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Abstract

ON THE INVERSE PROBLEM
OF GALOIS THEORY

NÚRIA VILA

Dedicated to Pere Menal

The problem of the construction of number fields with Galois
group over Q a given finite groups has made considerable progress
in recent years . The aim ofthis paper is to survey the current state
of this problern, giving the nnost significant methods developed in
connection with it .

The inverse problem of Galois theory asks whether given a field K and
a finite group G there exists a polynomial with coefficients in K whose
Galois group over K is isomorphic to the given group G. Different as-
pects of this problem can be pointed out : The existente of solutions,
the effective construction of polynomials, the existente of solutions with
some additional conditions, and so on . In any case, the answers to there
problerns are very different according to the prefixed field K. For ex-
ample, over C(T) the inverse problem of Galois theory always has an
affirmative answer, as a consequence of Riemann's existente theorem . In
contrast, it is well-known that over the finite fields, only cyclic groups
appear as Galois groups, and also, over the p-adic fields only solvable
groups occur as Galois groups .

However, the main problem in this context which is classically known
as the inverso problem of Galois theory is to realizo any finite group as
a Galois group over the rational field Q . In recent years there has been
considerable progress in this as yet unsolved problem . The aim of this
paper is to survey the current state of this problem, giving the most sig-
nificant methods developed in connection with it . This papes essentially
contains a talk given in the "Seminario de Geornetria Algebraica", at the
Complutense University of Madrid, in November 1990 .

Partially supported by grant PI389-0215 fróm CICYT
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1 . Hilbert's Irreducibility Theorem: Sn, An

The origin of the questions related to the construction of polynomials
with prefixed Galois group can be found in Hilbert . In 1892 . in the same
paper in which he established his irreducibility theorem, he proved that
the symmetric group S,, and the alternating group A,,, are Galois group
over Q(T) and over every number field [Hi] .

Hilbert's irreducibility Theorem . Let K be a number field. Let
F(T1 , . . . , T,., X) E K[Ti ; . . . . T,., X] be an irreducible polynomial . There
exists infinitely many r-tuples t = (ti, . . . . t, .) E 7Lr such that the polyno-
mial

Ft (X) := F(t1 , . . ., t,,, X) E K[X]

is irreducible .
Moreover, there exists infinitely many r-tuples t = (ti ; . . . , t,.) E zT

such that the Galois group of F(T1 , . . . . T,., X) over K (TI, . . . . T,.) is iso-
morphic to the Galois group of Ft(X) over K,

Ga1K(TI, . . . .Tr)(F(Ti, - . .,T,- X)) - GalK(Ft(X)) .

Applying this result to the general equation of degree n,

F(Tj, . . .,Tn,X) =Xn+TJXn-1 +---+Tn

we obtain that, for infinitely many values of t = (ti . . . . ,tj E Zn , the
Galois group of Ft(X) over any number field K is

GálK(Ft (X)) = Sn .

Therefore, Sn appears as a Galois group over every number field and
in particular over Q . Hilbert also constructed polynomials F(X,T) and
G(X,T) with rational coefficients which are irreducible over q(T) and
whose Galois groups over Q(T) are

GalQ(T)(F(X,T)) - S�
Ga1Q(T)(G(X,T)) - An,

for all values of n . The splitting fields of these polynomials are regular
extensions over Q(T) (Le . Qw is algebraically closed in these splitting
fields), hence S,, and A,,, are Galois groups over K(T), where K is any
number field . Therefore ; by Hilbert's irreducibility theorem, An appears
as a Galois group over every number field . Moreover, we have infinitely
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many rational polynomials with Galois groups over Q, isomorphic to Sn
and to A, .
From Hilbert's irreducibility theorem, we find that a Galois realization

of a finite group G over Q(T) provides, in fact, a parametric solution
over Q . Moreover, if the Galois extension over Q(T) is regular, we get
an affirmative answer for the group G over any number field .
On the other hand, from a geometric point of view, an irreducible

polynomial F(X,T) E Q[T, X] defines an irreducible projective rational
curve C which is a Galois covering of the projective line ff 1 over Q.
The function field of C is the splitting field N over Q(T) of F(X,T) .
Therefore, the curve C is absolutely irreducible if and only if N is a
regular extension of Q(T) .
Noether's method. Emmy Noether's idea to construct equations

with a prescribed Galois group was to extend Hilbert's method to any
finite group G. Let us consider a finite group G acting faithfully on
a set of m elements, G C S�z . Let K be a nuinber field and L =
K(TI , . . . , T,,,). The question is whether the invariant field LG is a purely
transcendental extension of K. An affirmative answer to this question
for a given G and K would imply, by Hilbert's irreducibility theorem,
that G can be realized as a Galois group over K. Noether proved that
this was true for every subgroup of S4 . Later an affirmativé answer
to Noether's question for some cyclic groups was found . Moreover, by
Luroth's theorem every subfield K ~; L C K(T) is purely transcendental
over K, and by Castellnuovo's theorem, this is also true for K = C and
m = 2, but for m >_ 3 this conclusion becomes falso . This leads to
the problem of the construction of unirational varieties which are not
rational . However Swan [Sw 69] shows that for the cyclic group C47
Noether's question has a negative answer . Other examples have been
obtained, the simplest one is provided by Lenstra [Le 74] for C8 . Still,
Noether's method has recently been revitalized .

	

Ekedahl [Ek 90] has
given a new proof of Hilbert's irreducibility theorem in which it is proved
that, although the invariant field KG is not purely transcendental, it
may have sufficiently good properties, in terms of weak approximation of
smooth rational varieties, for Hilbert's irreducibility theorem to remain
valid and, by specializing, to obtain a Galois extension with a Galois
group isomorphic to the given group G.

2 . Galois embedding problem I: Solvable groups

Let.1 -> A -> G -> G -> 1 be an exact sequence of finite groups .
Suppose that G is a Galois group over a field K, G = Gal(L/K) . The
question is whether there exists a Galois extension L of K such that
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G = Gal(L/K), L D -L D K and the diagram

1

	

A

	

G

1% Gal(L/L)

	

Gal(L/K)

	

Gal(L/K) --~ 1

is commutative.
In other words, let GK = Gal(K/K) be . the absoluto Galois group of

K, the Galois extension L/K gives an epimorphism p : GK - G. The
Galois embedding problem associatedwith LIK has a solution if there
exists an homomorphism p : GK -G such that the diagram

GK

G

G=GoDG11) . . .DG,,={0},

is commutative . In fact the homomorphism p defines an algebra which is
an extension of K. If the kernel A is an abelian group and K a number
field then, if the embedding problem has an algebra solution, it also has a
field solution (cf. [Ik 60]) . Therefore, in this case, the two formulations
are equivalent .

It is easy to see that Every abelian group appears as a Galois group
over Q . Let G = 7L/niZL x . . . x Z/n,7L, let pi be a prime such that pi -_- 1
(mod ni), 1 <_ . i <_ n .

	

Let Si be a primitive pi-th root of unity, let Ki
be the cyclic subfield of the cyclotomic field Q(~i) of degree ni over Q .
Then Gal(Ki/Q) = 7L/ni7L and the compositum field Kl . . . K,. has Galois
group over Q isomorphic to G, since Ki fl Kj = Q, for i 0 j, 1 < i, j < n .

Since a solvable group G admits an abelian tower

it may seem to be easy to obtain the solvable case from the abelian
one . It is "only" necessary to solve one to one . the successive embedding
problems! This procedure, however, has . a lot of difficulties . In 1954,
Safarevic succeeded to prove that :

Theorem . Every finito solvable group appears-ás a Gálois group over
any number field .

The proof of this significant result is contained in four interrelated
papers [Sa 54a], [la 54b], [la 54c] and [Sa 54d] . The arithmetic
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properties of Q playa an essential roll in Sáfarevic's argumenta . It should
be emphasized that it is not still known if every solvable group appears as
a Galois group ovei G(T) . The starting point in Safarevic's research was
the works of Scholz [Sc 37], and Reichardt [Re 37] who, independently,
proved

Theorem. Every P-gro2,p appears as Galois group over Q, where e is
an odd prime.

In order to obtain their results, Scholz a,nd Reichardt solve successive
Galois embedding problems controlling the ramification of the extension
field at each stop, for B-groups . Safarevic reconsidera this result and gives
a new proof covering the case e = 2 . He defines the concept of Scholz's
extension and introduces arithmetic invariants whose cancelation assures
the existente of a solution to the corresponding embedding problem . On
the other hand ; by Ore's result (cf. [Su 82]), it is known that every
solvable group G is isomorphic to a quotient of a semidirect product of
a solvable group R by a nilpotent group N, with IR.¡ < DGI . Let us
formulate the following result of Ishanov [l[s 76],

Theorem . Let L/K be a Galois extension of number felds with Ga-
lois group G. LetN_be a nilpotent ,group on which G acts . Consider the
semidirect product G = N : G. Then, the embedding problem associated
to L/K and G has a solution .

lf this theorem is true, a proof of Safarevic's theorem can be obtained,
by induction en the order of the solvable group G, and using the two
above results . It seems that there is a mistake in the proof of Ishanov's
theorem, as well as, in the original proof of Safarevic, concerning the oven
case ; it will be corrected in a forthcoming book [19-Lu-Fa?] . However,
for the odd case an alternative proof using cohomological techniques has
been given by Neukirch [Ne 79] .
A possible way to realize the non-solvable groups as Galois groups

over Q is, using the classification of finite groups ; to realize all the simple
groups and to solve all the associated embedding problems . Nevertheless,
some families of non-solvable groups appear as Galois group over Q, using
arithmetic-geometric methods .

3 . Arithmetic-Geometric methods:
GL2(p), PGL2 (p), PSL2(p)

Let E/K be an elliptic curve defined over a field K and N >_ 1 an
integer . The kernel E[N] of the multiplication by N defines a Galois
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extension K(E[N])/K whose Galois group is

Gal(K(E[N])/K) C Aut(E[N]) = GL2(7L/NZ) .

Let ET be a generic elliptic curve over K = Q(T), for example

ET : y2 = 4x3 - Tx - T.

It is a classical result (cf .

	

[We 09]) that the Galois group of the field
FN generated by the N-division points of ET over Q(T) is isomorphic
to GL2 (7Z/NZL) . Notice that this is a non regular extension of Q(T),
since the cyclotomic field Q(SN) lies in FN . Nevertheless, we find that
GL2 (7L/NZZ) appears as a Galois group over Q(T) and then, by Hilbert's
irreducibility theorem, over (Q .

	

A related classical result (cf .

	

[F~- 22])
is that MN the field of modular functions with Fourier coefficients in
Q(bN) is a Galois extension of Q(j) with Galois group isomorphic to
GL2 (7L/NZ)/{fl} . That is, the modular curve X(N) is a Galois covering
of X(1) defined over Q(SN) whose Galois group is GL2 (7L/NZL)/{fl} . Let

it can be proved that the fieed field MÑ° is the splitting field of the
modular polynomial . Hence the Galois group of the modular polyno-
mial over Q(j) is isomorphic to PGL2(7L/NZL) . Therefore, the groups
GL2(7Z/NZL)/{fl} and PGL2 (7L/NZL) are Galois groups over Q(T) .
On the other hand, if N = pr, and p an odd prime, the Galois group of

M,, over Q(j, (P,) is isomorphic to PSL2(7L/p rZ) . Shih [Shi 74], study-
ing coverings associated with some twisted modular curves ; found that
in fact PSL2(7Z/PrZ) occurs as a Galois group over Q(T), if 2,3, or 7 is a
quadratic non-residue modulo p .

Ribet [Ri 75], using modular forms, obtains that PSL2(Fp2) appears
as a Galois group over Q, for p 0 47 and such that 144169 is a quadratic
non-residue modulo p . Using hyperelliptic curves with real multiplica-
tion, Mestre [Me 88] proves that PSL2(Fp2) is a Galois group over q(T),
if p - f2 (mod 5) .

4 . Constructive Galois Theory: Simple groups

In the last few years, considerable progress has been made in the real-
ization of simple groups as Galois group of regular extensions over Q(T)
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and, consequently, by Hilbert's irreducibility theorem, over every num-
ber field . The constructive Galois theory or the rigidity method validates
a classical idea : To use the known fact that every finite group is a Galois
group of a polymomial with coefficients in G(T) and imposéconditions in
order to ensure that the polynomial can be defined over Q(T). The first
results in this direction can be found in papers of Shih [Shi 74], Fried
[Fr 77] and Belyi [Be 79] . The main forte behind this method is Matzat,
Iris rechearch has established and developed this theory . Moreover the
work of Thompson has contribíited to popularizing and simplifying the
method . With the constructive Galois theory, many simple groups have
been found to be Galois groups of regular extensions of Q(T) .
G(T) : Riemann surfaces . By the Riemann existente theorem for

compact surfaces, we know that there is a, one-to-one correspondence
between the finite extensions of G(T) and the rarnified covering of finite
degree of the Riemann sphere P, (G) . . Therefore the problem of classi-
fiying finite extensions of C,(T) is reduced to a topological problem with
a well known solution . Let S = {pl, . . . , p,.} be a finite set of points of
P, (G), there is a one-to-one correspondence between the finite coverings
of P, (G) unramified outside of S and the finite unramified coverings of
the surface P1(G) \ S . On the other liand, there is a one-to-one corre-
spondence between the finite unramified covering of P1(G) \ S and the
subgroups of finite index of its fundamental group 11 1 (P, (G) \ S) . This
fundamental group has r,generators with one relation

II, = rIO1(G) \ S) =< ul, . . . , u,. ;11 1 . .-u,= 1 > .

Let C(T) S be the rnaximal Galois extension of G(T) unramified outside
S, its Galois group over G(T)

GS = Gal(G(T)S/G(T)) = f,

is the profinite completation of 1-1 1 . Then GS is a profinite group with r
generators and one relation, the subgroups generated by each generator
and their conjugates are the inertia groups of primes of G(T)S over the
selected primes pi, i = 1, . . . , r .

Let G be any finite group ; we can always consider r generators
g1, . . . . g,. of G with the relation g, . . . g,. = 1 . Then, we can define
an epimorphism

-~) :GS ---> C,

by Yb(u¡) = gi . Tlre fixed field N = (C(T)S)kerV' leas a Galois group over
G(T) isomorphic to G

Gal(N/G(T)) -- G .
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The extension N/á;(T) is unramified outside S, sinceN C C(T)S. There-
fore, every finite group G appears as a Galois group of an extension field
of G(T) which is unramified outside a prefixed set of primes . Indeed by
Lefschetz's principle these arguments remain true if one replaces e by
any algebraically closed subfield of ár, in particular by 1. The difficult
problem is to descend to Q! It is necessary to impose conditions, "easy"
to compute on the presentation of the group, which enable us to ensure
that in fact the extension N/q(T) is Q-defined, that is, GQ-invariant . In
otlier words, that these exists a regular Galois extension No_ /Q(T) such
that NOQ = N and

Gal(N0/Q(T)) - Gal(N/q(T)) - G.

This will be achieved by forcing the "rigidity" on the presentation of the
group .
Rationality criteria : Rigidity. Let G be a finite group . Let

Cl, . . . . Cr , r > 3, be a r-tuple of conjugacy classes of G. Let us denote

A = A(C1, . . . . CT)

	

g,.) E Cl X . . . x (;r : gl . . . gr = 1}
A=A(C1, . . . . Cr)={(91, . . .,gr)EA :<gl, . . .,gr>=G},

clearly A C fl and G operates by conjugacy on A and on fl . We need
the following definitions :
The family (C,,...,Cr) is called rigid if A is not empty and G operates

transitively on A.
The family (Cl, . . . , Cr ) is called strictly rigid if it is rigid and A = A .
A conjugacy class C of G is called rational over Q if any irreducible

character of G is rational on C, or equivalently if C contains all powers
u' of o, E C, with i relatively prime to the order of u .
Suppose that a group G, with trivial center Z(G) = {1}, has a family

(C,, . . . , Cr ) rigid with all the Ci rationas .

	

Let G =< gl, . . . , gr

	

>,
gi E Ci and 0 : GS - G, O(ui) = gi . Let N = (4(T)S) ker ~pN ls
a Galois extension of Q(T) with a Galois group isomorphic to G . The
main idea is that rational and rigid conditions on the family (Cl, . . ., Cr)
imply that N/Q(T) is normal and the Galois group P = Gal(N/Q(T))
contains a complement for G. That is, these exists a subgroup H C I'
such that r= HG. Therefore the fieed field No = NH is a Galois
extension of Q(T) with Galois group G, such that NOQ = G. Now,
we can establish the rationality theorem following Belyi [Be 79], Matzat
[Ma 84] and Thompson [Th 84a] .

Theorem . Let G be a inite group with trivial center, let Cl, . . . . Cr,
r > 3 be r conjugacy classes of G such that each Ci is rational oven Q
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and_(C,, . . . , C, .) is rigid. Let S = {pl, . . . , p,.} be a finite set of primes
of Q(T) which are Q-defined. There exists a Galois extension N/Q(T)
defined over Q with Galois group G and unramified outside of S.

Corollary . Every finite simple group with a rigid family of rational
conjugacy classes appears as Galois group of a regular extension of Q(T) .

Note that the condition on the center of the group G, Z(G) = {1}, is
essential for the rationality criterion for the group G.
However, if the rigid conjugacy classes are not rational, the above

results remain true if Q(T) is replaced by K(T), where K denotes a
cyclotomic field containing all the entries in the character table of G
corresponding to the classes Cl, . . . , C,. .
In order to apply this theorem for a particular group G it is necessary

to find a family (Cl, . . . , C,-) of rational conjugacy classes which is rigid .
It is easy to see that (C,,...,C,.) is rigid if and only if I A(Cj , . . . , C,)¡ =
IGI ; and that (Cl , . . . . C,.) is strictly rigid if and only if I A(C1 , . . . . C,) I =
IG1 . On the other hand the cardinality of A = A(C1, . . . , C,.) can be
computed if the character table of G is known, so we have

-_ IGI I . . . IG,I

	

1:

	

x(xi) . . . X(xr)
'I I

	

IG I xEIrr(c)
X(J)r-2

where xi E G, i = 1, . . . , r, and Irr(G) denotes the set of the complex
irreducible characters of G. The rationality of the conjugacy classes can
be also checked from the character table of G.

For further variants and refinements of this result see [Fr 77], [Ma 87],
[Ma 89] and [Ma 91] . It is of considerable interest the study of the
Hurwitz braid group actions which enables Matzat [Ma 91] to show that,
among others, the Mathieu group M24 is a Galois group over Q.
Simple groups which are Galois group over Q(T), by rigid-

ity. The following theorem sumarizes the results of Dentzer, Feit, Fong,
Hoyden-Siedersleben, Hunt, Malle, Matzat, Pahlings, Thompson and
Zeh-Marschke, concerning the realization o£ simple groups as Galois
groups over Q(T), using rationality criteria .

Theorem . The following simple groups appear as Galois groups of a
regular extension of Q(T), using rigidity methods:

The alternating group, An [Sh 74], [Ma91] .

All the sporadic simple groups, except the Mathieu group M23 [Th 84a],
[Hoy 85], [Ma-Ze 86]], [Hu 86], [Pa 88], [Pa 89], [Ma 89] .
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The following classical groups of Lie type :

PSL2 (p),

	

p

	

fl (mod 24)

	

[Ma 84]

PSL2(P2 ),

	

p- f2 (mod 5)

	

[Fe 84]
PSL3 (p),

	

p- 1 (mod 4)

	

[Th84b]
PSU3 (p),

	

p- 3 (mod 4), p > 3 ; p = 3, 5 (mod 7), p > 5

	

[Mal 90]
PSp4 (p),

	

p- f2 (mod 5), p > 3

	

[De89]
PSpe_ 1 (2),

	

2

	

a primitive root mod . the prime 2

	

[Há ?]

PSO+1(2),

	

2

	

a primitive root mod . the prime P

	

[Hi3?]

PSO~_ 1 (2),

	

2

	

a primitive root rnod . the prime P > 11

	

[Th84d]

The following exceptional groups of Lie type :

N. VILA

Many more finito simple groups are known to be Galois groups over
gab (T) ; where qab is the maximal abelian extension of Q: Al] classical
simple groups, all sporadic simple groups and most of the exceptional
finito simple groups of Lie type also (cf. [Be 74], [Ma 87] ; [Mal 89]) .

Explicit polynomials . Let L/Q(T) be a finite separable extension
of degree.n . Let N/Q(T) be a normal closure ofL over Q(T) . The rarn-
ification structure of the extension L/Q(T) can be determined through
the disjoint cycle decomposition, as a permutation of n elements, of the
generators of the Galois group of N/Q(T) . The genus of the field L can
be computed, using Hurwitz's genus formula . If it is zero and L has a
prime of degree 1, then L is a rational function field, L = Q(x) . If the
ramified primes of Q(T) are "weIF chosen, the relations which satisfy
x can also be obtained from the ramification structure . Therefore, a
defining equation of the extension N/Q(T) can be obtained .

As an example, we shall obtain equations realizing S, using this
method . Let C1 ; C2 and C3 be the conjugacy classes of the follow-
ing permutations: (n n - 1 . . . 3 2 1), (1 2 . . . k)(k + 1 k+2 . . . n) and
(1 k+ l) . Each conjugacy class Ci is rational and (C1, C2, C3) is a strictly
rigid family. Let p<,, po, p1 be the primos ofíQ(T) ; defined over Q, given
by

div(T) = po/p.,

	

div(T - 1) = p1/pw .

C2(P); p > 5 [Fe-Fo 84] [Th 84c]

F4 (p), p - f2, f6 (rnod 13),p > 19 [Mal 88]

E6 (p) ; p - 4, 5, 6, 9, 16,17 (rnod 19) [Mal ?]

E8(P) ; p - ±3,±7,±9, ±10,±11,±12,
f 13,±14 (mod 31),p > 131 [Mal 88] .
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The cycle decomposition of those generators of Sn implies that the ram-
ification of these primes in L must be

~y}n

	

~n-k

	

k

	

~y1 2gl
hoo = ~F'~,

	

110 = ?'00

	

01,

	

~1 = ?'1

where T., IPoo, 'Poi, 131 are primes and 9t denotes an ideal of L . An
extension field L/Q(T) of degree n with the above ramification has, by
Hurwitz's genus formula, genus zero . Then L = Q(x) and we can choose
x such that

div(x) - SP~O ,

	

div(x - 1) =

	

1,

div(x - a) =

	

ol

	

div(xn -2 + an_3xn-a +

	

+ ao) = wn 2 .
13.

	

00

Therefore we can deduce that the equation

F(X T) =
X
_-k (X -

	

n

	

)k - ( -k )kT'

	

n-k n-k '

defines the extension L/Q(T) and its Galois group over Q(T) is isomor-
phic to Sn,

GalQ(T)(F(X,T)) = Sn .

Let N be the decomposition field of F(X,T) over Q(T). Let M = NAn
the fieed field by A,, . Studying the ramification of M/Q(T) and again
using Hurwitz's formula, we can find that M = Q(y) . We can compute
the defining equation of L/M. Let

F(X

	

-

	

Xn - A(nX - k(n - k) k ,

	

n odd
n~k `~ T) Xn + kn-2k B"¿-k-1

	

k(nX + (n - k)kB) , n even,

where A = kn-2k(1 - (-1)(n-1)/2nT2), B = (-1)n/2k(n - k)T2 + 1 and
k <_ n/2, the Galois group of Fn,k(X,T) over Q(T) is isomorphic to An
(cf. [Vi 85]) .

Explicit polynomials over Q(T) and over Q with prefixed Galois group
have also been obtained, using this method, for the following groups :
PSL2 (p), p = 7, 11, 13

	

[Mal-Ma 85] ; SL2(8) [Ma84] ; M11 , M12
[Ma-Ze 86] and M22 [Mal 88] ; all the primitive nonsolvable permuta-
tion groups of degree _< 15 [Ma 84], [Ma187] ; Sp6(2), G06- (2), 06(2)
[H5 7] .
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5: Galois embedding problem II: :
Extensions of simple groups

Since rationality criteria work for simple groups, but need the condi-
tion of trivial center, it seems therefore that the next step, in order to
realizo finito groups as Galois groups over Q, will be to consider extension
groups of simple groups arid to study the subsequent Galois embedding
problems . Let

1

	

>H-----> G->G->1

be an exac_t sequence of finito groups . The group G is an extension of
H by G, G = H - G . Firstly we analyze the easy cases . Suppose that
the exact sequence splits, that is, the extension group is G = H x G. If
the group G occurs as a Galois group of a regular extension L of Q(T),
then, by Galois theory, each Galois extension No/Q with Galois group
H, _defines a Galois extension NOL/Q(T) with Galois group isomorphic
to G . Note that the extension field obta_ined is non-regular . Should the
extension group be a wreath product G = H 1 G, an arialogous result
i_s valid (cf. [Ma87]) . If the extension group is a semidirect product
G = H : G, with H a non-trivial abelian group, an analogous result is
also valid, since the semidirect product H : G is a quotient of a wreath
product H 1 G. Let us distinguish two cases for non-split exteizsións
G=H-G .

Case 1. H non-abelian : Z(H) = {1} . It is known from group theory
that if the extension group G = H - G has H non-abelian - with trivial
center then the group G is isornorphic to a subgroup U C Aut(H) x G
which satisfies

U f1 Aut(H) = Inn(H)
pr2(U) = G

Following Matzat [Ma 85], we say that a finite group G has a GAR-rea-
lization over K(T) if the following conditions are satisfied :

(G) There exists a regular Galois extension N/.K(T) such that G
Gal(N/K(T)) .

(A) There exists a subgroup A C.Aut(N/K) such that A = Aut(G)
and K(T) = NI""(G) .

(R) Each regular extension RINA over K with KR = K(T) is a
rational, function field over the field K.

Let K be a number field and Ko/K a Galois realization of the group
G, G = Gal(Ko/K) . Suppose that the group H has a GAR-realization



INVERSE PROBL}EM OH .GALOIS TI-IGORY

	

1065

over K(T), N/K(T), frorn condition (A) we can consider L = NA. Let
Lo = KoL and No = KoL . By Galois theory, we find that No/L is a
Galois exterision whose Galois group is

. Ga.l(No/L) - Aut;(H) x G.

On the other hand, G is isomorphic to a subgroup U of Gal(NO/L) . The
fixed field M = N0 is a rational function field over K, by condition
(R) . Therefore, the extension field No/M with Galois group G provides
solutions to ! the associated Galois embedding problem . Now we can
formiilate the following result óf Matzat [Ma 85]

Theorem . Let K be a number field, H a non-trivial finite group with
Z(H) = {1} such that it has a GAR-realization oven K(T) . Then every
Galois einbedding problem over K with kernel H has an infinite number
of solutions.

As a consequence, if a finite group G has a normal tower

GDGODGi1) . . .DGn ={1}

such that G/Go occurs as Galois group over a number field K, and
Gi_1/Gi has a GAR-realization over K(T) for all i = 1, . . ., n, there
are an infinite number of Galois extensions over K with Galois group
isomorphic to G.

Summarizing the results of Htifner, Folkers, Malle, Matzat and
Pahlings, we can establish :

Theorem . The following simple groups have a GAR-realization over
Q(T)

The alternating group A, n :,¿ 6 [Ma85] .

All the sporadic simple groups, except the Mathieu group A123 [Ma 85],
[Pa 89] .

The following classical groups of Lie type :



The following exceptional groups of Lie type :

Case 11. H abelian: H C Z(G) . Let

1 -> H --> (5 --> G - 1

be a central extension of G, H C Z(G) . There extension groups are on
t_he opposite_side . Rigidity requires a trivial center but any finite group
G, with Z(j) ~ _{l}, can be considered as a central extension of the
group G := G/Z(G) which has a non-trivial center . This leads us to the
study of the realization of there extensions groups as Galois groups .
Suppose that we know that G is a Galois group over a number field K,

G = Gal(N/K),since in this case the kernel H is an abelian group, the
associated Galois embedding problem into G has a solution if and only
if there exists a lifting p : GK -> G of the projection p : GK -> G. On
the other hand, G as an extension group of G defines a cohomological
element c E H2 (G,H) . Therefore, there exists a lifting p of p if and
only if inf(c)=0 . Note that if the extension group splits, then c = 0 and
inf(c) = 0 .

Let G be a perfect group, for example a simple group . There exists
an universal central extension of G,
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PSLZ (p), p fl (mod 24) [Mal-Ma85]
PSL3(p), p - 5 (mod 12) [Th 84b]
PSU3(p), p - 7 (mod 12), p - 10, 19 (mod 21), [Mal 901
PSp4 (p), p - 13, 17 (mod 20), [Há ?]
PSpg_1 (2), 2 a primitive root mod . the prime P > 7 [Há ?]
PSOp+1( 2 ), 2 a primitive root mod . the prime P

$ - -1 (mod 4), P > 11 [Há ?]
PSO¿-_1(2), 2 a primitive root mod. the prime P > 11 [Th 84d]

G2(P), p > 5 [Ma87]
F4 (p), p - ±2,±6 (mod 13), p > 19 [Mal 88]
E6 (p), p - 4,5,6,95 16,17 (mod 19) [Mal ?]
E8 (p), p - ±3,±7,±9,±10,±11,±12,

f 13,±14 (mod 31), p > 131 [Mal 88] .



This extension is characterized by the following universal property : For
every central extension of G

there exists one and only one homomorphism from G to E over G. There-
fore we can formulate the following reduction theorem.

Theorem . Let K be a nurnber field and G a perfect group. Suppose
that G appears as a Galois group over K, G =.Cal(N/K) . If the exten-
sion N_/K can be embedded into a Galois extension over K with Galois
group G, then N/K can be ernbedded in a Galois extension over K whose
Galois ,group is ang central extension of G.

Consequently the question whether a central extension of a perfect
group G occurs as a Calois group is reduced to solve the problem for
the universal extension ofG. It is known that the kernel of the universal
extension of G is the Sclulr multipliers of G, H = M(G) . There groups
are well known for the simple groups (cf. [At 85]) ; for example,

M(Aj - ZL/27L, n 9~ 6, 7 ;

	

M(A6 ) = A4 (A7) = 7L/6Z;

M(M11) = M,

	

M(M12 ) = M(PSL2(w)) =7L/27L .

We will now make a distintion according to whether the kernel of the
embedding problem is 7L/27L or not .
Suppose now thatH= 7L/27L, the obstruction to the Calois embedding

problem lies, in this case, in the 2-component of the Brauer group of K

Suppose that L/K is a separable extension field of degree n, car(K) :,¿
2, 3 ; such that its normal closure is N/K. Clearly, G = Gal(N/K) C S, .
Let 2- S,ti be the Schur double cover of S,, such that the transpositions
are lifted to elements of order two . Let G be the inverso image of G in
2-S,,, we have

Serre [Se 84] has determined the obstruction to this embedding prob-
lem :

Theorem .
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1~A---4 E->C->1,

inf(c) E H2 (GI<- ,71/27L) = Br2(K) .

1->7Z/2Z->G->C-1,

inf(e) = (2, dL ) + w(L/K),



1068

	

N. VILA

where w(L/K) denotes the Hasse-Witt invaHant of the quadratic fo
TrLIK(x2 ), and dL its discriminant.

Then, the problem of realizing (5 as Galois group over K is reduced
to solving the following steps :

a) Find irreducible polynomials f(X) E K[X] of degree n with Galois
groups isomorphic to G.

b) Compute w(K(n)/K), where a is a root of f(X) .
c) Impose conditions over f (X) in order to have w(K(ce)/K) _

(2, dK(a)) .

The first case studied was G = An, the Schur double cover of An .
It can be proved [Vi 84] that the decomposition field of the previous
equations with Galois group An over Q(T) can be embedded into a Galois
extension with Galois group in , for the following values of n :

n - 0,1 (mod 8)

n - 2 (mod 8) and sum of two squares
n =- 3 (mod 8) and sum of three squares, n = xi -f- x2 + x3, (xi, n) = 1 .

Consequently, any central extension of An occurs as a Galois group over
any number field, for these valuesof n . Feit [Fe 86], using Laguerre
polynomials, proved that As and A7 are also Galois group over every
number field . Mestre [Me 90] constructs new realizations of An having
an associated trace form independently of T such that for T = 0, its
Hasse-Witt invariant is trivial . Then, for any value of n, An appears as
a Galois group over every number field . Summarizing results of Bayer,
Feit, Hii,fner, Llorente, Mestre, Sonn and Vila we can formulate

Theorem . The following double covers appear as Galois groups over
every number field :

2 An; for all values of n

	

[Vi84] [Me 90]

2' S, 2- S, for all values of n,

	

[Vi88] [So 89]
2 M12

	

[Ba-Ll-Vi 86]
2 Sps (2) [Hfi ?] .

Construction of double covers Galois extension fields have been ob-
tained by Crespo [Cr 89], [Cr 90], as explicit solutions to embedding
problems, for 2.An , 2+ Sn and 2 - Sn .
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In the case that the kernel H :,,~ 7L/2Z, it seems to be simpler to
construct extensions with Galois group G . The following idea of Feit (cf .
[Fe 89]) allows us the use of rigidity methods : if the group G has an outer
automorphism p which can be extended to G_and acts non trivially on
Z(G), then, if the semidirect extension group G :< p > has trivial center,
the rationality criteria are applicable . If N/Q(T_) is a Galois extension
with Galois group G :< p > and the fiedd field NG is a rational function
field, then an extension with Galois group G over Q(T) is found. Using
these arguments, Feit [Fe 89], I\2alle [Mal 90] and HS,fner [Há ?] have
obtained

Theorem . The following triple covers appear as Galois groups over
every number field:

3 .A6, 3.A7, 3.1J22, 3.Suz, 3 .Fi2,,, 3.0'N

	

[Fe 89]

SU3(p), p - -1 (mod 4), p > 3; p - 3,5 (mod 7), p > 5

	

[Mal 90]
3 . 07(3), 3. S07(3)

	

[Há?] .
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