CHAOS EXPANSIONS AND LOCAL TIMES

David Nualarti and Josep Vives

Abstract

In this note we prove that the Local Time at zero for a multiparametric Wiener process belongs to the Sobolev space $\mathbb{D}^{k-\frac{1}{2}-\varepsilon_{1}^{2}}$ for any $\epsilon>0$. We do this computing it.s Wiencr clatas expansion. We sec also that this expansion converges almost surely. Finally, using the same lechnique we prove similar results for a renormalized Local Time for the antontersections of a planar Brownian motion.

0 . Introduction and notations

In this note we first obtain the Wiener chaos decomposition of the local time at zero for a multiparameter Wiener process. We also show that the Wiener chaos series converges almost surely, and the local time belongs to the Sobolev space $\mathbf{D}^{k-1 / 2-c, 2}$, for any $\epsilon>0$, where k is the number of parameters of the Wiener process. The last part of the paper is devoted to show the existence of a renormalized local time for the autointersections of a planar Brownian motion (Varadhan renormalization), by means of the Wiener chaos expansion.

Let (T, \mathcal{B}, μ) be a σ-finite atomless measure space. We will denote by H the Hilbert space $L^{2}(T, \mathcal{B}, \mu)$ which is assumed to the separable. Let $W=\{W(h), h \in H\}$ be a zero-mean Gaussian process with covariance function $E[W(f) W(g)]=\langle f, g\rangle_{H}$ defined on some probability space (Ω, \mathcal{F}, P). We will suppose that \mathcal{F} is the σ-field generated by $\{W(h), h \in$ $H\}$. It is well-known that any square-integrable functional on Ω has an orthogonal decomposition of the form

$$
\begin{equation*}
F=E[F]+\sum_{n=1}^{\infty} I_{n}\left(f_{n}\right), \tag{1}
\end{equation*}
$$

where $f_{n} \in L_{s}^{2}\left(T^{n}\right)$ (symmetric square integrable kernel), and I_{n} denotes the multiple Wiener-Ito stochastic integral.

In this framework we can consider the derivative operator D which acts on multiple stochastic integrals in the following form,

$$
D_{t} I_{n}\left(f_{n}\left(t_{1}, \ldots, t_{n}\right)\right)=n I_{n-1}\left(f_{n}\left(t_{1}, \ldots, t_{n-1}, t\right)\right)
$$

for $n \geq 1, t \in T$. We can introduce the Sobolev spaces $D^{\alpha, 2}$ for $\alpha \in \mathbb{R}$, as it is done in [11]. A functional $F \in L^{2}(\Omega)$ with the development (1) belongs to $\mathbb{D}^{\alpha, 2}$ if and only if

$$
\sum_{n \geq 1} n!(1+n)^{\alpha}\left\|f_{n}\right\|_{2}^{2}<\infty
$$

Set $\mathbb{D}^{\infty, 2}=\cap_{\alpha \in \mathbb{R}} \mathbb{D}^{\alpha, 2}$ and $\mathbb{D}^{\alpha-12}=\cap_{\gamma<\alpha} \mathbb{D}^{\gamma, 2}$ for all $\alpha \in \mathbb{R}$.

1. Preliminaries

Let us first recall the Stroock formula (cf. [8]) that gives the Wiener chaos decomposition of a functional F belonging to $0^{\infty, 2}$:

$$
\begin{equation*}
F=\sum_{n=0}^{\infty} \frac{1}{n!} I_{n}\left(E\left[D^{n} F\right]\right) \tag{2}
\end{equation*}
$$

We will also make use of the Hermite polynomials. For each $n \geq 0$, we will denote by $H_{n}(x)$, the nth Hermite polynomial defined by

$$
\begin{equation*}
H_{n}(x)=\frac{(-1)^{n}}{\sqrt{n!}} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}}\left(e^{-x^{2} / 2}\right), \quad n \geq 0 \tag{3}
\end{equation*}
$$

Let $p_{\epsilon}(x)$ be the centered Gaussian kernel with variance $\varepsilon>0$. The following equality, which follows immediately from (3), relates the derivatives $p_{\varepsilon}^{(\pi)}(x)$ with the Hermite polynomials:

$$
\begin{equation*}
p_{\varepsilon}^{(n)}(x)=(-1)^{n} \sqrt{n!} \varepsilon^{-n / 2} p_{\varepsilon}(x) H_{n}\left(\frac{x}{\sqrt{\varepsilon}}\right), \quad n \geq 1 \tag{4}
\end{equation*}
$$

Lemma 1.1.
Let Y be a random variable with distribution $N\left(0, \sigma^{2}\right)$. Then

$$
E\left[H_{2 m}(Y)\right]=\frac{\sqrt{2 m!}\left(\sigma^{2}-1\right)^{m}}{2^{n} m!}
$$

and $E\left[H_{n}(Y)\right]=0$ if n is odd.
Proof:
It follows easily from the explicit formula for Hermite polynomials:

$$
\begin{equation*}
H_{n}(x)=\sqrt{n!} \sum_{k=0}^{[n / 2} \frac{(-1)^{k} x^{n-2 k}}{k!(n-2 k)!2^{k}} \tag{5}
\end{equation*}
$$

and the moments of a Gaussian random variable, $E\left[Y^{2 m}\right]=\frac{(2 m)!}{m!2^{m}}$.

Lemma 1.2.

Let $\left\{F_{\varepsilon}\right\}_{\varepsilon>0}$ be a family of square integrable rantom variables with the expansions

$$
F_{\varepsilon}=\sum_{n=0}^{\infty} I_{n}\left(f_{n}^{\varepsilon}\right), \quad f_{n}^{\varepsilon} \in L_{s}^{2}\left(T^{n}\right)
$$

Assume that
i) f_{n}^{ϵ} converges in $L^{2}\left(T^{n}\right)$, when $\varepsilon \downarrow 0$, to some function $f_{4} \in L_{s}^{2}\left(T^{n}\right)$.
ii)

$$
\sum_{n=0}^{\infty} \sup _{\varepsilon}\left\{n!\left\|f_{n}^{\varepsilon}\right\|_{2}^{2}\right\}<\infty
$$

Then the family F_{ε} converges in $L^{2}(\Omega)$ to $F=\sum_{n=0}^{\infty} I_{n}\left(f_{n}\right)$.
Proof:
It is an immediate consequence of the Lebesgue dominated convergence theorem.

2. Chaos expansion of $\delta_{0}(W(h))$

Let δ_{0} be the Dirac delta function at zero. We can consider $\delta_{0}(W(h))$ as a distribution on the Wiener space in the sense of Watanabe (cf. [11]). Using the integration by patts formula on the Wiener space one can show that $p_{\varepsilon}(W(h))$ converges in $\mathbb{D}^{-1,2}$ to $\delta_{0}(W(h))$ (see [5]). We will first compute the Wiener checos expansion of $p_{E}(W(h))$, and from it we will deduce the expansion of $\delta_{0}(W(h))$. By formulas (2) and (3) we have

$$
\begin{align*}
p_{\varepsilon}(W(h)) & =\sum_{n=0}^{\infty} \frac{1}{n!} E\left[p_{\varepsilon}^{(n)}(W(h))\right] I_{n}\left(h^{\otimes n}\right) \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{n!} \varepsilon^{n / 2}} E\left[p_{\varepsilon}(W(h)) H_{n}\left(\frac{W(h)}{\sqrt{\varepsilon}}\right)\right] I_{n}\left(h^{\otimes n}\right) \tag{6}
\end{align*}
$$

The expectation appearing in the above formula vanishes if n is odd because p_{ε} and H_{n} are even functions. On the other hand, using Lemma 1.1 for $n=2 m$ we obtain

$$
\begin{align*}
\int_{\mathbb{R}} H_{2 m} & \left(\frac{x}{\sqrt{\varepsilon}}\right) p_{\varepsilon}(x) p_{\|h\|^{2}}(x) d x \\
& =\left(2 \pi\left(\|h\|^{2}+\varepsilon\right)\right)^{1 / 2} \int_{\mathbb{R}} \Pi_{2 m}\left(\frac{x}{\sqrt{\varepsilon}}\right) p_{\varepsilon\|h\|^{2} /\left(\varepsilon--\|h\|^{2}\right)}(x) d x \tag{7}\\
& =\left(2 \pi\left(\|h\|^{2}+\varepsilon\right)\right)^{-1 / 2} \frac{\sqrt{2 m!}}{2^{m} m!}\left(\frac{-\varepsilon}{\|h\|^{2}+\varepsilon}\right)^{m} .
\end{align*}
$$

Finally, from (6) and (7), we get the following expansion

$$
\begin{equation*}
p_{\varepsilon}(W(h))=\sum_{m=0}^{\infty} \frac{(-1)^{m} I_{2 m n}\left(h^{\otimes 2 m}\right)}{\sqrt{2 \pi} 2^{m} m!\left(\|h\|^{2}+\varepsilon\right)^{m+1 / 2}} . \tag{8}
\end{equation*}
$$

Letting ε tend to zero we deduce the Wiener chaos expansion of $\delta_{0}(W(h))$:

$$
\begin{equation*}
\delta_{0}(W(h))=\sum_{m=0}^{\infty} \frac{(-1)^{m} I_{2 m}\left(h^{\otimes 2 m}\right)}{\sqrt{2 \pi} 2^{m} m!\|h\|^{2 m+1}} . \tag{9}
\end{equation*}
$$

This series does not converge in $L^{2}(\Omega)$, because

$$
\begin{equation*}
\left\|\delta_{0}(W(h))\right\|_{2}^{2}=\sum_{m=0}^{\infty} \frac{(2 m)!}{2^{2 m}(m!)^{2} 2 \pi\|h\|^{2}}=\infty \tag{10}
\end{equation*}
$$

by the Striling formula. Observe that from (9) and (10) we obtain
i) $\delta_{0}(W(h)) \in \mathbb{D}^{-1 / 2-, 2}$
ii) $\delta_{0}(W(h)) \notin \mathbb{D}^{-1 / 2,2}$,
and the series (9) converges in the norm of the space $\mathbb{D}^{-1 / 2-\epsilon, 2}$, for any $\epsilon>0$.

Remark. More generally we can obtain the chaos expansion of $\delta_{x}(W(h))$ when $x \neq 0$:

$$
\delta_{x}(W(h))=\sum_{n=0}^{\infty} p_{\|^{h} h} 月^{2}(x) H_{n}\left(\frac{x}{\|h\|}\right) \frac{I_{n}\left(h^{\otimes n}\right)}{\|h\|^{n} \sqrt{n!}} .
$$

3. Wiener chaos expansion for the local time of a multiparametric Wiener process

In this section we will assume that T is $[0,1]^{k}$, with $k \geq 1$. Then $W=\{W(\underline{t}), \underline{t} \in T\}$ will be the standard Wiener process on T. We will denote by $[0, t]$ the rectangle $\left[0, t_{l}\right] \times \cdots \times\left[0, t_{k}\right]$, where $\underline{t}=\left(t_{1}, \ldots, t_{k}\right)$. We will also set $|\underline{t}|=t_{1} \cdot \ldots \cdot t_{k}$.

The local time of W can be formally defined as

$$
\begin{equation*}
L(\underline{t}, x)=\int_{[0, \underline{\underline{l}}]} \delta_{x}\left(W_{\underline{s}}\right) d \underline{s}, \quad \underline{t} \in T, \quad x \in \mathbb{R} . \tag{11}
\end{equation*}
$$

Although for any fixed $\underline{s}, \delta_{x}\left(W_{\underline{s}}\right)$ is not an ordinary random variable but a distribution on the Wiener space, it tums out that the integral
in (11) has a smoothing eflect, and $L(t, x)$ is a well-defined random variable for any fixed point \underline{l}, not on the axes. We will restrict our analysis to the case $x=0$, and we will set $L(\underline{t})=L(\underline{t}, 0)$. We know that $L(\underline{t})=\int_{0, \underline{t}!} \delta_{0}\left(W_{\underline{4}}\right) d \underline{s}$ can be obtained as the L^{2}-limit of

$$
\begin{equation*}
L_{\varepsilon}(\underline{t})=\int_{[0, \underline{t}]} p_{\varepsilon}\left(W_{\underline{\underline{s}}}\right) d \underline{s} \tag{12}
\end{equation*}
$$

when ε tends to 0 (see, for instance, [2]). In the next theorem we will compute the Wiener chaos expansion of $L(t)$.

Theorem 3.1.

We have that $L(\underline{t})$ belorgs to the space $\mathbb{D}^{k-\frac{1}{2}-, 2}$, for any point t not on the axes, and it holds that

$$
\begin{aligned}
L(\underline{t})=\sum_{m=0}^{\infty} \frac{(-1)^{m+} 2^{k}}{\sqrt{2 \pi}} 2^{m n} m!(1-m)^{k} & I_{2 m} \\
& {\left[\prod_{i=1}^{k}\left(\left(t_{i}\right)^{(1-m) / 2}-\left(t_{1, i} \vee \cdots \vee t_{2 m, i}\right)^{(1 \cdots m) / 2}\right)\right] }
\end{aligned}
$$

Moreover, $L(t)$ does not belong to $\mathbb{D}^{k-\frac{1}{2}, 2}$.

Proof:

We will first compute the Wiener chaos expansion of $L_{\epsilon}(\underline{t})$ applying the results of the previous section. From (8) and (11) we obtain

$$
\begin{equation*}
L_{\varepsilon}(\underline{t})=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{\sqrt{2 \pi} 2^{m} m!} \int_{[0, \underline{t}]} \frac{I_{2 m}\left(\mathbf{1}_{[0, \underline{s}]}^{\otimes 2 m}\right)}{(\mid \underline{s} ;+\varepsilon)^{m+1 / 2}} d \underline{s} \tag{13}
\end{equation*}
$$

Then the series $\sum_{n=1}^{\infty} X_{n}$ converges a.s.
As a consequence of this theorem, if F is a square integrable random variable with the development (1), and

$$
\begin{equation*}
\sum_{n=0}^{\infty} n!(\log n)^{2}\left\|f_{n}\right\|_{2}^{2}<\infty, \tag{14}
\end{equation*}
$$

then the Wiener chaos expansion (1) converges a.s. In particular the condition (14) is satisfied if F belongs to the Sobolev space $\mathbb{D}^{6,2}$ for any $\epsilon>0$. Consequently, applying Theorem 3.1, and the above criterion (14), we deduce the aimost sure convergence of the Wiener chaos expansion of the local time of the multiparameter Wiener process.

4. Renormalized local time for the autointersections of a planar Brownian motion

Consider now $W=\left\{\left(W_{t}^{1}, W_{t}^{2}\right), t \in[0,1]\right\}$ a standard planar Brownian motion. Let us write $[X]=X-E(X)$ for any integrable random variable X. It is known from [6] that

$$
\begin{equation*}
L_{\varepsilon}=\int_{0<s<t<1}\left[p_{\varepsilon}\left(W_{t}^{1}-W_{s}^{1}\right) p_{\varepsilon}\left(W_{l}^{2}-W_{s}^{2}\right)\right] d s d t \tag{15}
\end{equation*}
$$

converges in $L^{2}(\Omega)$, as ε tends to zero. The purpose of this section is to give a new proof of this fact by means of the results obtained on Section 2.

Theorem 4.1.

The family of random variables L_{ε} converges as ε tends to zero, in $\mathbb{D}^{1 / 2-\delta, 2}$, for any $\delta>0$. In particular, this implics the convergence in $L^{2}(\Omega)$.

Proof:
Set $\Delta=(s, t]$. Applying the results of Section 2, we have

$$
\begin{equation*}
L_{\varepsilon}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 \pi 2^{n}} \sum_{\ell+p=n} \frac{1}{\ell!p!} \int_{0<s<t<1} \frac{I_{2 \ell}^{1}\left(1_{\Delta}^{\otimes 2 \ell}\right) I_{2 p}^{2}\left(1_{\Delta}^{\otimes 2 p}\right)}{(|\Delta|+\varepsilon)^{n+1}} d s d t \tag{16}
\end{equation*}
$$

where $I_{2 \ell}^{1}$ and $I_{2 p}^{2}$ denote, respectively, the multiple stochastic integrals with respect to the Browrian motions W^{1} and W^{2}. When n varies the
terms appearing in the above sum are orthogonal. The square of the L^{2}-norm of the 7, th term is given by

$$
\begin{aligned}
& \frac{1}{(2 \pi)^{2} 2^{2 n}} \sum_{\ell+p=n} \frac{1}{(\ell!)^{2}(p!)^{2}} \\
& \quad \int_{\substack{\langle\ell \\
u<v}} \frac{E\left[I_{2 \ell}^{1}\left(1_{\Delta}\right) I_{2 \ell}^{1}\left(1_{\Delta} \cdot\right)\right] E\left[I_{2 p}^{2}\left(\mathbf{1}_{\Delta}\right) I_{2 p}^{2}\left(1_{\Delta} \cdot\right)\right]}{\left[(|\Delta|+\varepsilon)\left(\left|\Delta^{*}\right|+\varepsilon\right)\right]^{n+1}} d s d t d u d v
\end{aligned}
$$

where $\Delta^{*}=(u, v]$. We can estimate this term by

$$
\left.\begin{array}{l}
\frac{(2 n)!}{(2 \pi)^{2} 2^{2 n}(n!)^{2}} \sum_{\ell+p=n}\left(\frac{n!}{\ell!p!}\right)^{2} \int_{\substack{v<\prime}} \frac{(2 \ell)!(2 p)!\left\langle 1_{\Delta}, 1_{\Delta \cdot}\right\rangle^{2 n}}{(2 n)!\left(|\Delta|\left|\Delta^{*}\right|\right)^{n+1}} d s d t d u d v \\
=\frac{(2 n)!}{(2 \pi)^{2} 2^{2 n}(n!)^{2}}\left[\sum_{\ell+p=n} \frac{\binom{n}{\ell}}{\binom{n}{p}}\right. \\
\binom{2 \ell}{2 \ell}
\end{array}\right] \int_{v<t} \frac{\left|\Delta \cap \Delta^{*}\right|^{2 n}}{\left(|\Delta|\left|\Delta^{*}\right|\right)^{n+1}} d s d t d u d v . . .
$$

Observe that

$$
\begin{equation*}
\sum_{\ell+p=n} \frac{\binom{n}{\ell}^{2}}{\binom{2 \ell}{2 \ell}} \leq(n+1) \max _{0 \leq \ell \leq n} \frac{\binom{n}{\ell}^{2}}{\binom{n n}{2 \ell}} \leq n+1 \tag{17}
\end{equation*}
$$

On the other hand we claim that

$$
\begin{equation*}
\int_{v<t} \frac{|(s ; t] \cap(u, v]|^{2 n}}{(t-s)^{n+1}(v-u)^{n+1}} d s d t d u d v \leq \frac{3}{n^{2}} \tag{18}
\end{equation*}
$$

In order to show (18) we will decompose the integral by considering the different positions of s, t, u and v. We have that the left hand side of (18) is equal to
(19) $2 \int_{u<s<u<t} \frac{(v-s)^{2 n}}{(t-s)^{n+1}(v-u)^{n+i}} d s d t d u d v$

$$
+2 \int_{u<s<t<v} \frac{(t-s)^{n-1}}{(v-u)^{n+1}} d s d t d u d v
$$

The second summand in (19) can be estimated as follows

$$
\frac{2}{n} \int_{u<s<v} \frac{(v-s)^{n}}{(v-u)^{n+1}} d u d s d v=\frac{1}{n(n+1)} \leq \frac{1}{n^{2}}
$$

For the first term, we have

$$
\begin{aligned}
& \frac{2}{n} \int_{s<v<t} \frac{(v-s)^{n}}{(t-s)^{n+1}} d s d t d v-\frac{2}{n} \int_{v<v<t} \frac{(v-s)^{2 n}}{(t-s)^{n+1} v^{n}} d s d v d t \\
& =\frac{1}{n(n+1)}-\frac{2}{n^{2}} \int_{s<v} \frac{(v-s)^{2 n}}{(1-s)^{n} v^{n}} d s d v+\frac{2}{n^{2}} \int_{s<v} \frac{(v-s)^{n}}{v^{n}} d s d v \\
& =\frac{1}{n(n+1)}+\frac{2}{n^{2}} \int_{s<v} \frac{(v-s)^{n}}{v^{n}}\left[1-\frac{(v-s)^{n}}{(1-s)^{n i}}\right] d s d v \\
& \leq \frac{1}{n(n+1)}+\frac{1}{n^{2}} \leq \frac{2}{n^{2}}
\end{aligned}
$$

which completes the proof of (18). Therefore the square of the L^{2} norm of each term of (16) can be estimated by

$$
\frac{(2 n)!}{(2 \pi)^{2} 2^{2 n}(n!)^{2}} \frac{3(n+1)}{n^{2}},
$$

which is equivalent to a constart times $n^{-3 / 2}$. Then Lemma 1.2 allows to complete the proof of the theorem.

References

1. N. Bouleau and F. Hirsch, "Difichlet forms and analysis on Wiener space," Walter de Gruyter, 1991.
2. D. Geman and J. Horowitz, Occupation densitics, Annals of Probability 8 (1980), 1-67.
3. J. F. Le Gall, "Sur le temps local d'intersection du mouvement brownien plan ct la méthode de renormalisation de Vartadhan," Sem. Prob. XIX, Lecture Notes in Math. 1123, 1984, pp. 314-331.
4. D. Nualart and E. Pardoux, Stochastic calculus wilh anticipating integrands, Prob. Theory and Rel. Fields 78 (1988), 535-581.
5. D. Nualart and J. Vives, Smoothness of Brownian local times and related functionals, Preprint.
6. J. Rosen, "A renormalized local time for multiple intersections of planar Brownian motion," Sern Prob. XX, Lecture Notes in Math. 1204, 1985, pp. 515-531.
7. W. Srou'r, "Almost sure converyence," Academic Press, 1984.
8. D. W. Stroock, "Homogencous Chaos revisited," Scm. Prob. XXI, Lecture Notes in Math. 1247, 1987, pp. 1-7.
9. H. Sugita, Sobolev spaces of Wiener functionals and Malliavin's calculus, J. Math. Kyoto Univ. 25, 1 (1985), 31-48.
10. J. B, Walsh, The local time of the brownian sheet, Astérisque 52 , 53 (1978), 47-61.
11. S. Watanabe, "Lectures on stochastic differential equations and Malliavin Calculus," Springer, 1984.

David Nualart:
Facultat de Matemàtiques
Universitat de Barcelona
Gran Via, 585
08007 Barcelona
SPAIN
Josep Vives:
Departament de Matemàtiquues Universitat Autònoma de Barcelona 08193 Bellaterra (Barcelona)
SPAIN

Rebut el 2 de Març de 1992

