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Absence of Abelian Higgs Hair for Extreme Black Holes
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It has been argued that a black hole horizon can support the long range fields of a Nielsen-O
string, and that one can think of such a vortex as black hole “hair.” We show that the fields ins
the vortex are completely expelled from a charged black hole in the extreme limit (but not in the n
extreme limit). This would seem to imply that a vortex cannot be attached to an extreme black h
Furthermore, we provide evidence that it is energetically unfavorable for a thin vortex to interact w
a large extreme black hole. This dispels the notion that a black hole can support “long” Abelian Hi
hair in the extreme limit. [S0031-9007(98)06139-0]
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Black hole “hair” is defined to be any field(s) associ-
ated with a stationary black hole configuration which can
be detected by asymptotic observers but which cannot b
identified with electromagnetic or gravitational degrees o
freedom. A number of results have been proven [1] whic
imply that black holes “have no hair.” These results
led people to believe that a black hole horizon can onl
support charges associated with long range gauge field
However, this prejudice was to some extent discredite
when various authors [2], using numerical techniques, dis
covered black hole solutions of the Einstein-Yang-Mills
(EYM) equations that support Yang-Mills fields which
can be detected by asymptotic observers (these papers
tended the earlier work of Bartnik and McKinnon [3], who
found globally regular finite energy solutions in EYM the-
ory without horizons); one therefore says that these blac
holes arecolored. However, these exotic solutions do not
impugn the original no-hair results since all such solu
tions are known to be unstable (see, e.g., Ref. [4]). Sinc
the original no-hair theorems assumed a stationary pic
ture, they simply do not apply to colored holes. On the
other hand, colored holes do still exist and so they are sa
to “evade” the usual no-hair results. These results teac
us that we have to tread carefully when we start talkin
about black hole hair.

With this in mind, we analyze the extent to which hair
is present in situations involving topological defects, suc
as cosmic strings [5]. In [6], evidence was presente
that a Nielsen-Olesen (Abelian) vortex can “thread” a
Schwarzschild black hole. Inclusion of the gravitationa
backreaction of a single thin vortex led to a metric which
is just a conical defect centered on a black hole [7]. Thus
it was argued that this solution truly is the “thin vortex”
limit of a “physical” vortex-black hole configuration.
Given these results, one can conclude [6] that the Abelia
Higgs vortex isnot just dressing for the Schwarzschild
black hole, but rather that the vortex is truly hair, i.e.,
0031-9007y98y80(20)y4378(4)$15.00
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a property of the black hole which can be detected
asymptotic observers.

In this paper, we extend the analysis of [6] and allow th
black hole to be charged. That is, we consider an Abeli
Higgs vortex in the Reissner-Nordstrom background.
order to “turn up” the charge of the hole, we have to allo
for the presence of twoUs1d gauge fields (oneUs1d is
where the charge of the hole lives and the otherUs1d is the
symmetry spontaneously broken in the ground state). W
find two striking phenomena:

(i) In the extreme limit (but not near extremality)all of
the fields associated with the vortex (both the magne
and scalar degrees of freedom) are expelled from t
horizon of the black hole. The magnetic and scalar fiel
always “wrap around” the horizon in the extremal limit.

(ii) By considering the total energy of the vortex with a
black hole inside it, we find an instability as the extrem
black hole becomes very large compared to the size of
vortex. Specifically, the energy of a vortex which doe
not contain the hole inside it ismuchless than the energy
of a vortex which does contain the hole.

In a sense, the behavior (i) was expected, given th
extreme black holes generically display such a “Meissn
effect,” and so can be thought of as “superconductor
(a deeper analysis of the superconducting properties
extremal black holes andp-branes will be given in [8]).
But from (ii) it follows that a very thin vortex will want
to “slide” off of the hole. Thus, the vortex cannot in an
way be thought of as a “property of the black hole whic
can be measured at infinity”; in other words, an Abelia
Higgs vortex is not hair for an extreme black hole.

Our treatment of the black hole/string vortex syste
involves a clear separation between the degrees of freed
of each of these objects. The action takes the fo
S ­ S1 1 S2, where S1 is an Einstein-Hilbert-Maxwell
action for the “background” fieldssgmn , Fmnd, and S2
describes an Abelian Higgs system minimally coupled
© 1998 The American Physical Society
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S2 ­
Z

d4x
p

2g

3

µ
DmFyDmF 2

1
4e2 F2 2

l

4
sFyF 2 h2d2

∂
.

(1)

The degrees of freedom inS2 are treated as “test fields.”
They are the complex Higgs fieldF and aUs1d gauge
field with strengthFmn and potentialAm. The Higgs scalar
and the gauge field are coupled through the gauge cov
ant derivativeDm ­ =m 1 iAm, where=m is the space-
time covariant derivative. We choose metric signatu
s1 2 2 2d. It is also convenient to define the Bogo
molnyi parameterb ­ ly2e2 ­ m2

Higgsym2
vector . Notice

that we have two different gauge fields:F, which couples
to the Higgs field and is therefore subject to spontaneo
symmetry breaking, andF , which remains massless.

A vortex is present when the phase ofFsxd is a non-
single valued quantity. To better describe this, define t
real fieldsX, Pm, x, by F ­ hXeix and Am ­ Pm 2

=mx . The vortex is then characterized by
H

dx ­ 2pN ,
the integerN being called the winding number.

We will analyze the equations of the vortex in the
background of the Reissner-Nordstrom black hole,

ds2 ­ Vdt2 2
dr2

V
2 r2sdu2 1 sin2 udw2d ,

V ­ 1 2
2Gm

r
1

q2

r2
.

(2)

We will work in rescaled coordinates and paramete
sr , E, Qd ­ h

p
l sr, Gm, qd. In these nondimensional

variables the Higgs mass is unity. The Reissne
Nordstrom black hole has inner and outer horizon
where V srd ­ 0. We are interested only in the oute
horizon, which is at radiusr1 ­ E 1

p
E2 2 Q2. If

r1 ­ E ­ jQj, then V srd has a double zero atr1, and
the black hole is said to be extremal.

Return now to the equations of the vortex. One ca
consistently takeX ­ Xsr , ud, Pw ­ NPsr , ud, which
simplifies the equations of motion to the form

2
1
r2 ≠r sr2V≠rXd 2

1
r2 sinu

≠ussinu≠uXd 1

1
2

XsX2 2 1d 1
N2XP2

r2 sin2 u
­ 0 , (3)

≠r sV≠rPd 1
sinu

r2
≠u

µ
≠uP
sinu

∂
2

X2P
b

­ 0 . (4)

When P ­ 1 (a constant) throughout the space we re
cover a global string in the presence of the charged ho
Equations (3) and (4) are, in general, intractable in e
act form and we need to resort to approximation met
ods. An analytical solution of these equations for the ca
where the black hole is small relative to the vortex size
constructed in [9]. There it is seen that both the gau
ari-

re
-

us

he

rs

r-
s

r

n

-
le.
x-
h-
se
is
ge

field and the Higgs field of the vortex have nonzero flu
across a nonextreme horizon, but they vanish precis
at the horizon when extremality is reached. Here we
sort to numerical integration of Eqs. (3) and (4) outsid
and on the black hole horizon. (Similar scenarios invol
ing magnetic flux expulsion by extreme black holes ha
been studied, both numerically and analytically, quite e
tensively; see, for example, Refs. [10,11,12].)

The Abelian Higgs equations in a background Reissn
Nordstrom metric are elliptic. On the horizon they becom
parabolic. To solve the equations numerically, we use
technique first used by Achúcarro, Gregory, and Kuijke
[6]. More details can be found in that reference and
[9]. We have pushed this calculation to the limits, makin
the vortex as small as we could given the computation
constraints. We have found that the vortex isalways
expelled, no matter how small the magnetic and Hig
flux tubes are taken to be. Here we present a select
of dramatic pictures of the numerical evidence which w
have amassed. The behavior shown here holds no ma
how small you make the flux tubes. (Note, for the rest
the paper, all of the black holes are assumed to be extrem

We begin with the expulsion of theP field by the ex-
treme hole. In Fig. 1 below, we have setE ­ Q ­ 10,
with winding numberN ­ 1 (the smallest winding pos-
sible). The Bogomolnyi parameterb is set equal to unity,
so that the magnetic and Higgs flux tubes are the same s

Clearly, theP field “wraps” the black hole horizon;
furthermore, given the relation betweenP and Fuw , no
magnetic flux is crossing the horizon. The extreme ho

FIG. 1. Expulsion of theP field from the extreme horizon,
for the valuesE ­ Q ­ 10, N ­ 1, andb ­ 1.
4379
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behaves just like a perfect diamagnet. But can we “pun
ture” the horizon with flux by making the magnetic flux
tube even smaller? The simplest way to make the vec
flux tube thinner is by decreasing the value ofb. Sinceb

is the ratio of the sizes of the vector and Higgs flux tube
makingb very small corresponds to making the magnet
flux tube very skinny. However, we still find theP con-
tours all wrap around the black hole horizon, indicatin
that there is never any penetration.

We now turn to the behavior of the Higgs fieldX. We
have found that theX field is always expelled from the
extreme hole, no matter how small the scalar flux tube
made. Actually, in Fig. 2 below, we fix the size of the
scalar flux tube (by fixingN ­ 1 and b ­ 0.5) and we
allow the mass of the extreme hole to increase. The pl
run from left to right with increasing mass. The graphs a
plotted for the valuesE ­ Q ­ 1, 5, 10, and20.

TheX contours all wrap around the black hole horizon
no matter how large the hole is made. The effect is s
true for global strings, where the gauge dynamics is abse
(For figures illustrating fluxpenetrationin thenonextreme
limit the reader is referred to [9].)

Now consider the stability of the configurations. Is th
black hole stable inside the vortex, or will it try to find
its way outside the core? The above sequence provi
an intuitive answer to this question. When the black ho
is much smaller than the vortex, the black hole is just
“hole,” where no vortex energy can be stored. Thus, t
hole tends to subtract the total energy of the vortex. O
the other hand, when the hole becomes much larger th
the vortex, flux stretches to wrap the hole and so we wou
expect the total energy of the vortex to become very larg

We have computed the total energyEbh stored in the
vortex when it contains a black hole inside it, for differen
relative sizes of the core and the horizon. (Note, in a
FIG. 2. Expulsion of the Higgs field from the extreme horizon, for the valuesE ­ Q ­ 1 (a), 5 (b), 10 (c), and 20 (d);N ­ 1
andb ­ 0.5.
4380
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numerical calculations we introduce an obvious cutof
i.e., we do not integrate over all of spacetime to obtain th
energy, rather we integrate out to the boundaries of som
large “box”—this is justified because the vortex rapidly
tends to its flat space form far from the hole.) This is to
be compared with the energy of the vortex in the absen
of the black holeE0. It is always the case that there
exists a maximum massEmax such that, for all black holes
of massE , Emax, EbhsEd , E0; as long as the hole is
not too massive, it prefers to sit inside the vortex.

The statements above are based on the results of o
numerical computations of the total energyEbh. In Fig. 3
below we have plotted the results of one such computatio
Here, we have setb ­ 0.5 and N ­ 10. The flat, hori-
zontal line (at 6640) representsE0 in our units (of course,
we could always renormalizeE0 to 0 since this represents
the energy of the background configuration). For thes
values,Emax is about 15. Furthermore, for black holes o
mass greater thanEmax the energy of the vortex is diverg-
ing. The erratic behavior of the vortex energy for very
small values of the black hole mass is an artifact of the n
merical techniques employed in the calculation and shou
be ignored.

It is clear that a black hole with massE . 15 is going
to find it energetically favorable to slip out of the vortex.
Thus, it is not appropriate to think of such a vortex a
a “property of the black hole”; the identification of the
vortex as long hair does not go through in this situation
When the mass of the hole is small, one could still try t
identify the vortex with hair since, at least in that case, th
configuration is energetically stable. On the other han
the fact remains that the vortex is completely expelled from
the hole, even in the (putatively) stable situation. Thus on
would say that the vortex is notdressingthe black hole. It
is not clear to us whether or not one should think of suc
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FIG. 3. Plot of total vortex field energy as a function of black
hole mass.

a “thick” vortex as genuine hair for a small extreme blac
hole. This is different from previously studied situation
(e.g., the colored black holes), where the black hole m
be dressed but the configuration is unstable.

A natural question is whether or not similar result
hold when the hole isslightly nonextreme. Our numerical
calculations show that, even when the vortex is very th
relative to the radius of the hole, and the charge is ve
close to extremality, the flux is expelled only in the exac
extreme limit (see [9] for more details).

We have provided strong evidence that the fields
a vortex are always expelled from an extreme horizo
Furthermore, a thin enough vortex tends to slip off th
black hole. Thus, it appears that an extreme black ho
cannot support “long” Abelian Higgs hair. Of course, we
have not accounted for the backreaction of the vortex o
the geometry. But there is evidence that the expulsio
may hold exactly: There existexactsolutions for black
holes inUs1d2 theories, where a black hole that is charge
to extremality with respect to one of the gauge field
completely expels the field of a (Melvin) flux tube of the
other gauge field [8]. This strongly suggests that, aft
accounting for backreaction, the flux should be expelle
from an extreme black hole that sits inside it, at least whe
the vortex is thick. In any case, backreaction would hav
to be small if the energy scale of symmetry breaking
small compared to the black hole mass.

We have argued that vortices fail to penetrate extrem
horizons. Will this hold true if the string tries toend at
a black hole? It has been argued in Ref. [6] that there
no topological obstruction for a topologically stable strin
to end at a black hole. The argument is still valid fo
extreme black holes. Imagine then an open string endi
on a nonextreme charged horizon (the configuration will b
static if we neglect the backreaction of the string). The
increase the charge till the extremal limit, as we have do
for the string threading the black hole. There is a cruci
difference now: Since a topologically stable string cann
have naked endpoints, when extremality is reached t
k
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open string cannot wrap the horizon, or detach from i
It would appear that the string should remain attached
the horizon. This is puzzling, since it is not clear from
the local field equations, which determine the expulsion o
the field, why the string could end at, but not thread, th
black hole. This remains an interesting extension of ou
work. It could have implications for work in recent years
about the pair creation of black holes with strings endin
on them [13], and the selection rules on string snappin
[14]. A detailed discussion of these results can be foun
in Ref. [9].
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