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A Rotating Black Ring Solution in Five Dimensions
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The vacuum Einstein equations in five dimensions are shown to admit a solution describing a stationary
asymptotically flat spacetime regular on and outside an event horizon of topology S1 3 S2. It describes
a rotating “black ring.” This is the first example of a stationary asymptotically flat vacuum solution with
an event horizon of nonspherical topology. The existence of this solution implies that the uniqueness
theorems valid in four dimensions do not have simple five-dimensional generalizations. It is suggested
that increasing the spin of a spherical black hole beyond a critical value results in a transition to a black
ring, which can have an arbitrarily large angular momentum for a given mass.
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Black holes in four spacetime dimensions are highly
constrained objects. A number of classical theorems show
that a stationary, asymptotically flat, vacuum black hole
is completely characterized by its mass and spin [1], and
event horizons of nonspherical topology are forbidden [2].

In this Letter we show explicitly that in five dimen-
sions the situation cannot be so simple by exhibiting an
asymptotically flat, stationary, vacuum solution with a
horizon of topology S1 3 S2: a black ring. The ring
rotates along the S1 and this balances its gravitational
self-attraction. The solution is characterized by its mass
M and spin J. The black hole of [3] with rotation in
a single plane (and horizon of topology S3) can be ob-
tained as a branch of the same family of solutions. We
show that there exist black holes and black rings with
the same values of M and J. They can be distinguished
0031-9007�02�88(10)�101101(4)$20.00
by their topology and by their mass dipole measured
at infinity. This shows that there is no obvious five-
dimensional analog of the uniqueness theorems.

S1 3 S2 is one of the few possible topologies for the
event horizon in five dimensions that was not ruled out by
the analysis in [4] (although this argument does not apply
directly to our black ring because it assumes time symme-
try). An explicit solution with a regular (but degenerate)
horizon of topology S1 3 S2 and spacelike infinity with
S3 topology has been built recently in [5]. An uncharged
static black ring solution is presented in [6], but it contains
conical singularities. Our solution is the first asymptot-
ically flat vacuum solution that is completely regular on
and outside an event horizon of nonspherical topology.

Our starting point is the following metric, constructed
as a Wick-rotated version of a solution in [7]:
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where j2 is defined below and

F�j� � 1 2 j�j1, G�j� � 1 2 j2 1 nj3. (2)

The solution of [7] was obtained as the electric dual of
the magnetically charged Kaluza-Klein C metric of [8].
Our metric can be related directly to the latter solution by
analytic continuation. When n � 0 we recover the static
black ring solution of [6].

We assume that 0 , n , n� � 2��3
p

3�, which en-
sures that the roots of G�j� are all distinct and real. They
will be ordered as j2 , j3 , j4. It is easy to establish
that 21 , j2 , 0 , 1 , j3 , j4 ,

1
n . A double root

j3 � j4 appears when n � n�. Without loss of generality,
we take A . 0. Taking A , 0 simply reverses the sense
of rotation.

We take x to lie in the range j2 # x # j3 and require
that j1 $ j3, which ensures that gxx , gff $ 0. In order
to avoid a conical singularity at x � j2 we identify f with
period

Df �
4p

p
F�j2�

G0�j2�
�

4p
p

j1 2 j2

n
p

j1 �j3 2 j2� �j4 2 j2�
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(3)

A metric of Lorentzian signature is obtained by taking
y , j2. Examining the behavior of the constant t slices of
(1), one finds that c must be identified with period Dc �
Df in order to avoid a conical singularity at y � j2 fi x.
Regularity of the full metric here can be demonstrated by
converting from the polar coordinates � y, c � to Cartesian
coordinates — the dtdc term can then be seen to vanish
smoothly at the origin y � j2.

There are now two cases of interest depending on the
value of j1. One of these will correspond to a black ring
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and the other to the black hole of [3] with only one non-
vanishing angular momentum.

Case 1 is defined by j1 . j3. In this case, gff vanishes
at x � j3 and there will be a conical singularity there
unless f is identified with period

Df0 �
4p

p
F�j3�

jG0�j3�j
�

4p
p

j1 2 j3

n
p

j1 �j3 2 j2� �j4 2 j3�
.

(4)

We demand Df � Df0 for consistency with (3). Since
j2 , j3, this is possible only if j1 is fixed as a function
of the other three roots (i.e., of n) as

j1 �
j

2
4 2 j2j3

2j4 2 j2 2 j3
�black ring� . (5)

In this case it is easy to show that j3 , j1 , j4, from
which it follows that the factors of F�x� in the metric
are never zero. x and f parametrize a regular surface
of topology S2. The sections at constant t, y have the
topology of a ring S1 3 S2. x � j3 is an axis pointing
“into” the ring (i.e., decreasing S1 radius) and x � j2
points out of the ring. This coordinate system is sketched
for the static black ring in [6]; the case considered here is
very similar.

Case 2 is defined by

j1 � j3 �black hole� . (6)

In this case, gff does not vanish at x � j3, hence (4) need
not be imposed. When (6) holds, the sections at constant
t, y have the topology of three-spheres S3, with c and f

being two independent rotation angles.
The following analysis applies to both cases 1 and 2.

Asymptotic infinity lies at x � y � j2. Defining f̃ �
2pf

Df , c̃ �
2pc

Dc , and using the coordinate transformation

z �

p
j2 2 y

Ã�x 2 y�
, h �

p
x 2 j2

Ã�x 2 y�
, (7)
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with Ã � Aj1

p
n�j3 2 j2� �j4 2 j2���2�j1 2 j2��, the

asymptotic metric is brought to the manifestly flat form

ds2 � 2dt2 1 dz2 1 z2dc̃2 1 dh2 1 h2df̃2.

(8)

Note that the Killing vector fields k � ≠�≠t, m � ≠�≠c̃

are canonically normalized near infinity, and c̃ and f̃ both
have period 2p.

The Arnowitt-Deser-Misner mass and angular momen-
tum are
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The next limit to consider is y ! 2`. Changing co-
ordinates to Y � 21�y gives a metric regular in a neigh-
borhood of Y � 0. Hence there is a new region Y , 0,
in which the coordinate y can be defined as y � 21�Y
and the metric takes the same form as above. The metric in
this region is regular in these coordinates for y . j4. k be-
comes spacelike precisely at Y � 0, so the region y . j4
is referred to as the “ergoregion.” The ergosurface at Y �
0 has topology S1 3 S2 in case 1 and S3 in case 2. In both
cases, m remains spacelike throughout the ergoregion.

The above coordinates break down at y � j4, so define
new coordinates x and y by
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so x is periodic with period Dx � Dc. In these new
coordinates, the metric takes the form
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This is regular at y � j4 so the coordinate y can now be
continued into the region y , j4. The surface y � j4 is
a Killing horizon of the Killing vector field
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with surface gravity
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Outside this horizon, j � k 1 VHm, where
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Note that j is tangent to the null geodesic generators of
the horizon, and j ? ≠�c̃ 2 VHt� � 0 on the horizon. It
follows that the horizon is rotating with angular velocity
VH with respect to the inertial frame at infinity.

We have established that the solution possesses a rotat-
ing horizon. The area of a constant time slice through the
horizon is

A �
16p2

A3

�j4 2 j1�3�2�j1 2 j2�
n3�2j

3
1 �j4 2 j3� �j3 2 j2� �j4 2 j2�2

.

(17)

In case 1, when the regularity condition (5) is imposed,
the topology of (a constant time slice through) this event
horizon is S1 3 S2: it is a rotating black ring. In case 2,
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when (6) is imposed, the horizon is a rotating three-sphere.
The latter is actually the five-dimensional rotating black
hole of [3], with one angular momentum parameter set to
zero. To see this, change coordinates to

r2 � m
�j3 2 y� �j4 2 x�
�j4 2 j2� �x 2 y�

,
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�j3 2 y� �x 2 j2�
�j3 2 j2� �x 2 y�

,
(18)
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p
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(19)

(compare [9]). Then one recovers the five-dimensional
Myers-Perry black hole in Boyer-Lindquist coordinates, m

and a being the mass and rotation parameters defined in
[3]. We emphasize that the above expressions for M, J, k,
VH , and A are valid for both the black ring and the black
hole.

Physically, (5) is the condition that the rotation bal-
ances the gravitational self-attraction of the ring, and it
fixes a relation between its mass, spin, and radius. There
are two independent parameters for the solutions, n and
A. A has dimensions of inverse length and sets the scale
for the solution. n is dimensionless and determines the
shape of the S1 3 S2 horizon. The S1 can be character-
ized by the inner radius of curvature Ri at x � j3, and
the outer radius Ro at x � j2. As n ! 0, both radii
tend to the same value R ! 3J�M �!

p
2�A�. Also,

VHR ! 1. Keeping M fixed, the area of the S2 tends
to zero and R tends to infinity, so small n corresponds
to a large thin ring. In Fig. 1 we plot physical quanti-
ties as a function of n when M is fixed. As n ! n�,
VH ! �3p�8GM�1�2. For n near n� the ring is highly
flattened.

If n � n�, then the black ring and the black hole de-
generate to the same solution with j3 � j1 � j4. This
is the m � a2 limit of the five-dimensional rotating black
hole, for which the horizon disappears and is replaced by
a naked singularity.

FIG. 1. Plots, as functions of n at fixed M , of the inner (Ri )
and outer (Ro ) radii of curvature of the S1, total area A of
the ring, surface gravity k, and angular velocity at the horizon
VH . All quantities are rendered dimensionless by dividing by
an appropriate power of GM .
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The spin of the five-dimensional black holes is bounded
from above [3]:

J2

M3 #
32G
27p

, (20)

with equality for the (singular) m � a2 solution. The cor-
responding ratio for the black ring solutions is

J2

M3 �
32G

27p

�j4 2 j2�3

�2j4 2 j2 2 j3�2�j3 2 j2�
. (21)

These ratios are plotted as a function of n in Fig. 2. Note
that the angular momentum of the ring is bounded from
below,

J2

M3 . 0.8437
32G
27p

. (22)

It is known that in six or more dimensions the spin of a
black hole can be arbitrarily large [3]. In five dimensions,
we have shown that the spin can also grow indefinitely, but
only if the spinning object is a ring.

For 0.2164 , n , n�, there are two black ring solu-
tions with the same values of M and J (but different A).
Moreover, these satisfy the bound (20) so there is also a
black hole with the same values of M and J. This is the
first explicit demonstration that the uniqueness theorems
valid in four dimensions do not have a simple generaliza-
tion to five dimensions.

It is straightforward to check that the classical quantities
M, J, VH , k, and A satisfy a Smarr relation

M �
3
2

µ
kA

8pG
1 VHJ

∂
. (23)

Another interesting formula relates Ri to M and k:

k �
3pRi

8GM
. (24)

Since the temperature of the horizon is given by k�2p,
this formula shows that the temperature of the ring is in-
versely proportional to its mass per unit length (around the
inner S1).

FIG. 2. �27p�32G�J2�M3 as a function of n. Here and in the
following graph, the solid line corresponds to the black ring,
the dashed line to the black hole. The two dotted lines delimit
the values for which a black hole and two black rings with the
same mass and spin can exist.
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FIG. 3. A��GM�3�2 against
p

27p�32G J�M3�2, around the
regime in which a black hole and two black rings with the same
M and J exist. For

p
27p�32G J�M3�2 � 0.942 there exist a

black hole and a black ring with the same mass, spin, and area
A � 5.157�GM�3�2.

If one considers perturbing the black ring in such a way
that it settles down to another black ring solution, then the
first law of black-hole mechanics can be proved in the usual
way [10] since this proof does not depend on the topology
of the event horizon.

The solution with the larger area (entropy) for given val-
ues of M and J is the one expected to be globally ther-
modynamically stable in the microcanonical ensemble. In
Fig. 3 we have plotted A�M3�2 as a function of J�M3�2.
As the spin increases (with the mass held fixed), there is
first a small range of spins for which the black hole has lar-
ger area than both black rings. However, at a slightly larger
spin, and before the singular limit is reached, the larger
black ring has a greater area than the black hole and is the
preferred configuration. Hence we conjecture that, as a
five-dimensional black hole is spun up, a phase transition
occurs from the black hole to a black ring. The singular
solution is never reached.

Classically, the second law of black-hole mechanics sug-
gests that a black hole might evolve into a black ring as
angular momentum is added to it. However, this involves
a change in the topology of the horizon, and it is not clear
whether this is possible classically (see Ref. [11] for an ex-
ample in which a classical topology change of the horizon
is forbidden).

If n ! 0 at fixed M, then the ring becomes large and
thin so one might expect ripples along the c direction
to lead to a classical Gregory-Laflamme [12] instabil-
ity. However, if the above conjecture is correct, then we
would expect a range of values 0 , n1 , n , n2 , n�

for which the ring is classically stable. The results of [11]
suggest that the horizon of unstable rings would tend to
become lumpy around the S1. The changing quadrupole
moment of such an object would lead to emission of gravi-
tational radiation until a stable end point was reached, pre-
sumably either another ring or a spherical black hole [13].
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The extremal limit of the black-hole solution is a naked
singularity, and it appears that the black ring plays a role
in smoothing out the approach to this singularity. The ex-
istence of the ring may be related to cosmic censorship.
In four dimensions, the extremal limit of the black hole is
regular and the third law of black-hole mechanics forbids
violation of the angular momentum bound jJj # GM2

[10,14]. In dimension D $ 6, black holes with a single
nonvanishing angular momentum can carry arbitrarily high
J (for a given M). Hence cosmic censorship would not re-
quire black rings to exist in these cases. Five-dimensional
black holes with two nonzero angular momenta satisfy the
bound (20) with J replaced by jJ1j 1 jJ2j, but their ex-
tremal limit is nonsingular so the third law suggests that
this bound cannot be violated by throwing matter into the
hole. However, one might wonder what would happen if
one were to throw some matter with J2 fi 0 into a black
ring (with J2 � 0). There may be a generalization of the
black ring solution that carries two angular momenta.
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