashed lines.

The second step is to take the components of the preimage of α ∪ β
in W and on each fundamental domain Mk. Clearly, F−1

λ,2(−2) consists
of infinitely many points, denoted by qk, and each one lying in a unique
σk curve. On the other hand, using the inverse branches Lk in (4.2), we
get exactly one preimage of α and one preimage of β in each domain Mk.
We denote them by αk and βk, respectively. By continuity, αk and βk

are joined at the corresponding point qk. See Figure 5. The components
of the preimages of α and β in W are obtained as follows. Since Fλ,2 is a
covering map of degree 2 in W , components of the preimages consist of
four curves denoted by αi

W and βi
W , i = 1, 2, extending to +∞ through

the lower (i = 1) and upper (i = 2) arms of W .
The third step in the polynomial-like mapping construction is to de-

fine the sets Ur and Vr of the statement with the desired properties. We
denote by Γ the connected component of the complement of α ∪ β con-
taining the origin. The proof splits in two possible scenarios depending
on the location of Fλ,2(−2) with respect of Γ.
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Case 1. Fλ,2(−2) 6∈ Γ. Far to the right, the relative position of α
and β with respect to {α1

W , β1
W , α2

W , β2
W } when going from bottom to

top of Γ is either {α, α1
W , β1

W , β, α2
W , β2

W } if Fλ,2(−2) lies below α, or
{α1

W , β1
W , α, α2

W , β2
W , β} if Fλ,2(−2) lies above β. To see the claim sup-

pose that Fλ,2(−2) lies below α (the second case is similar). Let L be a
vertical segment far to the right and contained in the lower arm of W .
By construction, its bottom and top endpoints are in σ−2 and σ−1 re-
spectively, so Fλ,2(L) is a simple curve that surrounds the origin starting
and ending at R−. As we move in L from bottom to top, Fλ,2(L) travels
in a counterclockwise direction, cutting γ, α and β in this order. Their
components of the preimage located in the lower arm of W are ordered
as α, α1

W and β1
W . For the upper arm of W the arguments are similar.

See Figure 6(a).
For any r > 0 sufficiently large, define Vr = {z ∈ Γ | Re z < r} and

let Ur be the connected component of the preimage of Vr containing the
origin. Then Ur is bounded by pieces of {α1

W , β1
W , α−1, β−1} plus two

(almost) vertical lines. Clearly U r ⊂ Vr and Fλ,2 maps ∂Ur onto ∂Vr in
a 2-to-1 fashion. Thus (Fλ,2, Ur, Vr) is the desired polynomial-like map
of degree 2. In Figure 7(a) the sets Ur and Vr are illustrated.
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(a) Case 1 in the proof of Proposi-
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(b) Case 2 in the proof of Proposi-
tion 4.2.

Figure 6. Sketch of the relative positions of α and β
with respect to their preimage components in W .

Case 2. Fλ,2(−2) ∈ Γ. Since Fλ,2(−2) belongs to the Fatou set and takes
two iterates to be in A∗(0), we have that Fλ,2(−2) must belong to one of

the two connected components of F−2
λ,2(A∗(0)) in Γ. In general for each

k ≥ 2 and m ≥ 2, F−k
λ,m(A∗(0)) consists of finitely many unbounded and

connected components extending towards ∞ when m is even, or −∞
when m is odd. We name these type of components fingers.
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(a) Polynomial-like construction for
m = 2 and k = 3 when Fλ,2(−2) 6∈ Γ.
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(b) Polynomial-like construction for
m = 2 and k = 3 when Fλ,2(−2) ∈ Γ.

Figure 7. Domains Ur and Vr in Proposition 4.2.

Denote by F the finger where γ is located. Then, far to the right, the
relative position of the curves α and β with respect to {α1

W , β1
W , α2

W , α2
W }

when going from bottom to top of Γ is {α1
W , α, β1

W , α2
W , β, β2

W } (regard-
less of the finger where γ is located). See Figure 6(b). The above claim
follows easily from similar arguments as in Case 1.

Let r be a positive real number such r > 1+Re(Fλ,2(−2)) and γ∩{z |
Re(z) = r}, which is a single point by the construction of γ. We define

B̃ε(γ) to be a closed ε-neighborhood of a piece of γ, completely contained
in F . More precisely,

(4.3) B̃ε(γ) = {z ∈ F | Re(z) ≤ r and dist(z, γ) ≤ ε},

where dist(z, γ) denotes the natural distance between compact sets. Let

Bε(γ) be the union of B̃ε(γ) and, if they exist, the bounded components

of the complement of B̃ε(γ), so that Bε(γ) is simply connected.
Let now Vr = {z ∈ Γ | Re(z) < r} \ Bε(γ) and define Ur as the con-

nected component of the preimage of Vr containing the origin. We claim
that, for r > 0 large enough, (Fλ,2, Ur, Vr) is the desired polynomial-like
mapping of degree 2. To see this, we study the preimage of the bound-
aries of Vr in Γ. The preimage of the arcs of α and β that bound Vr

are arcs of the curves β1
W , α−1, β−1 and α2

W . The preimage of Bε(γ)
in Γ has two connected components: one is a connected component con-
tained in M−1, and the other is a connected component contained in
the intersection of Γ with a small neighborhood of a piece of α ∪ β.
Finally, the preimage of Γ ∩ {z | Re z = r} is the suitable union of (al-
most) vertical lines that bound Ur from the right. This construction is



130 A. Garijo, X. Jarque, M. Moreno Rocha

illustrated in Figure 7(b). Since Ur ⊂ Vr and the map Fλ,2 : Ur → Vr

sends ∂Ur to ∂Vr with degree 2, we conclude that for r large enough,
the triple (Fλ,2, Ur, Vr) is a polynomial-like mapping of degree 2.

Our final step is to show that the filled Julia set of (Fλ,2, Ur, Vr) is
a quasi-disk. By the Straightening Theorem, [13], there exists a quasi-
conformal mapping ϕ that conjugates Fλ,2 to a polynomial Q of degree 2
on the set Ur. That is (ϕ ◦ Fλ,2 ◦ ϕ−1)(z) = Q(z) for all z ∈ Ur. Since
z = 0 is a superattracting fixed point for Fλ,2 and ϕ is a conjugacy,
we have that z = 0 is superattracting for Q. Hence, after perhaps a
holomorphic change of variables, we may assume that Q(z) = z2. Thus,
the filled Julia set of (Fλ,2, Ur, Vr) given by

K(Fλ,2) = {z ∈ Ur | Fn
λ,2(z) ∈ Ur for all n} =

⋂

n≥0

F−n
λ,2 (Ur),

coincides with A∗(0) and is the image under the quasi-conformal map ϕ−1

of the closed unit disk. So ∂A∗(0) is a quasi-circle. Using ϕ we can
parametrize ∂A∗(0) so that any point z ∈ ∂A∗(0) can be written as
z = ϕ−1(θ), or simply z = zθ, for some θ ∈ S1. Since ϕ conjugates Fλ,2

on ∂A∗(0) with the map θ 7→ 2θ on S1, we have that Fλ,2(zθ) = z2θ.

An important consequence of the previous proposition is that the only
points in Ur that never escape this domain under forward iteration are
precisely the points in A∗

λ,2(0), which is a quasi-disk. By construction,

all points in ∂A∗
λ,2(0) do belong to the Julia set but do not belong to

the escaping set, so they must be endpoints of at least one hair. Thus
we have

Corollary 4.3. Each point in ∂A∗
λ,2(0) is the landing point of at least

one hair in the Julia set.

What remains to prove involves the use of symbolic dynamics that
will allow us to show how pinchings occur at the boundary of A∗

λ,2(0).
As stated in Theorem B, these pinchings will depend on the relative
position of Fλ,2(−2) with respect to the boundaries of Γ.

Case 1. Fλ,2(−2) /∈ Γ. Fix r large enough and let Ω be the connected
component of the preimage of Γ containing 0. Observe that Ω is the
union of Ur and two strips Hi, i = 0, 1 extending to infinity in the
asymptotic direction. Also ∂Ω (as well as ∂Γ) belongs to the Fatou set.
By the above corollary, there are uncountable many landing points in
the interior of Ur, and thus, uncountably many hairs crossing the right-
hand side boundary of Ur (or equivalently, the left-hand side boundary
of Hi).
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Next step is to characterize hairs with endpoints in the boundary
of A∗(0). If one of those hairs has an endpoint in Ur but not in ∂A∗(0),
it must eventually escape from Ω since by Proposition 4.2, the only points
in the Julia set with forward orbits completely contained inside Ur are
the points in ∂A∗(0). Consequently hairs with endpoints in ∂A∗(0) must
remain under forward iteration inside Ω and, respectively, their tails
must also remain in H0 ∪H1. Since each Hi maps one-to-one into Γ \Vr

we can associated to each of those tails an itinerary s ∈ Σ2 in the natural
way. And viceversa, for each sequence s ∈ Σ2 there is a unique tail in Ω
with this itinerary. Indeed, the existence and uniqueness of a tail with
prescribed itinerary can be guaranteed by the action of Fλ,2 over the
left-hand side boundary of Hi, which cuts across each Hi in an almost
vertical line for all r sufficiently large. And observing that far to the right
Fλ,2 behaves like the exponential map, continuity arguments (similar to
those described in Section 2 for an N -Cantor bouquet) guarantee the
existence of tails associated to itineraries in Σ2.

To finish the proof, note that each of the endpoints in ∂A∗(0) has
dynamics governed by θ 7→ 2θ and the tails have associated a unique
sequence s ∈ Σ2. This will determine how many tails land on each
endpoint. Indeed, there are two fixed tails associated to 0 and 1, and a
unique fixed point in ∂A∗(0), so both fixed tails must land on it giving
two pinched hairs. The preimage of these hairs in Ω contains two new
hairs (with sequences 10 and 01) landing at the preimage point of the
fixed point in ∂A∗(0), thus again given a pinching. Clearly, this type of
pinching occurs at each point in the backward orbit of the fixed point
restricted to ∂A∗(0).

Any other point not contained in the backward orbit of the fixed point
has a unique tail landing on it. To see this, let z ∈ ∂A∗(0) be one of
those points and set θ = ϕ(z). Then, the itinerary for θ in S1 is given
by its binary expansion whereas from the construction above, the tail
landing on z must share the same itinerary with respect to H0 and H1.
Since there is a unique tail associated to an itinerary s ∈ Σ2, the result
follows.

Case 2. Fλ,2(−2) ∈ Γ. Select r > 0 large enough and let Ω be the con-
nected component of the preimage of Γ containing 0, minus an
ε-neighbourhood of a piece of γ, as in (4.3). Observe that Ω is the union
of Ur and four arms Hi, i = 0, . . . , 3, extending to infinity in the asymp-
totic direction. We know that on the right-hand side boundary of Ur

there are infinitely hairs crossing it with landing points inside Ur, since
the boundary of Ω belongs to the Fatou set. As before, the hairs with
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endpoints in Ur but not in ∂A∗(0) must eventually escape under forward
iteration from Ω, and hairs with endpoints in ∂A∗(0) must remain in Ω,
so their tails must remain in ∪Hi. However, in this case, the dynamics
on those hairs are governed by a subshift of four symbols, since each
strip fails to cover ∪Hi under the action of Fλ,2.

Labeling the strips in an increasing order from bottom to top, the
transition matrix of the subshift is given by

M =









0 0 0 1
1 1 1 0
0 0 0 1
1 1 1 0









where aij = 1 (respectively, aij = 0) means the strip Hi covers (re-
spectively, does not cover) Hj . For instance, there is a unique fixed
sequence 1 and four period two sequences given by 03, 30, 23 and 32.
Denote by ΣM the space of allowed sequences generated by M .

As before, we can associate to any tail in ∪Hi with endpoint in ∂A∗(0)
a sequence in ΣM and viceversa. To finish the proof, note that each of the
endpoints in ∂A∗(0) has dynamics governed by θ 7→ 2θ. We construct a
partition in ∂A∗(0) to determine how many tails land on each endpoint.

From the transition matrix is easy to see the existence of a unique fixed
tail (with itinerary 1) that in turn, must land at the unique fixed point in
∂A∗(0). Now, we can compute periodic points of period two in ∂A∗(0).
Under the angle doubling map restricted to S1, these points are θ = 1/3
and θ = 2/3. Using the conjugacy ϕ−1, denote the corresponding 2-
periodic points in ∂A∗(0) by z1/3 and z2/3. As mentioned before, the

four tails of period two have sequences 03, 30, 23 and 32. An easy
combinatorial argument shows that the tails associated to 03 and 32
land at a single endpoint of period two whereas the tails associated to 30
and 23 land in the other periodic point. The set of periodic points of
period two and their preimages, namely z1/6, z1/3, z2/3 and z5/6 defines
the desired partition on ∂A∗(0). To match the sequences in ΣM with this
partition, we label them in the following way: traveling along ∂A∗(0) in
a counterclockwise direction, associate the symbol 0 to the arc joining
z2/3 and z5/6, the symbol 1 to the arc joining z5/6 and z1/6, 2 to the arc
joining z1/6 and z1/3, and 3 to the arc joining z1/3 and z2/3. We left to
the reader to verify that under Fλ,2 the arc with symbol 0 covers the arc
with symbol 3 and so on. Hence, the transition matrix for this partition
is exactly M .

As before, each point disjoint from the backward orbits of z1/3 and z2/3

has a unique itinerary s ∈ ΣM , and by uniqueness of the tails, this point
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is the landing point of a single tail associated to s. This concludes the
proof of Theorem B.

5. Proof of Theorem C

In this section we prove our result concerning accessibility of points in
the Julia set. Part (a) follows directly from Theorem C in [3], since when
λ belongs to C0

m, Fλ,m has a completely invariant basin of attraction.
Part (b) is shown as follows. First, we claim that a point z0 in the

Julia set is accessible if and only if it belongs to the boundary of some
Fatou component. Assume first that z0 belongs to the boundary of
some connected component U in the Fatou set. From the polynomial-
like construction (see Proposition 4.2) U is a quasi-disk, so there exists
a quasi-conformal map ϕ : U → D. Setting θ0 = Arg(ϕ(z0)), the curve
γ(t) = ϕ−1(t · eiθ0), t ∈ [0, 1), is an accessible path for z0. The reverse
implication is straightforward.

There are points in J(Fλ,m) that are not accessible, as they do not
belong to the boundary of any connected component of the Fatou set. In
particular any point whose orbit escapes to infinity is non-accessible, and
those points are dense in the Julia set. Moreover, any repelling periodic
point that does not belong to ∂A∗(0) must be non-accessible. In fact,
we show that for any integer N ≥ 0, there exists a non-accessible and
forward invariant N -Cantor bouquet contained in J(Fλ,m).

We use the same notation as in Proposition 4.2. Consider the compo-
nents of the preimage of α∪β in all fundamental domains outside Γ∪W .
These components bound simply connected C-shaped regions, denoted
by Dk, and induce a natural alphabet A = {±1,±2, . . . ,±k, . . . }. Fol-
lowing the N -Cantor bouquet construction reviewed in Section 2, we see
that, for each natural number N , the set CN given by

CN =







z ∈ J(Fλ,m) | Fn
λ,m(z) ∈

⋃

|k|≤N

Dk for all n ∈ Z and k ∈ A







,

is an N -Cantor bouquet of non-accessible points. Indeed, the funda-
mental domains Dk, with k ∈ A, |k| ≤ N define in a natural way an
itinerary s = (s0, s1, . . . ), si ∈ A and |si| ≤ N for all points in CN .
For a fixed s, the only point with bounded orbit and itinerary s is the
endpoint, while those points with unbounded orbit and itinerary s form
the tail of the hair.

Since all accessible points must lie in the boundary of a Fatou com-
ponent (and thus eventually enter the domain Γ ∪W under iteration),
is now straightforward to see that every point in CN is non-accessible.
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6. Generalizations

In the proof of Theorem B we used two main tools: polynomial-like
construction and symbolic dynamics. In order to extend our results for
any m ≥ 2 and k ≥ 2, we start with the following proposition that
generalizes the polynomial-like construction.

Proposition 6.1. For m ≥ 2, k ≥ 2, let r > 0 large enough and assume
that λ ∈ Ck

m and γ∩R− = ∅. Then, there exist open, bounded and simply
connected domains Ur and Vr of C, such that 0 ∈ Ur ⊂ V and satisfying
that (Fλ,m, Ur, Vr) is a polynomial-like mapping of degree m. Moreover,
the filled Julia set of (Fλ,m, Ur, Vr) is a quasi-disk and coincides with

A∗
λ,m(0).

The proof of the above result splits into two cases depending once
more on the relative position of the free critical value with respect
to Γ. In the case when Fλ,m(−m) does not lie in Γ, the same argu-
ments as in Proposition 4.2 follow through. In the case when Fλ,m(−m)
lies in Γ, the arguments of the polynomial-like construction are again
similar, nevertheless we must take into account the orbit of the critical
value with respect to Γ. Let k′ denote the number of iterates that takes
Fλ,m(−m) to leave Γ for the first time. Since λ is a capture parameter,
1 ≤ k′ ≤ k − 2. Then, after removing k′ ε-neighborhoods around γ,

Fλ,m(γ), . . . , F k′−1
λ,m (γ) in the definition of Vr, the argument now follows

as in Proposition 4.2.
In the light of Proposition 6.1 there exist m − 1 fixed points in

∂A∗
λ,m(0) since the dynamics in ∂A∗

λ,m(0) is now conjugated to θ 7→ mθ.

When Fλ,m(−m) /∈ Γ the same arguments as in the proof of Theorem B,
case (a), imply the existence and uniqueness of m fixed tails. From these
ideas, we conclude

Theorem D. Let m≥2, k≥2 and assume that λ∈Ck
m and Fλ,m(−m) /∈

Γ. Then, the boundary of A∗(0) is a quasi-circle and each one of its
points is an endpoint. Also, Fλ,m on ∂A∗(0) is conjugate to θ 7→ mθ
on the unit circle. Moreover, each point in ∂A∗(0) is a landing point
of a unique hair, except for a single fixed point in ∂A∗(0) and all its
preimages, which are endpoints of exactly two hairs.
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Primera versió rebuda el 8 de setembre de 2008,
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