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Quantization of AdS3 Black Holes in External Fields:
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s2 1 1d-dimensional anti–de Sitter (AdS) gravity is quantized in the presence of an external scala
field. We find that the coupling between the scalar field and gravity is equivalently described
by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a
microscopic computation of the transition rates between black hole states due to absorption a
induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiatio
as spontaneous emission, and we find agreement with the semiclassical result, including greybo
factors. This result also has application to four and five-dimensional black holes in supergravity
[S0031-9007(98)07124-5]

PACS numbers: 04.70.Dy, 04.60.Kz, 11.10.Kk, 11.25.Hf
tter
nal
ld

on

ing
is
log
nt
st
.
to

en-
ri-

ck
n-
nd
or-
ack

ry

m
s

ly
g

a
the
p-
nce
The idea that black hole radiation should have
origin in transitions between discrete states of a therma
excited system has a long history [1]. The success
development of this picture, however, has always be
hampered by the lack of a proper quantum descripti
of the black hole. Ideally, one would like to quantize
classical system described by an action of the form

Ifg, Cg ­ Igrav fgg 1 Imatter fC; gg . (1)

In view of the difficulty to quantize this system in a
complete way. Hawking proposed to treatg as a classical,
fixed background, in the presence of which the fie
C is quantized [2]. The drawback in this approach
that the black hole is unaffected by the emission
radiation. No reference to black hole microstates is ma
and accounting for back reaction has proven to be
notoriously difficult problem.

In this paper we suggest a different route, in which th
microstates of the black hole play an explicit role. Th
approach is more akin to the old fashioned treatment
radiation from, say, an atom. The quantized atom can
excited by absorbing energy from the external radiati
field, or it can also decay via induced emission of rad
ation by giving away energy to the field. Existence o
a thermodynamical equilibrium then implies that spont
neous emission must occur, with rate given in terms
the coefficients for absorption and induced emission. it
a variation of that approach that we aim to develop he
That is, we treat the gravitational fieldg as quantum de-
grees of freedom, whereas the matter fieldC will remain
classical.

In view of the lack of a consistent quantum theory o
four-dimensional gravity we will work in the framework
of anti–de Sitter (AdS) gravity in2 1 1 dimensions.
s2 1 1d-dimensional gravity with a negative cosmologica
constant is know to have black hole solutions [3] whic
have proved to be a useful laboratory for the study
the microscopical properties of black holes. At the sam
time s2 1 1d-dimensional gravity is almost trivial. More
0031-9007y98y81(12)y2408(4)$15.00
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precisely, it is topological, at least in the absence of ma
fields. As a consequence the dynamics of the gravitatio
degrees of freedom is described by a conformal fie
theory (CFT) at the boundary, i.e., the asymptotic regi
at infinity in AdS3.

The coupling of matter fields tos2 1 1d-gravity is not
topological, however. But since we treatC classically,
matter will be on shell in the bulk of the black hole
geometry. As we shall see, this reduces the coupl
to gravity to a perturbation of the boundary CFT. Th
coupling to the boundary degrees of freedom is the ana
of the coupling of an electric field to the dipole mome
of the atom. Here, we choose to work with the simple
example: a scalar field with minimal coupling to gravity
The approach, however, can be readily extended
other fields.

Our results have also bearings for certain higher dim
sional black holes, namely those for which the near ho
zon geometry reduces to an AdS3 black hole. These are
precisely the generalized four- and five-dimensional bla
holes for which a microscopic description of the low e
ergy dynamics in terms of string theory has been fou
recently [4]. One may therefore speculate that the imp
tant structure present in these higher dimensional bl
holes is the near horizon AdS3 gravity, which has a natu-
ral conformal field theory associated with it. String theo
may be but one way to describe it.

The picture of black hole radiation that emerges fro
our approach is “holographic,” in that all the interaction
take place at the asymptotic boundary of AdS3. It is
closely related to (and in fact, inspired by) the extreme
successful description of black hole radiation in strin
theory [4,5], in which the microscopic theory is fully
quantum. The latter, however, relies essentially on
conjectured correspondence between AdS gravity and
CFT on its boundary [6]. In contrast, in the present a
proach this correspondence is an automatic conseque
of the topological nature ofs2 1 1d-gravity. This enables
us to present what, to our knowledge, is the firstexplicit
© 1998 The American Physical Society
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derivation of the coupling of the external field to the CF
on the boundary of AdS. The microscopic theory of blac
hole entropy and radiance has also been considered
cently in, e.g., [7,8,9].

In this paper we take gravitational action in (1) to be th
standard three-dimensional Einstein-Hilbert action with
negative cosmological constant,

IEH ­ 2
1

16pG

Z
d3x

p
2g

µ
R 1

2
,2

∂
, (2)

where L ­ 21y,2 is the cosmological constant. The
identification of this theory with a boundary conforma
field theory has been described by several authors [1
13], and our description of it will accordingly be rathe
cursory. Three-dimensional gravity can be mapped to
Chern-Simons (CS) theory [14] by expressing the tri
ea

m and spin connectionva ­ ´
a
bcvbc in terms of two

SL(2, IR) Chern-Simons gauge potentialsA andÃ,

Aa
m ­ va

m 1
ea

m

,
, Ãa

m ­ va
m 2

ea
m

,
. (3)

The Einstein-Hilbert action (2) is then equivalent to th
difference of two Chern-Simons (CS) actions,IEH ­
IfAg 2 IfÃg, where (our conventions agree with [12])

IfAg ­
k

4p

Z
M

Tr

µ
A ^ dA 1

2
3

A ^ A ^ A

∂
, (4)

with k ­ 2
,

4G . Gauge transformations in this theor
correspond to diffeomorphisms in (2). However, if th
manifold has a boundary, only gauge transformations t
vanish at the boundary leave the CS-action invaria
The dynamics of the residual degrees of freedom is,
turn, described by a CFT. We follow the analyses
[11,12], and work within the canonical formalism. W
choose, as our radial coordinate, the proper radiusr,
rescaled by, to make it dimensionless. The boundar
which is at very larger, is parametrized byu ­

t
, 1 w

and y ­
t
, 2 w. Furthermore, we choose the bounda

conditionsAy ­ Ãu ­ 0 for the CS potentials. We will
see that these boundary conditions are compatible w
the existence of black hole solutions, but still leave to
much freedom. In order to have a variational princip
compatible with these boundary conditions a bounda
term must be added to (4) [10].

To continue we choose the gauge

Ar ­ bsrd21≠rbsrd, Ãr ­ bsrd≠rbsrd21, (5)

with bsrd ­ expsrT3d. Solving the Gauss’s constrain
Frw ­ 0 we express

Aw ­ bsrd21asudbsrd ­

µ
a3sud e2ra1sud

era2sud 2a3sud

∂
, (6)

and similarly for theÃ. Upper indices inaa (and ãa)
correspond to group indices. The gauge transformatio
that preserve these boundary conditions and gauge cho
have infinitesimal parameters of the formh ­ b21lsudb,
h̃ ­ bl̃sydb21. These, in turn, can be expressed in term
of diffeomorphismsjisud, j̃isyd si ­ r, wd by means of
k
re-
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the relationsh ­ jiAi, h̃ ­ j̃i Ãi. Hence

dAw ­√
1
2 ≠wjr 1 ≠wsjwa3d e2rf≠wsjwa1d 2 jra1g

erf≠wsjwa2d 1 jra2g 2
1
2 ≠wjr 2 ≠wsjwa3d

!
.

(7)

For what follows it may be helpful to think of the diffeo-
morphisms along the boundary as infinitesimal conform
transformationsu ! u 1 jwsud, y ! y 2 j̃wsyd. Un-
der these transformations the fieldsaasud, ãasyd transform
as conformal primary fields with weights (1, 0) and (0, 1)
respectively. This is expected as Chern-Simons theo
upon imposing boundary conditions as above, reduces t
chiral Wess-Zumino-Witten (WZW) theory at the bound
ary [15]. The fieldsaasud, ãasyd are then precisely the
components of the corresponding levelk, left/right Kac-
Moody currents.

For later use, we now give the asymptotic form of th
metrics that are described by the connections (5), (6). O
has

ds2 ­ ,2dr2 2 ,2e2ra2sudã1syd du dy 1 . . . , (8)

where, for the sake of brevity, we omit terms that ar
subleading at larger.

While the system presented so far could be taken as
starting point for quantization, it appears that it has to b
further reduced in order to isolate the black hole degre
of freedom. In particular, the boundary WZW theory doe
not account properly for the Bekenstein-Hawking entrop
[12,16]. A consistent restriction is obtained by imposin
that the induced metric on the boundary remains fixe
under the allowed diffeomorphisms (7). With these extr
restrictions the algebra of asymptotic symmetry generato
receives a classical central charge [13], which was used
[9] to argue that the geometrical entropy is reproduce
with the boundary CFT (subtleties in the application o
this formula to the present situation are discussed in [16

On the other hand, this constraint relates the diffeomo
phisms along the boundaryjw , j̃w to the radial displace-
mentr ! r 1 jrsud 1 j̃rsyd by

jr ­ 2≠wjw , j̃r ­ 2≠wj̃w . (9)

From the point of view of the WZW theory the relation
(9) is implemented by the “improved” Virasoro generato
[17]

L ­ Lsug 1 k≠wa3, (10)

with classical central chargec ­ 6k. Here Lsug is the
Sugawara stress-energy tensor associated to the K
Moody algebra ofa6, a3. It is well known that the
constraints described above are precisely those impos
in the WZW to Liouville reduction [10,17]. More details
on this will be given elsewhere. At present we jus
note that the constraint (9) implies that under conform
transformations the proper distancer and the Liouville
field f transform in the same way. It is therefore natura
to identify r ! 2fsu, yd.
2409
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We now consider the external matter fieldC, in the
form of a minimally coupled scalar field. Matter fields
perturb the dynamics of the metric by acting as sources
energy and momentum. The fieldC is treated classically,
i.e., taken to satisfy the classical wave equation in th
bulk of AdS3. One may think of this as the curved spac
equivalent of taking a homogeneous external field in th
case of the atom in a radiation field. In this approximatio
one does not resolve the detailed structure of the bu
The matter action then reduces to a boundary term

Imatter ­ 2
1

16pG

Z p
2g gmn≠mCy≠nC

! 2
1

16pG
B ,

B ­
1
2

Z
≠M

p
2g grmsCy≠mC 1 C≠mCyd . (11)

RequiringC to satisfy the classical wave equation in
background that is asymptotically of the form (8) fixes it
asymptotic form to (up to a log term which is of highe
order in the frequency [18])

Csr, w, td ­ s1 2 ie22rdc1st, wd

1 s1 1 ie22rdc2st, wd . (12)

We have decomposed the wave into components1,
2 with positive (ingoing) and negative (outgoing) flux
respectively [18]. Substitution of this and the asymptot
metric (8) into (11) then leads to

B ­
,

i

Z
du dy O su, yd sc1cy

2 2 c2c
y
1d , (13)

whereO su, yd ­ a2sudã1syd. For definiteness, we take
the dependence int andf to be of the form

c6st, wd ­ eisv6t2m6wd. (14)

Then we find

B ­ 2,
Z

du du O su, yd sinsvt 2 mwd , (15)

where v ­ v1 2 v2, m ­ m1 2 m2. This is our
main result: the external field introduces a perturbation
the CFT at the boundary at infinity by a primary operato
(13) with conformal weight (1, 1).

Note that upon reduction to the Liouville theory one
keepse2ra2ã1 fixed. According to our remarks above
one is then led to identify

O su, yd ­ e2f. (16)

Although this identification may need further clarification
it suggests a simple geometrical picture: Think of th
conformal field theory as a “string at infinity” which
adjusts its proper radial position such as to keep its worl
sheet volume constant. The scalar field couples to t
position of the string. This is described in the conforma
field theory language by the coupling (16), which is th
gravitational analog of the coupling of an external electr
field to the dipole moment operator of an atom. Th
2410
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approximation should be limited to transitions betwee
neighboring black hole states, that is, with small energ
differences, as the effect of the change in the geometry
the bulk on the scalar field is neglected.

We now apply our results to the specific case of inte
est, the BTZ black hole [3,19]. In lightcone coordinate
u, y and proper radiusr the black hole has metric

ds2 ­ 2
,2

4
sinh2 rsz1du 1 z2dyd2 1 ,2dr2

1
,2

4
cosh2 rsz1du 2 z2dyd2. (17)

This coordinate patch covers the region outside the (out
horizon of a nonextremal black hole. Here,

z6 ­
q

8GsM 6 J,d , (18)

parametrize the family of nonextremal black hole solu
tions. For the black hole, the conformal operatorsa, ã in-
troduced above take the expectation valueska6l ­ z1y2,
kã6l ­ z2y2, ka3l ­ kã3l ­ 0.

Note that an arbitrary nonextremal black hole ca
be obtained from (17) by a constant rescalingsu, yd !
slu, l̃yd [3]. In the quantum theoryz6 are replaced by
operatorsa, ã and conformal transformations change th
eigenvalues of the mass and angular momentum operat
in the usual manner.

The black hole corresponds to a thermal state of the le
and right moving sectors of the CFT [20]. The effective
temperature of each sector can be found from the ener
and entropy formulas,

´R ­
2p

V
L0 ­

z2
1

16G
, sR ­ 2p

s
cNR

6
­

p,z1

4G

´L ­
2p

V
L̃0 ­

z2
2

16G
, sL ­ 2p

s
cNL

6
­

p,z2

4G
,

(19)

where V is the volume of the boundary CFT andNR ,
NL are the eigenvalues ofL0, L̃0, respectively. The
corresponding left- and right-moving temperatures a
therefore

T21
R,L ­

≠sR,L

≠´R,L
­

2p,

z6

. (20)

These are related to the Hawking temperature as2T21
H ­

T21
R 1 T21

L . After properly rotating to Euclidean time
these effective temperatures correspond to the inve
periods of the lightcone variables [20]. Note that (20) i
rather insensitive to the details of the concrete realizatio
of the underlying boundary CFT. Indeed, only the relatio
between energy and entropy enters.

As explained above this interaction vertex shoul
correctly describe the transition between black hole stat
with small energy difference. Note that it is not require
that the initial state itself has low energy. In particular,
should describe correctly the low frequency decay rates
highly excited black holes.
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The calculation will be similar to that in [21]. From
(15), the transition amplitude between an initial and a fin
state in the presence of an external flux with frequen
and angular momentumv, m is then given by

M ­ ,
Z

du dyk fjO su, ydjile2isv,2md suy2d

3 e2isv,1md syy2d, (21)

where i, f denote the initial and final black hole stat
respectively. If this term corresponds to emission, th
the term in (15) with the opposite frequency will giv
absorption, but at this moment this is still a matter of co
vention. The important point is that calculation o
transition amplitudes is reduced to the computation
correlation functions of (1, 1) primary fields. In particu
lar, it does not rely on the identification (16), which,
some, may seem a little far fetched.

We proceed to compute the decay rate. For simplic
we setm ­ 0. Squaring the amplitudeM and summing
over final states leads toX

f

jMj2 ­ ,2
Z

du du0dy dy0kijO su, ydO su0, y0djil

3 e2iv,su2u0y2de2iv,sy2y0y2d. (22)

Since the black hole corresponds to a thermal state,
must average over initial states weighed by the Boltzma
factor, i.e., we take the finite temperature two po
functions, which for fields of conformal weight one a
given by

kO s0, 0dO su, ydlTR ,TL ­

∑
pTR

sinhspTRud

∏2∑ pTL

sinhspTLyd

∏2

,

(23)

provided T ¿ V 21. These have the right periodicit
properties in the Euclidean section. The remaining in
grals can be performed by contour techniques of comm
use in thermal field theory. Whether we deal with em
sion or absorption depends on how the poles atu ­ 0,
y ­ 0 are dealt with. The resulting emission rate is th
given by

G ­
vp2,2

sesvy2TLd 2 1d sesvy2TRd 2 1d
, (24)

where we have included a factorv21 for the normaliza-
tion of the outgoing scalar. Equation (24) reproduces c
rectly the semiclassical result [18,22], therefore providi
a microscopical derivation of the decay of AdS3 black
al
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holes relying exclusively on the gravitational degrees o
freedom.
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