First Evidence for $\cos 2\beta > 0$ and Resolution of the Cabibbo-Kobayashi-Maskawa
Quark-Mixing Unitarity Triangle Ambiguity

(BaBar Collaboration)A

(Belle Collaboration)B

A1 Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
B2 Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
C3 INFN Sezione di Bari and Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
D4 University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
E5 Beihang University, Beijing 100191, China
F6 University of Bergen, Institute of Physics, N-5007 Bergen, Norway
G7 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
H8 Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
I9 Institute of Particle Physics, Vancouver, British Columbia, Canada V6T 1Z1
J10 University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
K11 Brookhaven National Laboratory, Upton, New York 11973, USA
L12 Budker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russian Federation
M13 Novosibirsk State Technical University, Novosibirsk 630092, Russian Federation
N14 University of California at Irvine, Irvine, California 92697, USA
O15 University of California at Riverside, Riverside, California 92521, USA
P16 University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
Q17 California Institute of Technology, Pasadena, California 91125, USA
R18 Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
S19 Chonnam National University, Kwangju 660-701, South Korea
T20 University of Cincinnati, Cincinnati, Ohio 45221, USA
U21 University of Colorado, Boulder, Colorado 80309, USA
V22 Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
W23 Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, China
X24a INFN Sezione di Ferrara, I-44122 Ferrara, Italy
Y24b Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, I-44122 Ferrara, Italy
Z25 INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
a26 INFN Sezione di Genova, I-16146 Genova, Italy
b27 Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
c28 SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan
d29 Hanyang University, Seoul 133-791, South Korea
e30 University of Hawaii, Honolulu, Hawaii 96822, USA
f31 High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
g32 J-PARC Branch, KEK Theory Center, High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801, Japan
h33 Humboldt-Universität zu Berlin, Institut für Physik, D-12489 Berlin, Germany

261801-2
We present first evidence that the cosine of the CP-violating weak phase 2β is positive, and hence exclude trigonometric multifold solutions of the Cabibbo-Kobayashi-Maskawa (CKM) Unitarity Triangle using a time-dependent Dalitz plot analysis of $B^0 \rightarrow D^{(*)}h^0$ with $D \rightarrow K_0^0\pi^+\pi^-$ decays, where $h^0 \in \{\pi^0, \eta, \omega\}$ denotes a light unflavored and neutral hadron. The measurement is performed combining the final data sets of the BABAR and Belle experiments collected at the $\Upsilon(4S)$ resonance at the asymmetric-energy B factories PEP-II at SLAC and KEKB at KEK, respectively. The data samples contain $(471 \pm 3) \times 10^6 BB$ pairs recorded by the BABAR detector and $(772 \pm 11) \times 10^6 BB$ pairs recorded by the Belle detector. The results of the measurement are $\sin 2\beta = 0.80 \pm 0.14$(stat) ± 0.06(syst) ± 0.03(model) and $\cos 2\beta = 0.91 \pm 0.22$(stat) ± 0.09(syst) ± 0.07(model). The result for the direct measurement of the angle β of the CKM Unitarity Triangle is $\beta = [22.5 \pm 4.4$(stat) ± 1.2(syst) ± 0.6(model)]$. The measurement assumes no direct CP violation in $B^0 \rightarrow D^{(*)}h^0$ decays. The quoted model uncertainties are due to the composition of the $D^0 \rightarrow K_0^0\pi^+\pi^-$ decay amplitude model, which is newly established by performing a Dalitz plot amplitude analysis using a high-statistics $e^+e^- \rightarrow c\bar c$ data sample. CP violation is observed in $B^0 \rightarrow D^{(*)}h^0$ decays at the level of 5.1 standard deviations. The significance for $\cos 2\beta > 0$ is 3.7 standard deviations. The trigonometric multifold solution $\pi/2 - \beta = (68.1 \pm 0.7)^\circ$ is excluded at the level of 7.3 standard deviations. The measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.

DOI: 10.1103/PhysRevLett.121.261801

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.
\[
e^{-i\theta_0} \frac{e^{-i\theta_0}}{2} \left\{ |A_{D^0}|^2 + |A_{\bar{D}^0}|^2 - q(|A_{D^0}|^2 - |A_{\bar{D}^0}|^2) \cos(\Delta m_D \Delta t) \right. \\
\left. + 2q \eta_i (-1)^i \text{Im}(e^{-2i\beta} A_{D^0} A_{\bar{D}^0}^*) \sin(\Delta m_D \Delta t) \right\},
\]

where \(\Delta t\) denotes the proper-time interval between the decays of the two B mesons produced in the \(e^+e^- \rightarrow T(4S) \rightarrow B^0 \bar{B}^0\) event, and \(q = +1\) \((-1)\) represents the b-flavor content when the accompanying B meson is tagged as a \(B^0\) \((\bar{B}^0)\). The parameters \(\tau_{D^0}\) and \(\Delta m_D\) are the neutral B meson lifetime and the \(B^0 - \bar{B}^0\) oscillation frequency, respectively. The symbols \(A_{D^0} = A(M_{K^0_0\pi^-}, M_{K^0_0\pi^+})\) and \(A_{\bar{D}^0} = A(M_{\bar{K}^0_0\pi^-}, M_{\bar{K}^0_0\pi^+})\) denote the \(D^0\) and \(\bar{D}^0\) decay amplitudes as functions of the Lorentz-invariant Dalitz plot variables \(M_{K^0_0\pi^\pm}^2 \equiv (p_{K^0_0} + p_{\pi^\pm})^2\) and \(M_{\bar{K}^0_0\pi^\pm}^2 \equiv (p_{\bar{K}^0_0} + p_{\pi^\pm})^2\), where the symbol \(p_i\) represents the four-momentum of a final state particle \(i\). The factor \(\eta_{D^0}\) is the \(CP\) eigenvalue of \(D^0\). The quantity \(L\) is the orbital angular momentum of the \(Dh^0\) or \(D^*h^0\) system. The last term in Eq. (1) can be rewritten as

\[
\text{Im}(e^{-2i\beta} A_{D^0} A_{\bar{D}^0}^*) = \text{Im}(A_{D^0} A_{\bar{D}^0}^*) \cos 2\beta \\
- \text{Re}(A_{D^0} A_{\bar{D}^0}^*) \sin 2\beta,
\]

which allows \(\sin 2\beta\) and \(\cos 2\beta\) to be treated as independent parameters.

Measurements of \(\sin 2\beta\) and \(\cos 2\beta\) in \(B^0 \rightarrow D^{(*)}h^0\) with \(D \rightarrow K^0_0\pi^+\pi^-\) decays are experimentally challenging. The branching fractions of the \(B\) and \(D\) meson decays are low \([\mathcal{O}(10^{-4})\) and \(\mathcal{O}(10^{-2})\), respectively\], and the neutral particles in the final state lead to large backgrounds and low reconstruction efficiencies. In addition, a detailed Dalitz plot amplitude model or other experimental knowledge of the relative strong phase in the three-body \(D\) meson decay is required. Previous measurements of these decays performed separately by \(BaBar\) and \(Belle\) were not sufficiently sensitive to establish \(CP\) violation [16–18], obtaining results far outside of the physical region of the parameter space [16], and using different Dalitz plot amplitude models [16,17], which complicates the combination of individual results.

In this Letter, we present measurements of \(\sin 2\beta\) and \(\cos 2\beta\) from a time-dependent Dalitz plot analysis of \(B^0 \rightarrow D^{(*)}h^0\) with \(D \rightarrow K^0_0\pi^+\pi^-\) decays that combines the final data samples collected by \(BaBar\) and \(Belle\) experiments, totaling 1.1 ab\(^{-1}\) collected at the \(T(4S)\) resonance. The combined approach enables unique experimental sensitivity to \(\cos 2\beta\) by increasing the available data sample and by applying common assumptions and the same Dalitz plot amplitude model simultaneously to the data collected by both experiments. As part of the analysis, an improved \(D \rightarrow K^0_0\pi^+\pi^-\) Dalitz plot amplitude model is obtained from high-statistics \(e^+e^- \rightarrow cc\) data. This allows the propagation of the model uncertainties to the results on \(\sin 2\beta\) and \(\cos 2\beta\) obtained in \(B^0 \rightarrow D^{(*)}h^0\) with \(D^0 \rightarrow K^0_S\pi^+\pi^-\) decays in a straightforward way. In the following, the extraction of the \(D^0 \rightarrow K^0_S\pi^+\pi^-\) Dalitz plot amplitude model parameters from \(Belle\) \(e^+e^- \rightarrow cc\) data is summarized. Thereafter, the time-dependent Dalitz plot analysis of the \(B\) meson decay combining \(BaBar\) and \(Belle\) data is described. A more detailed description of the analysis is provided in Ref. [20].

To measure the \(D^0 \rightarrow K^0_S\pi^+\pi^-\) decay amplitudes, we use a data sample of 924 fb\(^{-1}\) recorded at or near the \(\Upsilon(4S)\) and \(\Upsilon(5S)\) resonances with the \(Belle\) detector [21] at the asymmetric-energy \(e^+e^-\) collider KEKB [22]. This gives a large sample of \(D\) mesons enabling precise measurement of the decay amplitudes, so there is no benefit to be gained from including the equivalent \(BaBar\) data. The decays \(D^+ \rightarrow D^0\pi^+_\pi^-\) with \(D^0 \rightarrow K^0_S\pi^+\pi^-\) and \(K^0_S \rightarrow \pi^+\pi^-\) are reconstructed, and the flavor of the neutral \(D\) meson is identified as \(D^0\) \((\bar{D}^0)\) by the positive \((negative)\) charge of the slow pion \(\pi^+\), emitted from the \(D^+\) decay. Charged pion candidates are formed from reconstructed tracks, and the selection requirements described in Refs. [23,24] are applied to \(K^0_S\) candidates. To reject background originating from \(B\) meson decays, a requirement of \(p^+\langle D^{(*)}\rangle > 2.5\) (3.1) GeV/c for candidates reconstructed from \(\Upsilon(4S)\) \((\Upsilon(5S))\) data is applied, where \(p^+\) denotes the momentum evaluated in the \(e^+e^-\) center-of-mass \((c.m.)\) frame. Events are selected by the \(D^0\) candidate mass \(M_{D^0}\) and the \(D^{+} - D^{0}\) mass difference \(\Delta M\), and a yield of 1217300 \(\pm 2000\) signal decays is obtained by a two-dimensional unbinned maximum-likelihood fit to the \(M_{D^0}\) and \(\Delta M\) distributions [20].

Similar to previous \(D^0 - \bar{D}^0\) oscillation analyses and measurements of the Unitarity Triangle angle \(\gamma\) [25] by \(BaBar\), \(Belle\), and \(LHCb\) [26–29], the \(D^0 \rightarrow K^0_S\pi^+\pi^-\) decay amplitude is parametrized as

\[
A(M_{K^0_0\pi^\pm}, M_{\bar{K}^0_0\pi^\pm}) = \sum_{r \neq \{K_0, \bar{K}_0\pi^\pm\}} a_r e^{i\phi_r} A_r (M_{K^0_0\pi^\pm}, M_{\bar{K}^0_0\pi^\pm}) \\
+ F_1 (M_{K^0_0\pi^\pm}) A_{K_0\pi^\pm} (M_{\bar{K}^0_0\pi^\pm}) \\
+ A_{K_0\pi^\pm} (M_{K^0_0\pi^\pm}).
\]

The symbols \(a_r\) and \(\phi_r\) represent the magnitude and phase of the \(r\)th intermediate quasi-two-body amplitude \(A_r\) contributing to the \(P\)- and \(D\)-waves. These amplitudes are parametrized using an isobar ansatz [30] by relativistic Breit-Wigner (BW) propagators with mass-dependent widths, Blatt-Weisskopf penetration factors [31], and Zemach tensors for the angular distributions [32]. The following intermediate two-body resonances are included: the Cabibbo-favored \(K^+\bar{K}^0(892)^-\pi^+, \ K^0_S(1430)^-\pi^+, \ K^+(1680)^-\pi^+, \ K^+(1410)^+\pi^-\) channels; the doubly Cabibbo-suppressed \(K^+(892)^+\pi^-, \ K^0_S(1430)^+\pi^-\),
$K^+ (1410)^+ \pi^- $ modes; and the CP eigenstates $K_{S}^{0}\rho (770)^{0}$, $K_{S}^{0}\omega (822)$, $K_{S}^{0}f_{2}(1270)$, and $K_{S}^{0}\rho (1450)^{0}$. The symbol F_{i} denotes the amplitude for the $\pi \pi S$-wave using the K-matrix formalism in the P-vector approximation with four physical poles [33,34]. The symbol $A_{\pi \pi S}$ represents the amplitude for the $\pi \pi S$-wave using the LASS parametrization [35], which combines a BW for the $K_{S}^{0}(1430)^{\pm}$ with a coherent nonresonant contribution governed by an effective range and a phase shift.

The $D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ decay amplitude model parameters are determined by an unbinned maximum-likelihood Dalitz fit performed for events in the signal region of the flavor-tagged D^{0} sample. The probability density function (p.d.f.) for the signal is constructed from Eq. (3) with a correction to account for reconstruction efficiency variations over the Dalitz plot phase space due to experimental acceptance effects [36], and an additional term to account for wrong flavor identifications of D mesons. In addition, the likelihood function contains a p.d.f. for the background that is constructed from the distributions taken from the M_{bc} and ΔM data sidebands. The a_{i} and ϕ_{i} parameters for each resonance are floated in the fit and measured relative to the $K_{S}^{0}\rho (770)^{0}$ amplitude, which is fixed to $a_{K_{S}^{0}\rho (770)^{0}} = 1$ and $\phi_{K_{S}^{0}\rho (770)^{0}} = 0^{\circ}$. The masses and widths of the resonances are fixed to the world averages [37] except for those of the $K^{+}(892)$ and $K_{S}^{0}(1430)$, which are floated to improve the fit quality. The LASS parameters and several parameters in the K-matrix are floated in the fit.

The results of the Dalitz fit are summarized in Table III of Ref. [20]. The data distributions and projections of the fit are shown in Fig. 1. By a two-dimensional χ^2 test, a reduced χ^2 of 1.05 is obtained for 31,272 degrees of freedom based on statistical uncertainties only, indicating a relatively good quality of the fit [26–28,38,39].

The time-dependent Dalitz plot analysis of $B^{0} \rightarrow D^{(*)}\phi^{0}$ with $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ decays is performed using data samples containing 471×10^{6} $B\bar{B}$ pairs recorded with the $BaBar$ detector [40,41] at the asymmetric-energy $e^{+}e^{-}$ (3.1 on 9 GeV) collider PEP-II [42] and 772×10^{6} $B\bar{B}$ pairs recorded with the Belle detector [21] at the asymmetric-energy $e^{+}e^{-}$ (3.5 on 8 GeV) collider KKEB [22] collected at the $\Upsilon(4S)$.

The light neutral hadron ϕ^{0} is reconstructed in the decay modes $\pi^{0} \rightarrow \gamma\gamma$, $\eta \rightarrow \gamma\gamma$ and $\pi^{+}\pi^{-}\pi^{0}$, and $\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$. Neutral D mesons are reconstructed in the decay mode $D \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$, and neutral D^{*} mesons are reconstructed in the decay mode $D^{+} \rightarrow D\pi^{0}$. The decay modes $B^{0} \rightarrow D\pi^{0}$, $D\eta$, $D\omega$, $D^{*}\pi^{0}$, and $D^{*}\eta$, where sufficient signal yields are reconstructed, are included in the analysis. The selection requirements applied to the reconstructed candidates are summarized in Ref. [20].

The $B^{0} \rightarrow D^{(*)}\phi^{0}$ yields are determined by three-dimensional unbinned maximum-likelihood fits to the distributions of the observables M_{bc}, ΔE, and $C_{NN_{\text{out}}}$. The beam-energy-constrained mass M_{bc} defined in Ref. [43] is computed from the beam energy E_{beam} in the c.m. frame, the $D^{(*)}$ candidate momenta, and the h_{0} candidate direction of flight. The quantity M_{bc} provides an observable that is insensitive to possible correlations with the energy difference $\Delta E = E_{\text{beam}} - E_{\text{beam}}$ that can be induced by energy mismeasurements for particles detected in the electromagnetic calorimeters, e.g., caused by shower leakage effects. The variable $C_{NN_{\text{out}}}$ defined in Ref. [44] is constructed from the output of a neural network multivariate classifier trained on event shape information based on a combination of 16 modified Fox-Wolfram moments [45,46] to identify background originating from $e^{+}e^{-} \rightarrow q\bar{q} (q \in \{u, d, s, c\})$ continuum events. The fit model accounts for contributions from $B^{0} \rightarrow D^{(*)}\phi^{0}$ signal decays, cross-feed from partially reconstructed $B^{0} \rightarrow D^{(*)}_{s}\phi^{0}$ decays, background from partially reconstructed $B^{+} \rightarrow D^{(*)}_{s}\rho^{+}$ decays, combinatorial background from $B\bar{B}$ decays, and background from continuum events. In total, a $B^{0} \rightarrow D^{(*)}\phi^{0}$ signal yield of 1129 ± 48 events in the $BaBar$ data sample and 1567 ± 56 events in the Belle data sample is obtained. The signal yields are summarized in Table IV of Ref. [20]. The M_{bc}, ΔE, and $C_{NN_{\text{out}}}$ data distributions and fit projections are shown in Fig. 2.

The time-dependent Dalitz plot analysis follows the technique established in the previous combined $BaBar$
+Belle time-dependent \(CP \) violation measurement of \(\bar{B}^0 \to D_{CP}^{(*)}h^0 \) decays [24]. The measurement is performed by maximizing the log-likelihood function constructed from the events reconstructed from Babar and Belle data [20]. The measurement includes all events used in the previous \(M_{bc}^\prime, \Delta E, \text{ and } C_{NN}^{\prime}\) fits. In the log-likelihood function, the p.d.f.’s are functions of the experimental flavor-tagged proper-time interval and Dalitz plot distributions for the signal and background components. The signal p.d.f.s are constructed from Eqs. (1) and (2) convolved with experiment-specific resolution functions to account for the finite vertex resolution [6,47] and including the effect of incorrect flavor assignments [6,48]. The p.d.f.’s for the proper-time interval distributions of the combinatorial background from \(B\bar{B} \) decays and background from continuum events account for background from nonprompt and prompt particles convolved with effective resolution functions. The partially reconstructed \(B^0 \to D^+h^0 \) decays are modeled by the signal p.d.f. with a different set of parameters to account for this cross-feed contribution, and the background from partially reconstructed \(B^+ \to \bar{D}^{(*)0}h^+ \) decays is parametrized by an exponential p.d.f. convolved with the same resolution functions as used for the signal.

In the fit, the parameters \(\tau_{D^0}, \tau_{B^+}, \text{ and } \Delta m_d \) are fixed to the world averages [49], and the Dalitz plot amplitude model parameters are fixed to the results of the \(D^0 \to K^0_S\pi^+\pi^- \) Dalitz plot fit described above. The signal and background fractions are evaluated on an event-by-event basis from the three-dimensional fit of the \(M_{bc}^\prime, \Delta E, \text{ and } C_{NN}^{\prime}\) observables. The only free parameters are \(\sin 2\beta \) and \(\cos 2\beta \), and the results are

\[
\sin 2\beta = 0.80 \pm 0.14(\text{stat}) \pm 0.06(\text{syst}) \pm 0.03(\text{model}),
\]

\[
\cos 2\beta = 0.91 \pm 0.22(\text{stat}) \pm 0.09(\text{syst}) \pm 0.07(\text{model}).
\]

The second quoted uncertainty is the experimental systematic error, and the third is due to the \(D^0 \to K^0_S\pi^+\pi^- \) decay amplitude model. The evaluation of these uncertainties is described in detail in Ref. [20]. The linear correlation between \(\sin 2\beta \) and \(\cos 2\beta \) is 51\%. The result deviates by less than 1.0 standard deviation from the trigonometric constraint given by \(\sin^2 2\beta + \cos^2 2\beta = 1 \).

A separate fit is performed to measure directly the angle \(\beta \) using the signal p.d.f. constructed from Eq. (1), and the result is

\[
\beta = [22.5 \pm 4.4(\text{stat}) \pm 1.2(\text{syst}) \pm 0.6(\text{model})]^{\circ}.
\]

The proper-time interval distributions and projections of the fit for \(\sin 2\beta \) and \(\cos 2\beta \) are shown in Fig. 3 for two different regions of the \(D^0 \to K^0_S\pi^+\pi^- \) phase space. Figure 3(a) shows a region predominantly populated by \(CP \) eigenstates, \(B^0 \to [K^0_S(770)^0]_{D}^{(*)0}h^0 \). For these decays, interference emerges between the amplitude for direct decays of neutral \(B \) mesons into these final states and those following \(B^0 - \bar{B}^0 \) oscillations. The time evolution exhibits mixing-induced \(CP \) violation governed by the \(CP \)-violating weak phase \(2\beta \), which manifests as a sinusoidal oscillation in the signal yield asymmetry. Figure 3(b) shows a region predominantly populated by quasi-flavor-specific decays, \(B^0 \to [K^+(892)^0\pi^+]_{D}^{(*)0}h^0 \). For these decays, the time evolution exhibits \(B^0 - \bar{B}^0 \) oscillations governed by the oscillation frequency, \(\Delta m_d \), which appears as an oscillation proportional to \(\cos(\Delta m_d\Delta t) \) in the corresponding asymmetry.

The measurement procedure is validated by various cross-checks. The \(B^0 \to \bar{D}^{(*)0}h^0 \) decays with the CKM-favored \(\bar{D}^0 \to K^+\pi^- \) decay have very similar kinematics and background composition as \(B^0 \to D^{(*)0}h^0 \) with \(D \to K^0_S\pi^+\pi^- \) decays and provide a high-statistics control sample. Using the same analysis approach, the time-dependent \(CP \) violation measurement of the control sample
results in mixing-induced and direct CP violation parameters consistent with zero, in agreement with the assumption of negligible CP violation for these flavor-specific decays. Measurements of the neutral B meson lifetime for $B^0 \to D^{(*)} h^0$ with $D \to K^0_S \pi^+ \pi^-$ decays, and for the control sample without flavor-tagging applied, yield $\tau_{B^0} = (1.500 \pm 0.052{\text{(stat)}}) \text{ ps}$ and $\tau_{h^0} = (1.535 \pm 0.028{\text{(stat)}}) \text{ ps}$, respectively, which are in agreement with the world average $\tau_{B^0} = (1.520 \pm 0.004) \text{ ps}$ [49]. In addition, we have performed all measurements for data separated by experiment yielding consistent results [20].

The significance of the results is determined by a likelihood-ratio approach that accounts for the experimental systematic uncertainties and the Dalitz plot amplitude model uncertainties by convolution of the likelihood curves. The measurement of $\sin 2\beta$ agrees within 0.7 standard deviations with the world average of $\sin 2\beta = 0.691 \pm 0.017$ [49] obtained from more precise measurements using $\bar{b} \to c \bar{c} s$ transitions. The measurement of $\cos 2\beta$ excludes the hypothesis of $\cos 2\beta \leq 0$ at a p-value of 2.5×10^{-4}, which corresponds to a significance of 3.7 standard deviations, providing the first evidence for $\cos 2\beta > 0$. The measurement of β excludes the hypothesis of $\beta = 0$ at a p-value of 3.6×10^{-7}, which corresponds to a significance of 5.1 standard deviations. Hence, we report an observation of CP violation in $B^0 \to D^{(*)} h^0$ decays. The result for β agrees well with the preferred solution of the Unitarity Triangle, which is $(21.9 \pm 0.7)^\circ$, if computed from the world average of $\sin 2\beta = 0.691 \pm 0.017$ [49]. The measurement excludes the second solution of $\pi/2 - \beta = (68.1 \pm 0.7)^\circ$ at a p-value of 2.31×10^{-13}, corresponding to a significance of 7.3 standard deviations. Therefore, the present measurement resolves an ambiguity in the determination of the apex of the CKM Unitarity Triangle.

In summary, we combine the final $Bab\bar{a}$ and Belle data samples, totaling an integrated luminosity of more than 1 ab$^{-1}$ collected at the $\Upsilon(4S)$ resonance, and perform a time-dependent Dalitz plot analysis of $B^0 \to D^{(*)} h^0$ with $D \to K^0_S \pi^+ \pi^-$ decays. We report the world’s most precise measurement of the cosine of the CP-violating weak phase 2β and obtain the first evidence for $\cos 2\beta > 0$. The measurement directly excludes the trionometric multifold solution of $\pi/2 - \beta = (68.1 \pm 0.7)^\circ$ without any assumptions, and thus resolves an ambiguity related to the CKM Unitarity Triangle parameters. An observation of CP violation in $B^0 \to D^{(*)} h^0$ decays is reported. The measurement assumes no direct CP violation in $B^0 \to D^{(*)} h^0$ decays.

The $B^0 \to D^{(*)} h^0$ decays studied by the combined $Bab\bar{a}$ and Belle approach provide a probe for the CP-violating weak phase 2β that is theoretically more clean than the “gold plated” decay modes mediated by $\bar{b} \to c \bar{c} s$ transitions [51]. Therefore, $B^0 \to D^{(*)} h^0$ decays can provide a new and complementary SM reference for 2β at the experimental precision achievable by the future high-luminosity B factory experiment Belle II [52].

We thank the PEP-II and KEKB groups for the excellent operation of the accelerators. The $Bab\bar{a}$ experiment acknowledges the substantial dedicated effort from the computing organizations for their support. The collaborating institutions wish to thank SLAC for its support and kind hospitality. The Belle experiment wishes to acknowledge the KEK cryogenics group for efficient solenoid operation of the accelerators. The $Bab\bar{a}$ and Belle approach provide a probe for the CP-violating weak phase 2β that is theoretically more clean than the “gold plated” decay modes mediated by $\bar{b} \to c \bar{c} s$ transitions [51]. Therefore, $B^0 \to D^{(*)} h^0$ decays can provide a new and complementary SM reference for 2β at the experimental precision achievable by the future high-luminosity B factory experiment Belle II [52].

Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation (USA).