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Carles Simd

Facultat de Matemdtiques

Universitat de Barcelona

Abstract. Generically hamiltonian systems are nonintegrable. However there
are few tools in order to prove that a given system is nonintegrable. For
two degrees of freedom the usual methods rely upon the appearance of trans
versal homoclinic or heteroclinic orbits. The transversal character is
shown through evaluation of integrals along orbits. Such computation requi
res the knowledgement of a one parameter family of periodic orbits and an
explicit solution for the unperturbed (integrable) case. Due to the depen-
dence of the form exp(—C/ek) of the angle measuring transversality with
respect to the perturbation parameter, none of the approximations of pertur

bation theory is enough to establish nonintegrability.

§1. The meaning of integrability and nonintegrability. Let H(q,p, be a ha--

. . . - 2
miltonian of n degrees of freedom. For the sake of simplicity we take R n

as phase.space. A first integral F of the associated hamiltonian system is
a smooth function such that the Poisson bracket (F,H) is identically zero.
Let Fj, J =1ik smooth functions. We say that they are in involution if
(Fi,Fj) =0 Vi,j. From now on we take F1 =H. A hamiltonian system is said
integrable if there are n functionally independent smooth global functions
in involution. We refer to [1] and (3 for basic definitions and results.

We recall that what Hamilton-Jacobi theory intends is to convert a given

system in an integrable one.

Under the preceding conditions if on the level set I.={F3 =(3,
j= 1+n} where C1, ey Cn are real values, the forms DFj, j=1+n are in-
dependent and L is compact, then it is diffeomorphic to the n-dimensional
torus T". (Taking out the compactness condition we get some Rk:(Tn_k; even-
tual dependence of DFj, j=1+n, along subsets can produce that L be a union
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of tori along such subsets). Then there exist action-angle variables (I,y)

in Dn:<Tn, a neighbourhood of Tn such that H can be expressed as H(I), the
flow is given by I(t) =I(0), ‘P(t) =¢(0) +wt where w= (DIH)T is the frequen-
cy vector. Therefore we get a linear flow on Tn, quasi periodic and dense on
the torus if w is incommensurable or nonresonant (i.e., w1,...,wn are Z - in-
dependent) or in a lower dimensional torus otherwise (in particular periodic
if the Z - module generated by the w's is 1-dimensional). The solution can be
obtained through quadratures. The statements above constitute the Liouville-

Arnold theorem.

Near the integrable systems the KAM theory [4] ensures the
existence of slighty distorted invariant tori (the resonant ones). They do
not fill completely the available phase space and if n> 2 some slow escape

across the tori is possible: the so called Arnold diffusion.

In the situation opposite to the integrable systems we found
the ergodic ones. A hamiltonian systems is called ergodig if it is ergodic
in (almost) all the levels of the energy. Letting aside (functions of) H the
only first integrals are the constants. In the . integrable case the flow is
confined to a n-dimensional manifold almost everywhere (if DIH is nondegene-
rate) and dense there. In the ergodic.case the flow is dense in their energy
level. The real world is neither integrable non ergodic. A mathematical sta-

tement is this direction is due to Markus and Meyer.

Let M be the set of € hamiltonians with the € topology.It
is a Baire space. A propiety P is called generic in ¥ if ﬁL={Hs?€|H satis-
fies P} is a set of the second category. Then the theorem [2@ asserts: Ha--

miltonian systems are generically neither integrable non ergodic.

A standing problem is how many first integrals has, generica--
1ly, a hamiltonian system. Some numerical experiments [12] and the destruc--
tion of symmetries by genericity seem to favourish the fact that only H re--

mains as first integral.

Let us look for the behaviour of the solutions in the noninte-
grable case. We first consider the easiest nontrivial case: n=2. The levels
H=e are 3-dimensional hypersurfaces H . We restrict our study to some fixed
He. Let ¥ be a 2-dimensional manifold in He transversal to the flow at a
point P. Let us suppose that the orbit through P cuts again ¥ transversally
(this is the case if such orbit is periodic). Then we .can define (locally) a
map T: ¥ » given by: find the next cut (Poincaré map). If H==F1,F2 are first
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integrals, the set ¥ N {F2==c2} is a curve, except for degenerate cases. The
refore the iterates of P under T are on this curve. If H is perturbed and in
tegrability is lost the points are scattered in a more or less narrow strip
arcund the curve. It seems that they fill a region of positive measure accor
ding to some density (buﬁV‘ host of holes smaller and smaller in it). If the
system is ergodic they should be scattered through all ¥ . In many examples
the simulation shows the existence of different unrelated "stochastic" zones
if n=2. We suspect that they are related through very narrow channels for

n» 2.

o

To see how the nonintegrability depends on global questions
the following example is instructive. Let T: ¥ % a Poincaré map. It is easy
to show [4] that it is area preserving. We can learn about qualitative beha-
viour of flows if we study area preserving mappings (APM) from R2 into itself.
Suppose that T has a hyperbolic fixed point P: Spec (DT(P))=={X, 1/A}JX|>1.
Then Hartman's theorem [14] assures that the behaviour near P is essentially
the one given by the linear part. Even in this case the linearizing change
of variables is analytic [30]. We have invariant stable and unstable mani- -
folds (WS(P), w“(p)) that can be globalized. In a similar way, some piece of
analytic invariant curve J near P can be extended by iteration of T and ’I‘_1
However if G is a first integral near P (i.e. G(T(P)) = G(P) in a neighbour-
hood U of P) this function can not be extended in general, for instance, if
wS(P) comes near P again. This happens if wu(P) n ws(P) # @. A point belon--
ging to both manifolds is called homoclinic. If P,Q are fixed hyperbolic and
S € wu(P) N wS(Q) the point § is called heteroclinic and similar problems

can occur.

The intersections of globalized invariant curves can produce
cantorian sets. The lack of integrability due to the folding of W is rela--
ted to the fact that w" is a manifold but not a submanifold of R2. Wintner
[33] stated this fact saying that the integrals G (obtained locally and pie-
cewise continuated) are nonisolating: they are not able to isolate the "in--
ner" and "outer" parts of a set G < g and the boundary of this set can have
positive measure. Therefore, iterates of a point standing on G=g "fill" a

strip.

In a different approach, using perturbation theory, the pro---
blems of small divisors, overlapping of resonances, etc. are typical of non-
integrable systems. For two degrees of freedom the shift of Bernoulli can be

included as a subsystem of the hamiltonian system [2@ . Then, in particular,
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an infinity of periodic orbits (P.0.) of arbitrary high period exist as well

as oscillatory and quasirandom motions.

§2. some analytical results. We begin with a few historical comments. Newton

formulated the n-body problem and found the 10 classical integrals. Some 200
years were elapsed in a fruitless search of additional integrals. Later in
the XIX century, Bruns proved that no more independent first integrals can
be found being algebraic functions of g and p, and Painlevé stated even the
nonexistence of additional first integrals algebraic in p. Poincaré [26] in
turn showed the lack of integrals analytical in g, p, @ for the restricted

three body problem with mass parameter P besides the Jacobi integral.

If we restrict ourselves to analytic hamiltonians near an equi
librium point then the existence of integrals is related to the problem of
normal forms started by Rirkhoff (see [23] ). Let H=H_+H_+H +... an analy

2 3 4
tical function near an equilibrium point that we take as the origin. Hk is
1 2 2
the homogeneous part of degree k. Suppose H2==§-Z dj(qj-fpj) and define
J = {k € Zn (k,d)==0} as the Z-module of the resonances (here (,) is the in-

ner product).

Theorem (Gﬁstavson (13]): There is a formal change of varia--
bles (q, p)—*(%,n) such that the new hamiltonian [ is of the form (Gustavson
Normal Form) [ = chm ? ™ where g E +in, g g ? *n and
k-m € J. (Equivalently (Hz,F) = 0).

1f the dimension of J is r we get n-r formal first integrals.
The question of obtaining more first integrals is sometimes refered as the
search of the third integral [9] because for problems of galactic dynamics

we already know the energy and momentum integrals.

If J=0 (a's Z-independent) then k=m and therefore ['=[(I) (Bir-
T 2 2 .
khoff N.F. [6]), where I-—(I1,...,In) , Ir—-§r~+7r, and the system is forma-

1ly integrable. What about convergence?

For n=2 we have the following result (Siegel [29]): Let 15 be
k m
he set ti i ians, H€ = . It i t
the set of analytic hamiltonians, H ®,H k?;ezz Crm g n It is not ares
triction (use scaling if necessary) to suppose lckml ¢ 1. Define a very fine
topology % in the following way: Given H and €= {Ekm} the ball of radius £

centered in H is the set BE(H) = {H*E’R ‘ |ckm-c]:m| < Ekm v k,m}.

Theorem: with the topology % the set of hamiltonian systems in ){ showing di-

vergence when going to the B.N.F. is dense.
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A coarser topology ' can be defined throug BE,N(H) = ZH*E;{{
lckm_c*km' ¢ Ekm for |kl + {ml < N}. Then we can produce finite changes to
B.N.F. without convergence problems. The set of integrable systems is dense

in ¥ with respect to %'.

As examples of integrable systems we can display all the pro-
blems found in elementary textbooks in mechanics. Nonintegrability is dis--
played by systems with n=2 possessing transversal homoclinic or heterocli-
nic orbits [2, 8, 15, 18, 19, 24,32). However for n)» 2 there are examples

with transversal homoclinic orbits that are integrable [10].

Nonintedrability is related to the divergence of the transfor
mation to normal form. In fact, for n=2, Rissmann [28J proved that if
3 = + + ... ,
o(2/ 1 £ 0 and G G2 G3 is a first integral with G Zp] P )
d1 dz
Bi P2

# 0 then we have convergence when going to the B.N.F.

For the relation between divergence and destruction of inva--

riant curves see [27).

§3. Detecting nonintegrability. Faced to a definite problem, how to decide

about integrability? Here genericity is useless. A hopeless approach is
trying to get enough first integrals. However this is not be recommended ex
cept if there isa strong evidence (numerijically, see later) of such exis--
tence. That was the way Hénon followed to show that the Toda lattice with

equal masses is integrable [16] .

1f weproceed numerically the Poincaré map is a useful device.
If n=2 and the iterates of a point are scattered along a line we have an
evidence of nonintegrability. However, if the system is very near an inte--
grable one it could be difficult to decide whether or not the points are on
a curve. A much finer criterion is to look for transversal homoclinic points
[18,19,24,31,32] or for a chain [4] of transversal heteroclinic points. We
return later to that topic. If n> 2 to visualize the Poincaré& map we need

some "stroboscopic" device [22] or different cuts of ¥ [1 1] .

" A dimension-independent method consists in the computation of
the Lyapunov numbers. Let ¢ be a (hamiltonian) flJow and D¢t the differen--
tial with respect to 1n1t:|.al conditions (D¢ is the solution of the firstor-
der variational equations; in coordinates D¢ =A(t) e:ﬁ(R 2n) , A(0) =1).

The maximal Lyapunov number £1 (P) is the maximum rate of growth of the
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length of a tangent vector at P under D¢£, i.e. 21(P) = lim 1n HA(t)“Z/t we
re we recall that ||A(t)|l2 = (g(A(t) AT(t)yl(g= spectral radius). The remai-
ning Lyapunov numbers Kj' i =24+ 2n are defined in the following way: let Zj
be the maximum rate of growth of the j-dimensional measure of a j-dimensio-
nai subspace of the tangent space at P under the action of D¢t. Thenlj =

= Kj /Ej-l' See [ﬂ for the effective computation of all the Lyapunov num--

bers (taking care of scaling, orthogonalization, etc.). he important fact

for detecting nonintegrability relies in the
Theorem: Integrability =» all the Lyapunov numbers are zero.

Proof: (See also [7]). We restrict ourselves to the case where the Liouvi--

lle-Arnold theorem applies. Fromy = H_, I1=0, we get the variational equa-

tions A= (b; g) = (g gn) . (1; g) , M(0) = 0(0) =1, N(0) = P(0) = O. The
2
solutions are P=0, Q=I, M=1I, N=HIIt, and AAT= (I;N I;) = 0(t") from

where the result follows because lim ln"A(t)”% / t = 0.

We see that integrable systems have a "parabolic" character

in the same sense that a fixed parabolic point of a diffeomorphism.

Following a result of Pesin DS] the entropy of the flow is

; = 3
given by h j;hase space L. o0

* can be harder than that of the Lyapunov numbers.

ﬂi(P). However a direct computation of h

For n =2 nonintegrability .follows if the Poincar& map has the
smale horseshoe embedded as a subgystem [24) . At some level of energy h
for a hamiltonian it is possible to show the existence of transversal homo
clinic and chains of heteroclinic orbits and, therefore, of such embedding
by simple topological considerations. See £.i. [8) for the Hénon-Heiles (HH)
problem and for the potential %—(q?~+q§)-—% qf *q;. However for those and
other systems nonintegrability is detected numerically for smaller values of

h, far away of the value for which the zero velocity curve becomes open.

The HH problem is obtained through perturbation of a harmonic

oscillator. With a suitable scaling we have H= H2 + € H3 on the level H=1,

1,2 2 2 2 . s
where H, = —%q1+q2+p1+p2) is the harmonic oscillator and H3 a homogeneous

third oiderzterm (or, in general, an analytic function beginning with terms
of third order at least). We realize that is a resonant hamiltonian, J

being here hk,—k)l k € Z].For £>0 all the orbits are periodic. In fact H=1
is S3 and it is easily obtained than the space of orbits is Sz. For a n-di

n-1

. . . 2 n-1 .
mensional harmonic oscillator we have S and P (€), respectively. Per-

turbation methods or the Gustavson N.F. allow to establish the existence of
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a finite number (except for degenerate cases) of families of simple P.O.[17,
32] . We have a map near the identity in 52 that can be seen as the approxi-
mate time one flow of an integrable hamiltonian system. The rest points are

associated to families of P.O. of the original hamiltonian. For the HH pro--
blem there are 8 such families. The stability status of some of the orbits

can be a delicate question because they appear as parabolic up to high order
term, i.e., the eigenvalues of the associated Poincaré map being of the form
1+ 0(54), we need several terms to detect the hyperbolicity. The effect of

this "slow" hyperbolicity is seen through the following result.

o . u S
Theorem: Let g be the angle at one homoclinic point between W (P) and W (P)

where P is a hyperbolic point of a planar diffeomorphism T depending on a pa

rameter E If the eigenvalues of DT(P) are A= 1% O(s ) then B= A {
exp (- B/g ) for EJO where A,B,r are constants. Equivalently we can put
ple)=na er exp (-

clinic points.

). A similar behaviour is found for suitable hetero--

lnA(f)

As a consequence of the theorem g(g)« ™ for all natural m
when £€{0 and using a theory of perturbations with respect to § we can not

find B analytically.

Examples of analytical computation of transversality of homo--
clinic (heteroclinic) points are found in [2] , related to the problem of di-
ffusion, [24] (for the Sitnikov problem) and [18,1ﬂ for the restricted pro-
blems of three bodies, planar and collinear, and general collinear problem.
In the first and third references the computation is obtained through the

use of a second perturbation parameter.

Proof of the theorem: we suppose that one of the branches w“" of the unsta-
ble manifold of P coincides with one of the branches W ;’2 of the stable ma-
nifold, or that we have coincidence W; Ts w;'z for the heteroclinic case.
As we obtain the coincidence taking only a finite number of terms of the
B.N.F. or of the G.N.F. we must compute the variation of the manifold due to
the suppressed terms. We get an expresion of the form I = €® }g cos t-f(t)
where f(t) is of the type exp(-|ln A-t|) for t—tw, and 1ln Xs'ék. Scaling
T= Ekt we get I= Es‘k /R cos (T E-k) £f(T) dT=Re /REs—k exp(irs_k)f(t) dt =
= Es_k Re (2T i Y Res) where the summation is extended to the residues of f
in the upper semiplane. Let us suppose that the poles are aj+ibJ bj >0
with residue cj+idj. Then I = £° k Z Re 2ﬂ1(c +1d ) exp((la —b ) g_k) and

the dominant term is of the form stated in the theorem
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With this theorem in mind we return to the HH problem. In the nu
merical survey where the problem is introduced [15) it is reported that for &
small (82 = h) it seems to be a foliation by inv riant curves. For h = 0.11
some curves dissappear and at h=0.16 no invariant curve remains (except,
perhaps, at a very small scale). A numerical computation of the related angle
B produces the values of o« = tg B/2 as a function of £ given in table 1. The
related results for the 1 (q?i—qz

2 2
(£=h) for which the lack of integrability was nondetected in [15] are given

)y - % £ qzqi potential on the level H=1
1

in table 2.

We see that in fact we have nonintegrability for all h but it
is hard (or even impossible) to detect it for small energy due to the extreme
ly small angle g. One can ask for the importance of very small angles. For
instance, for HH and h = 0.01 a rough extrapolation gives B= 0(10_250), and
this is nonsense for the physical and numerical points of view. We can pro-
ceed in the converse way. The width of the "random" zone is of the order of
g- We define a [-approximate first integral (for a diffeoéorphism‘T: M2®) as
a function F such that |F(Tk(Q)) - F(Q)|<J, YkezZ, YO €eM. Then we say that T
is J-Hﬂegrable, i.e., we neglect zones of width O([). We can ask for the maxi
mum value of h in the HH problem for which the system is jy-integrable. We set
1= AgT exp(-B/£4) with values of A,B,r obtained analytically {as in [18])
or through a rough numerical estimate. For instance, using the second approach
values A = 1.74E4, B=0.0554, r=8 are obtained. Then ‘)’==10_'20 gives £=0.19
»>h = 0.036, i.e., if zones of width 0(10-20) are taken as curves, we can say

that HH is integrable up to h=0.036.

Another analytical method to make apparent the nonintegrabili-

. . . 1 1 h 1 h

ty is to show the existence of solenoids. Let S Joo g R,
1 1 .

sequence of maps hj: S — S, h,(z) = z%  where S1 ={z e C ||z| = 1]. The

1 1
1,zz,...)e S XS XS X... |

), jz 0] . Two solenoids are homeomorphic (Zaz Zb) if for every

solenoid Za is the projective limit, i.e. {(zo,z
2z, = h.(z,

3 i i r . r
power of a prime p and every k there is a m such that p laoa1...ak:13‘
bob1"'bm and conversely. 2a is a compact abelian topological group, connec
ted, one-dimensional and without torsion and the flow in Ya is Bohr almost

periodic. If a system has embedded solenoids it is nonintegrable. A generici-

ty result is

Theorem [21]: There exist a generic set R (with the fr topology, r » 4) in ¥
such that for every He R and every solenoid Ya there is a minimal set, un

der the hamiltonian flow, homeomorphic to La.

78



The intuitive idea associated to the described solenoids is the

existence of islands inside the islands. Near an elliptic fixed point we have

a stable island (we think in the case n=2 for simplicity). Inside the inva--

riant curves given by Moser twist theorem there are elliptic periodic points

where the whole structure is repeated. However it can be very difficult to

check the existence of such chains of islands, smaller and smaller, for a con

crete system.

3 & ¢ A I3 & 3 &L
.40 .5805 .30. .1221E-2 .6 .1541E-1 -.6 | -3615E-4
.39 .4211 .29 .3591E-3 .575 .1030E-1 -.575 .2107E-4
.38 .2829 .28 .8488E-4 .55 .6489E-2 -.55 .1164E-4
.37 . 1800 .27 . 1545E-4 .525 .3822E-2 -.525 .6052E-5
.36 .1099 .26 .2056E-5 .5 . 2085E-2 -.5 .2933E-5
.35 .6412E-1 .25 .187E-6 .475 . 1042E-2 -.475 .1309E~5
.34 .3538E-1 .24 .107E-7 .45 .4707E-3 -.45 .5312E-6
.33 .1811E-1 .23 .35E-9 .425 .1890E-3 -.425 .1924E-~6
.32 .8414E-2 .22 .8E-11 .4 .6606E-4 -.4 .609E-7
.31 .3457E-2 .375 . 1956E-4 -.375 .163E~7
.35 .473E-5 -.35 .359E-8
Table 1 .325 .895E-5 -.325 .59E-9
.3 . 124E-6 -.3 .3E-10
Table 2
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