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Dislocation Jamming and Andrade Creep
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We simulate the glide motion of an assembly of interacting dislocations under the action of an
external shear stress and show that the associated plastic creep relaxation follows Andrade’s law. Our
results indicate that Andrade creep in plastically deforming crystals involves the correlated motion of
dislocation structures near a dynamic transition separating a flowing from a jammed phase. Simulations
in the presence of dislocation multiplication and noise confirm the robustness of this finding and
highlight the importance of metastable structure formation for the relaxation process.
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straints build up in the system and the motion of disloca- unjammed by changing the stress, the density, or the
Andrade reported in 1910 that the creep deformation of
soft metals at constant temperature and stress grows in
time according to a power law with exponent 1=3, i.e.,
�� t1=3, where � is the global strain of the material [1].
More generally, the creep curve usually follows the rela-
tion � � �0 � �t1=3 � �t, where �0 is the instantaneous
plastic strain,�t1=3 is Andrade creep, and �t is referred to
as linear creep [2]. This same behavior has since been
observed in many materials with rather different struc-
tures leading to the conclusion that this should be a
process determined by quite general principles, indepen-
dent of most material specific properties. In crystalline
materials, Andrade’s and linear creep find their micro-
scopic origin in the dynamics of dislocations, the topo-
logical defects responsible for their plastic deformation
[2–4]. Plastic flow occurs only when the externally ap-
plied stress overcomes a threshold value, the yield stress
of the material, such that large-scale dislocation motion
may take place. Despite various arguments proposed
within the dislocation literature [2,5–7], there is no gen-
eral consensus on the basic mechanism to explain
Andrade’s law. Mott [5] attributed the power law to an
athermal cooperative process taking place close to the
yield stress, but his idea was not worked out. Later ex-
planations have always focused on thermally activated
processes [6,7] and rely on assumptions that may not be
fully warranted [8].

Under the action of external stress, dislocations tend to
glide cooperatively due to their mutual long-range elastic
interactions, which can be attractive or repulsive. The
anisotropic character of dislocation-dislocation interac-
tions contributes at the same time to the formation of
spatial dislocation patterns observed in transmission elec-
tron micrographs of plastically deformed metals [9]. As a
result of these peculiar interactions, self-induced con-
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tions may eventually cease. Small variations of the
external load or the dislocation distribution can, however,
enhance dislocation motion in a discontinuous manner.
This gives rise to rather complex and heterogeneous
spatiotemporal patterns of plastic flow, which have been
observed experimentally in the form of slip lines and slip
bands emerging on the surface of metals [10–12] or
in the acoustic emission activity of ice crystals [13].
Other phenomena in plastically deforming crystals,
such as hardening, fatigue, or plastic instabilities
[14,15], are further consequences of the dislocations in-
triguing behavior.

In this Letter, we study the temporal relaxation of a
relatively simple dislocation dynamics model through
numerical simulation. In particular, we consider the be-
havior of parallel straight edge dislocations moving in a
single-slip system under the action of constant stress. We
show that the model gives rise to Andrade-like creep at
short and intermediate times for a wide range of applied
stresses, without invoking thermally activated processes.
At larger times the strain rate, which is proportional to
the density of mobile dislocations, crosses over to a linear
creep regime (steady rate of deformation), whenever the
applied stress is larger than a critical threshold �c, or
decays exponentially to zero. These results suggest that a
possible interpretation of the creep laws could be found
within the general scenario wrapping a dynamic phase
transition from a flowing to a jammed dislocation phase.
The ‘‘jamming’’ scenario has been recently proposed [16]
to understand a broad class of nonequilibrium physical
systems (granular media, colloids, supercooled liquids,
foams) which, in spite of their differences, exhibit com-
mon properties such as slow dynamics and scaling fea-
tures near the jamming threshold. When jammed, these
systems are unable to explore phase space, but they can be
2002 The American Physical Society 165501-1
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FIG. 1. The strain-rate relaxation for different applied
stresses at T � 0 for a system of size L � 100ye. The initial
density of dislocations is around 1%. The solid line is the best
linear fit of the � � 0:01 curve and yields d�=dt� t�0:69.
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temperature. To further explore the analogies of disloca-
tion motion and these so-called jammed systems, we
consider the influence of dislocation multiplication, due,
for instance, to the activation of Frank-Read sources
[2–4], and thermal-like fluctuations on the dynamics of
the dislocations. Dislocation multiplication favors the
rearrangements of the system and reduces �c, but it
does not affect the initial power-law creep. The introduc-
tion of a finite effective temperature T has a similar
effect.

We consider a two-dimensional (2D) model represent-
ing a cross section of a single-slip oriented crystal where
N pointlike edge dislocations glide in the xy plane along
directions parallel to the x axis. Dislocations with posi-
tive and negative Burgers vectors (the topological charge
characterizing a dislocation) bn � sn�b; 0�, where sn �
�1 are assumed to be present in equal numbers, and the
initial number of dislocations is the same in every real-
ization. Several 2D models containing similar basic in-
gredients have been proposed in the literature in the past
few years [13,17–19]. An important feature common to
these models is that dislocations interact with each other
through the long-range elastic stress field they produce in
the host material. An edge dislocation with Burgers vec-
tor �b; 0� located at the origin gives rise to a shear stress
�s at a point r � �x; y� of the form [2–4]

�s�r� � Db
x�x2 � y2�

�x2 � y2�2
; (1)

where D � �=2��1� �� is a coefficient involving the
shear modulus � and the Poisson ratio � of the material.
We further assume an overdamped dynamics in which the
dislocation velocities are linearly proportional to the
local forces. Accordingly, the velocity of the nth disloca-
tion along the glide direction, if an external shear stress�
is also applied, is given by

��1
d vn
b

� snb

"X
m�n

sm�
s�rnm� � �

#
; (2)

where �d is the effective mobility of the dislocations [20]
and rnm � rn � rm is the relative position vector of dis-
locations n and m. Periodic boundary conditions are im-
posed in the direction of motion (i.e., the x axis). In order
to take correctly into account the long-range nature of the
elastic interactions [Eq. (1)], we sum the stress over an
infinite number of images. This sum can be performed
exactly, and the results are reported in Ref. [3]. When the
distance between two dislocations is of the order of a few
Burgers vectors, linear elasticity theory [i.e., Eq. (1)]
breaks down. In these instances, phenomenological non-
linear reactions, such as the annihilation of a pair of
dislocations, describe more accurately the real behavior
of dislocations in a crystal [13,17–19]. In our model, we
annihilate a pair of dislocations with opposite Burgers
vectors when the distance between them is shorter than
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ye. In the following, we measure all lengths in units of ye,
time in units of t0 � y2e=��dDb

3�, and stresses in units of
Db=ye (for Cu, ye 	 1:6 nm [21], b � 2:56 �A, and
Db=ye 	 1500 MPa).

To analyze creep relaxation, we integrate numerically
the N coupled equations using an adaptive step size fifth-
order Runge-Kutta algorithm. Simulations start from a
configuration of N0 dislocations randomly placed on a
square cell of size L. We have considered two different
box sizes L � 100ye and L � 300ye, with initial numbers
of dislocationsN0 � 400 andN0 � 1500, respectively.We
first relax the system until it reaches a metastable ar-
rangement. During this relaxation, the dislocation density
decreases due to annihilation processes until it is about
�0 	 0:01 in nondimensional units. Next, we apply an
external shear stress and let the system evolve [22]. The
results are typically averaged over several (100–400)
random initial configurations.

In Fig. 1, we report the plastic strain rate of the mate-
rial, defined as d�=dt�

P
i bivi, for different values of

the applied stress. The strain rate decays as a power law,
with an exponent close to 2=3, in agreement with
Andrade’s law. For high stresses, the power-law relaxation
is followed by a plateau indicating the onset of a linear
creep regime. The crossover time increases as the stress
decreases, and for stresses lower than � ’ 0:0075–0:01
the plateau disappears and the creep decays exponentially
to zero. In Fig. 2, we display the steady-state strain rate as
a function of stress. This plot suggests the presence of a
nonequilibrium phase transition between a moving and a
jammed stationary state controlled by the applied stress.
Using �c � 0:0075, we find d�=dt� ��� �c�

� with
� � 1:8� 0:1. Since the dislocation density in the
steady-state regime is almost stress independent, it
follows from Orowan’s law that the stress exponent of
the mean dislocation velocity (� � 1:8) differs from the
165501-2
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FIG. 3. The effect of the dislocation multiplication rate r and
of the effective temperature T on the plastic strain in a system
of size L � 100ye with an applied stress � � 0:0075. Andrade
creep (�� t1=3) crosses over to linear creep (�� t) at large
times, with a crossover depending on r and T.
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FIG. 4. The angle distribution as a function of the tempera-
ture at � � 0:0075.
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FIG. 2. The steady-state value of the strain rate as a function
of the applied stress. The inset shows that the strain rate scales
as ��� �c�

�, with � � 1:8.
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stress exponent of the single-dislocation velocity (which
is assumed to be 1). This illustrates the irreducibly
collective character of dislocation dynamics which pre-
cludes any straightforward conclusions from single-
dislocation properties on the properties of the dislocation
ensemble.

Within a jamming scenario, it appears natural to ask
whether dislocation multiplication and thermal fluctua-
tions affect the behavior of the system in a relevant way.
During plastic deformation, in fact, new dislocations are
created within the crystal, mainly through the activation
of Frank-Read sources [2–4]. Since this mechanism can-
not be directly simulated in a two-dimensional model, we
employ a phenomenological procedure, introducing dis-
location pairs with a rate r proportional to the external
stress. Similar multiplication mechanisms have been suc-
cessfully used in the past [13,17–19]. Thermal fluctua-
tions are accounted for by adding a Gaussian random
force per unit length �n�t�=b to Eq. (2). The force has
zero mean and its correlations are given by

h�n�t��m�t0�i � kBT��1
d  n;m �t� t0�; (3)

where T is an effective temperature characterizing the
strength of the fluctuations [23]. This random force could
also mimic, as a first approximation, the influence of
dislocation motion in other slip systems that may be
active simultaneously in the material (see [9,24]).

We have performed a series of simulations for different
multiplication rates and effective temperatures (measured
in units of Db3=kB which is about 10 000 K for Cu) when
the applied stress is close to the critical value (i.e., � �
0:0075). We used the same procedure as described pre-
viously and, given the additional fluctuations present in
the strain rate, we focus our attention on the integrated
plastic strain �. As shown in Fig. 3, a linear creep regime
appears after a crossover time which decreases with r and
T. Nevertheless, Andrade creep (i.e., �� t1=3) still per-
sists at shorter times. A visual inspection of the disloca-
tion arrangements during the deformation is useful to
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understand the origin of the various creep regimes. At
low T, we observe the presence of slowly relaxing meta-
stable structures as for T � 0. On the other hand, at a
much higher effective temperature (i.e., T ’ 1) these
structures have completely broken up, the flow of dislo-
cations becomes fluidlike, and Andrade creep disappears.
In order to substantiate quantitatively this statement, we
measure the angular correlation between dislocations. For
each dislocation pair with coordinates ~rri and ~rrj, we define
# as the azimuthal angle with respect to the y axis of the
vector ~rrij [i.e., # � arccos�ŷy � ~rrij=j~rrijj�]. Thus, two dis-
locations placed in the same wall have either # ’ 0 or # ’
�, a dislocation dipole is characterized by # ’ �=4;
3�=4, and two dislocations in a pileup yield # ’ �=2
[2– 4]. The distribution P�#� is obtained after averaging
over all dislocation pairs in several realizations ( � 100)
of the dynamics at a given instant. Figure 4 shows P�#�
for different values of T. At low effective temperatures,
we observe five roughly equivalent peaks, corresponding
to walls, dipoles, and pileup configurations. As the
165501-3
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effective temperature increases, the peaks at # � 0; � and
# ’ �=4; 3�=4, corresponding to walls and dipoles,
progressively disappear, while the # � �=2 peak
remains. This peak indicates that even in the high-
temperature regime the dislocations are correlated in
the x direction, the only possible direction of motion.
Apart from this, no other structure remains in the system.

In conclusion, Andrade’s scaling and the creep curve
appear to be controlled by a nonequilibrium phase tran-
sition. The effects of dislocation multiplication and effec-
tive temperature around the critical value � � 0:0075
smooth out this transition whose critical behavior is
observed only as a transient crossing over to the super-
critical phase, the linear creep regime, where dislocation
structures are coherently moving with a velocity that
grows with the applied stress. The transition originates
from two fundamental properties of dislocation systems:
(a) the ability of dislocations to form metastable jammed
configurations and (b) long-range interactions which lead
to collective dislocation motions and continuous rear-
rangements. For stress values below the critical threshold,
dislocations cannot get around the self-induced con-
straints built up by their mutual (attractive/repulsive)
interactions and are thus unable to further explore the
configuration space, which is the signature of a jammed
state [16]. Determining the critical stress value and char-
acterizing its behavior (possible dependence on density
and temperature) is of utmost importance for practical
purposes, since it establishes the mechanical strength of
crystalline materials. Evidently, plastic deformation of
real crystals, where dislocations are flexible lines and in
general more than one slip system is active, differs in
many respects from our simple model. Nevertheless, both
long-range interactions and jammed configurations are
present in 3D dislocation systems—even if the latter may
be made up of dislocation junctions rather than dipoles,
multipoles, and walls. Therefore we believe that our basic
scenario carries over to 3D situations.

We thank R. Pastor-Satorras for useful discussions.
M. C. M. acknowledges financial support from the
Ministerio de Ciencia y Tecnologı́a (Spain).
16550
[1] E. N. da C. Andrade, Proc. R. Soc. A 84, 1 (1910); 90, 329
(1914).

[2] J. Friedel, Dislocations (Pergamon, Oxford, 1967).
[3] J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger,

Malabar, Florida, 1992).
[4] F. R. N. Nabarro, Theory of Crystal Dislocations (Dover,

New York, 1992).
[5] N. F. Mott, Philos. Mag. 44, 741 (1953).
[6] A. H. Cottrell, Philos. Mag. Lett. 73, 35 (1996); 74, 375

(1996); 75, 301 (1997).
1-4
[7] F. R. N. Nabarro, Philos. Mag. Lett. 75, 227 (1997).
[8] The power-law creep relaxation comes out by introducing

a phenomenological hardening law and assuming that
the strain produced by a thermal activation event is
proportional to the activation volume —which may not
be true for dislocations moving through a field of discrete
obstacles as studied in J. G. Sevillano, E. Bouchaud,
and L. P. Kubin, Scr. Metall. Mater. 25, 355 (1991);
G. D’Anna, W. Benoit, and V. M. Vinokur, J. Appl.
Phys. 82, 5983 (1997); S. Zapperi and M. Zaiser,
Mater. Sci. Eng. A 309–310, 348 (2001).

[9] P. Hähner, K. Bay, and M. Zaiser, Phys. Rev. Lett. 81,
2470 (1998).

[10] R. Becker and E. Orowan, Z. Phys. 79, 566 (1932).
[11] V. Z. Bengus, S. N. Komnik, and O. B. Shititelman, Phys.

Status Solidi 14, 215 (1966).
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