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CHAOS EXPANSIONS AND LOCAL TIMES

Davio NUALART AND JOSEP VIVES

Abstracet

T

In this note we prove that the Local Time at zero for a multipara-
metric Wiener process belongs o the Sebolev space D*= 52 for
any € > 0. We do this computing its Wiener chaos expansion. We
sec also that this expansion converges almost surely. Finally, us-
ing the same Leehnigue we prove similar resutts for a renormalized
Lacal Time for the aulointersections of a planar Brownian motion.

0. Introduction and notations

In this note we first obtain the Wiener chaos decomposition of the
local time at zevo for a multiparameter Wiener process. We also show
that the Wiener chaos scries converges almost surely, and the local time
belongs to the Soboley space D¥~1/2-92 for any ¢ > 0, where k is the
number ol parameters of the Wicner process. The last part of the paper
is devoted to show the existence of a renormalized local time for the
autcintersections of a planar Brownian motion {Varadhan renormaliza-
tion), by means of the Wiener chaos cxpansion.

Let (T, B, gt} be a o-finite atomless measure space. We will denote by
H the Hilbert space L?(T, B, ;i) which is assumed to the separable. Let
W = {W(h), h € H} be a zero-mean Gaussian process with covariance
function £ [W (Y W{y)] = {f, g)n defined on some probability space
(€2, F, PP). We will suppose that F is the o-field generated by {W({h), h €
H}. 1t is well-known that any square-integrable functional on €2 has an
orthogonal decomposition of the form

(1) F=EF+) L

where f,, € LT} (symmetric square integrable kernel), and [, denotes
the multiple Wiener-1t6 stochastic integral.
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In this framework we can consider the derivative operator P which
acts on multiple stochastic integrals in the following form,
Dl‘, I‘n.(fn(tl P :tu)) = nfn—] (fn(tl IR in—l)t))
for n.> 1, t € T. We can introduce the Sobolev spaces D2 for o« € R,
as it is done in {11]. A functional £ € L2(2) with the development (1)
belongs to B*? if and only if

Yl + ) |l £l < oo

>l

Set D2 = NyerD®? and D¥2 = F'LKQ[D?""2 for all @ € R.

1. Preliminaries

Let us first recall the Stroock formula (cf. {8]) that gives the Wiener
chaos decomposition of a functional #' belonging to B2

@) LI SE SNT0

n={
We will also make use of the Hermite polynomials. For each n = 0, we
will denote by H,,(x), the nth Hermite polynomial defined by

- (_1)11 LTl dr —s/2
(3) H-,,_(I) = —'—\/?_'—! [ ﬁ (8 ) N T 2 0.

Let p.{x) be the centered Gaussian kernel with variance € > 0. The fol-

lowing equality, which follows immediatcly from (3), relates the deriva-

tives pg")(a:) with the Hermite polynomials:

(4) (2} = (1) V'n! 72 pe(x) H, (%) , n>1

Lemma 1.1.
Let Y be o random variable with distribution N(0,0?). Then

Vami (o — 1y

2!

F[H,(Y)] =
and E[H(Y)] =0 if n is odd.

Proof:
It follows easily from the explicit farmula for Hermite polynorials:
[n/2: ( ]_}'i” P

(5) Hal) =Vl 3 gy

Hin —2k) 128 °

: : _ 2mn)!
and the moments of a Gaussian random variable, E[Y*"] = éﬁ.)? L
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Lemma 1.2.

Let {Filewo be o family of square integreble random variables with the

ETPANSIONS
==}

Fe=" L5, fielrlum).

n=0
Assurne thal
i) f€ converges in L2(T"), when g | 0, to some function f, € L2(T").

i3

(= w]
ii) Z sup {ﬂ[ || f:eu ||é} < 0o.

n=0 %

Then the famaly Fe converges in L2(Q) to F =% 07 I (fa)-

Proof:
It is an inunediate consequence of the Lebesgue dominated convergence
theorein. @

2. Chaos expansion of & (W (k)

Let & be the Dirac delta {unction at zero. We can consider 8o{ W (h)}
as a distribution on the Wiener space in the sense of Watanabe (cf. [11]).
Using the integration by parts formula on the Wiener space one can show
that p.(W(h))} converges in D=2 Lo (W (h)) (see [5]). We will frst
compute the Wiener chaos expansion of p.(W(A)), and from it we will
deduce the expansion of §{W{k)). By formulas (2) and (3) we have

|
mwwzzaquMﬂmww
(6) n=0

:_Z \/_”_E ——— [pE(Hf'(h))H,L (-‘%ﬂ 1, (h®™) .

The expectation appearing in the above formula vanishes if n is odd
because e and A, are even functions. On the other hand, using Lemnma
1.1 for » = 2m we obtain

/[re Hom (%) pe(€)pyn 2 (x)d

(7) = (27.'(”}.,”2 -i—E)) 1/2] oy, (\;,—) Pell b2/ e+ 2)12) (fl.‘)(ﬁ.’!:

m ( —& )m

= (2n(|[R]|* + )}
(2r(|Ikl* + €)) 2 i \TRIE +e
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Finally, from (6) and {7}, we get the following cxpansion

(8) W (k) = i (=)™ Iz (R®*")

.-v— Im (Hh|l2 )m-f-l/z .
Letting ¢ tend to zero we deduce the Wiener chaos expansion of §o{ W(h)):

oo (__]_)nz [2?“(}1@2101)
(9) So(W{h}} = Z V2r 2l || Rt

m=0

This series does not converge in L#((2), because
oo

(10) W) 2= S Cm)!

Zm 2 2
= 2 {mD)? 2| A

by the Striling formula. Observe that {rom (9} and (10) we obtain

i) So(W(h)) e D-1/22

ii) So(W(h)) ¢ D~H/%2,
and the series {(9) converges in the norm of the space D~Y/2=42  for any
e > 0.

Remark. MWMore generally we can obtain the chaos expansion of
(W (h)} when £ 0:

I, (he®"
W) = 3 muete) (n}fu) {|h|§:v@%T'

n=0

3. Wiener chaos expansion for the local time
of a multiparametric Wiener process

In this section we will assume that T is [0,1]*, with & > 1. Then
W = {W(t), t €1’} will be the standard Wicner process on T. We will
denote by [0,1] the rectangle [0, 6] x --- x [0,4x], where t = ({1, ..., tx).
We will also set [£]| =#,-... -t

The local time of W can be formally defined as

(11) L(g,a:)zf 5:(Wy)ds, teT, mcR.
0.4)

Although for any fixed s, &.(W,) is not an ordinary random variable
but a distribution on the Wienter space, it turns oub that the integral
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in (11) has a smoothing effect, and L{i,z) is a well-defined random
variable for any fixed point ¢ |, nol on the axes. We will restrict our
analysis to the case © = 0, and we will set L{t} = L{¢,0). We know that
L{t) = fo, 60(W,) ds can be obsained as the L2-limit. of

(12) Lolt) = /{U el ds

when ¢ tends to 0 (see, for instance, [2]). In the next theorem we will
compute the Wiener chiaos expansion of L{Z).

Theorem 3.1.

We have that L(L) belongs to the space DA~272, for any point t not
ot the axes, and it holds that

= ])TH— 2}0
Z IQTH,
= 2w 2mm (1 - m)f
k
[H ( (1—n}/2 (f'l‘i (VY. tﬁr:a,i)(l.-m)/‘z)} )

i=1

Moreover, L(t) does not belong to DF~ 172

Proof:

We will first, compute the Wiener chaos expansion of L.(1) applying
the resulis of the previous section. From (8) and {11} we obtain

121‘?‘1

1)”" I3 ( [0,5] )
1 L.(t) 5 .
(13) «(t) Z \/ﬁ 2m m ]ou] (| m+1/2 ds

wr={) g+ E)
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Then the series .., X, converges a.s.

As a consequence of this theorem, if F is a square integrable random
variable with the development (1}, and

20

(14) > ntlogn)?| full3 < o,

=0

then the Wiener chaos expansion (1) converges a.s. In particular the
condition (14) is satisficd if F belongs to the Sobolev space B%? for any
¢ > 0. Conseguently, applying Theorem 3.1, and the above criterion {14},
we deduce the almost sure convergence of the Wiener chaos expansion
of the local time of the multiparameter Wiener process.

4. Renormalized local time
for the autointersections of a planar Brownian motion

Consider now W = { (W}, W?), t € [0,1]} a standard planar Brow-
nian motion. Let us write {X] = X — £{X) for any integrable random
variable X. It is known from [6] that

(15) Le= / [pE(H/: — W)Y pe (WS — Wf)] ds dt
Dat]

converges in L2(§1), as € tends to zero. The purpose of this section is
to give a new proof of this fact by means of the resnlts obtained on
Section 2.

Theorem 4.1.

The family of random variables L, converges as € tends to zero, in
D/2-42 for any & > 0. In particuler, this umplies the convergence

LE(SY).

Proof:
Set A = (5, t]. Applying the resulis of Section 2, we have

(16)
I > (——1)” 1 / 1218 (1§2£) 122;, ( 1%2;;) ds dt
= E . E 5 di,
B 27 2 I pt Jocscren {|A]+ &)+

n=1 {wp=mn.

where 7}, and 1;3, denote, respectively, the multiple stochastic integrals
with respect to the Brownian motions W' and W2, When n varies the
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terms appearing in the above sum are orthogonal. The square of the
L%-norm of the nth term is given by

1 i

{+p=n

1 1 |72 2 .
[ B[ (1) By(15)] B[53, (18) 5, (10)] ds dt du dv,

[(la]+e) (A +e)]™

where A* = (u, v]. We can estimate this term by

2n)‘ z (20)1(2p) 1{1a, 1a-)2"
(27)2227(n 1)2 Z ( ) /m @)1 ([A]] A |)n+1 ds dt du dv

_ (2n)i (2) (;)
T {2m)222n (n1)2 [ Z

£4p=n uey

et 60 (ala)™

LIRS T

* |2n
] f M ds dt du dv .
gt
Observe that

(17) | Z

712 112
(z) <{n+1) Jhax () <n+41.

] 2n -
£p=n ('25) sésn (28)
On the other hand we claim that
[ (s, ¢ N (s, 0] 2" 3
: <2
(18) / < oo (o — upi? ds dt du dv < —.

In order to show (18} we will decornpose the integral by considering
the different positions of s, ¢, u and ». We have that the left hand side
of {18} is equal to

(U . S)?n

(1%) 2 /u-:s<u<t (t —syrtl (v — uptt

_ 1
+ 2/ —(E—'—S]'H—_H ds dit du dv.
wcs<icy (¥ —u)

ds dt du dv

The second summand in {19) can be estimated as {ollows

2 (v — s} 1 1
< L L = <
7 /Nﬂ(_v (v — u)nt! du s dv n{n+1) ~ n?
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For the first term, we have

2 ; — 3" 2 g o— I
_/ L“,‘)—f"ds{if(i?}——/ (—U'”g)—de’Udt
N Jycver (E— 8Pt 7 Socoer (E— st on
— 2 _ gyn
= i a1y "’f U S ds dv+ — / (U—S)_ ds du
(?1 + 1 < (1 - 5 n un 7% Jeco s
! 2 (G (v —a)™
= e ——_— — 1 ATy :
n{n+ 1} + 2 ./;(v o I (1= s els du
1 1 2

< - =
~ nn+1) TS

which completes the proof of {18). Therefore the square of the L? norm
of each term of (16} can be estimated by

(2n)! 3{n+1)
(Q?T)'ZQQ'H, (?’:’.!)2 n? ?

which is equivalent to a constant times n~%2. Then Lemma 1.2 allows
to complete the proof of the theoremn. W
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