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Critical Clusters and Efficient Dynamics for Frustrated Spin Models
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A general method to find, in a systematic way, efficient Monte Carlo cluster dynamics among the
vast class of dynamics introduced by Kandel et al. [Phys. Rev. Lett. 65, 941 (1990)] is proposed.
The method is successfully applied to a class of frustrated two-dimensional Ising systems. In the
case of the fully frustrated model, we also find the intriguing result that critical clusters consist of

self-avoiding walk at the 6 point.
PACS numbers: 75.10.Dg, 02.70.Lq, 05.50.4+q

Since the pioneering work of Swendsen and Wang (SW)
[1] on Monte Carlo (MC) cluster dynamics there have
been many developments [2-9]. Nevertheless, a general
scheme to implement an efficient cluster dynamics for
general frustrated systems is still missing.

The original idea of SW is based on a cluster approach
to spin systems introduced by Fortuin and Kasteleyn
(FK) [10] and developed by Coniglio and Klein (CK)
[11]. In the FK approach the clusters are defined in an
annealed model equivalent to the original one. In the CK
approach, instead, the clusters are defined directly in the
original system. In particular, in the nearest neighbors
(nn) ferromagnetic Ising model, for a given configuration
of spin {;}, the CK clusters are defined as maximal sets
of nn parallel spins connected by bonds. The probabil-
ity of a bond being present between a nn parallel pair of
spins is given by p = 1 — e~2/# where J is the nn Ising
spin interaction and 8 = 1/kgT. Note that the bonds
are fictitious; they do not affect the interaction energy,
but only the cluster definition.

The clusters so defined have the property of percolating
at the Ising critical point. In fact it can be shown that
[10,12]

(SiS;) = (vis), 1)
where (S;S;) is the spin-spin pair correlation function
and (7;;) is the probability that ¢ and j are in the same
cluster. Here the indicator v;; is 1 or 0 depending on
whether or not sites i and j belong to the same cluster.
The average, (-), is over all the spins and bond config-
urations. These clusters have been extensively studied.
In particular it has been shown that they have a fractal
structure made of links and blobs [13] in a manner similar
to the well known structure of percolation clusters.

The SW dynamics is generated by flipping in one step
all the spins in the same cluster with probability 1/2 and
the main reason for its efficiency stems from the equal-
ity (1) which relates the clusters to regions of correlated
spins.

The generalization of CK clusters to Ising systems with
positive and negative nn quenched interactions, J;; =
+J, with the Hamiltonian

H=-Y (J;S:S; - J) (2)
(i5)
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is straightforward. In this case the bonds can be present
only between spins ¢ and j satisfying the interaction, i.e.,
€;;5iS; = 1 (€;5 = J;5/J is the sign of the interaction),
with probability given by

P=(1-e%P)s 55,1 (3)

The Kronecker delta é,;s;s;,1 takes into account the fact
that the probability is zero if the spins do not satisfy
the interaction. For a given configuration of interaction
{Ji;j}, without frustration, Eq. (1) takes the form [14,15]

(S:8;) = (vl) if
(SiS;) = —(+f)  if

(S:S5) > 0, (4)
(8:8;) <0, (5)

where ’h"; (75) is 1 or 0 depending on whether or not spins
i and j are in the same cluster and parallel (antiparallel).
Equations (4) and (5) are equivalent to

[(SiSi)| = (7i5), (6)

where 7;; = '7,“J + ’yu,

4~ Equation (6) implies that, for
configurations of interaction {J;;} without frustration,
the clusters still percolate at the critical temperature and
the related SW dynamics is still efficient. For systems

with frustration, instead, relation (1) is replaced by [14]

(8:;) = (rly) — () (7)
and consequently

[(S:S5)1 < (%), (8)

implying, in general, that the clusters percolate at tem-
peratures higher than the critical temperature as numer-
ically shown in the 2D [16] and 3D [17] spin glasses and
other frustrated systems [18]. In this case the clusters
represent interfering fluctuations. Two spins can be par-
allel in one cluster and antiparallel in another, giving rise
to a net correlation which is smaller than the cluster size
(14]. Although the SW dynamics still satisfies the de-
tailed balance, it is not efficient anymore due to the fact
that the clusters no longer represent correlated spins.

A method to generate a vast class of cluster dynam-
ics which satisfy detailed balance has been suggested by
Kandel, Ben-Av, and Domany (KBD) [5,6]. Although
for the particular case of the fully frustrated model they
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have been able to choose an efficient dynamics, in general
the method does not identify those dynamics which will
indeed lead to a reduction of the slowing down.

The aim of this Letter is to develop a method to choose,
in a systematic way, efficient dynamics in the class of the
KBD dynamics. We will be guided by the idea that the
better Eq. (6) is satisfied the more efficient would be the
cluster dynamics associated with it. Before going into
the details of the method we give the procedure to define
the clusters which lead to the KBD dynamics.

Following Refs. [5,6] we partition the lattice into ba-
sic units labeled by an index [/ so that the Hamiltonian
(2) can be decomposed into H = ), H;. H,, for ex-
ample, can be the Hamiltonian of a single pair, a pla-
quette, or larger units [Figs. 1(a)-1(c)]. To fix the ideas
we consider the case in which H; is restricted to a sin-
gle plaquette. We decompose the Hamiltonian H; into
a set of new Hamiltonians. Each of them is obtained
replacing each interaction J;; with a new interaction
Ji; with the same sign of J;; and with strength |51
which can be either 0 or J' — co. In this way we ob-
tain 16 configurations of interaction which we label by
the index a. They correspond to the 16 Hamiltonians
Hi(a,{8:}) = = Xpiaqlis(@)SiS; — |Jij ()] where the
sum is over nn spin pairs on the plaquette and jij (@) is
the value of the interaction between the spin pair (ij) in
the configuration a. We assign to each interaction con-
figuration o a weight W, in such a way that the new
partition function is equivalent to the original one:

E Wae—ﬂﬁl(a:{si}) = g~ BHI({S:}) (9)
{a}

Each term of the left hand side of Eq. (9) divided by
the normalizing factor e=#Hi({5:}) gives the probability
that in the plaquette [, given the spin configuration {S;},
the interaction configuration o occurs:

Wae_ﬁﬁl(av{si})

Pa({S:}) = ——pmasyn — (10)
This equation generalizes Eq. (3). More precisely the pro-
cedure to construct clusters in the original spin system
(2) interacting via {J;;} is the following. Given a spin
configuration, {S;}, we assign to each plaquette [ a bond
configuration o with a probability P,({S:}) [19]. Once
a realization of bonds is obtained on each plaquette, two
spins in the entire lattice are said to be in the same clus-
ter if they are connected by at least one chain of bonds.
The factor e~AHi(>:{S:}) in Eq. (10) assures that bonds
can only be present between spins satisfying the interac-
tion [20]. It can be shown that the SW cluster dynamics
related to these clusters satisfies detailed balance [6] and
that Eq. (7) still holds [15].

In general Eq. (9), beside the standard solution [21],
has many other solutions. How can we choose the so-
lution which leads to a cluster dynamics able to reduce

the critical slowing down? In simple cases, like the fully
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frustrated (FF) model, one might be guided by intuition
[5]. For more complex cases like the asymmetric fully
frustrated (AFF) model, which we will consider later, or
when one goes beyond the single plaquette [see, for in-
stance, Fig. 1(c)], the choice becomes extremely difficult
and one needs a systematic procedure. Our proposal is
to choose the solution, W, which satisfies Eq. (6) for all
pairs ij on a subsystem made by a single isolated unit,
namely,

(SiSihil = (vish (11)
for each ij on the unit [ [22]. Here
S s ---Pa({S,»})e'ﬁHl({S-‘})
(oo = =B (12)

T (5 € PRASD

To check whether this scheme works we consider the
2D AFF model where each plaquette contains three equal
ferromagnetic bonds J and one antiferromagnetic bond
—-XJ (0 £ X < 1) [Fig. 1(d)]. This model interpo-
lates between the FF model (X = 1) and the diluted
ferromagnetic Ising model (X = 0). According to the
scheme outlined the system is divided into plaquettes in
a checkerboard manner and for the [th plaquette we iden-
tify the configurations as shown in Fig. 2. Because of the
symmetry the number of independent weights reduces to
nine [23]. From Eq. (9) and condition (11) we get a set
of equations whose solution is given by

Wy =ud, Wp=u2(u* —u), (13)
Wi = u(l + u? — 20X+ (14)
and
1 —u?)(wX —uw), u>u*,
awe={ G T LT (1)
3+ u?) —uX(1+3u?), u>u*,
2W5:{g( +u?)—u ( ) -y (16)
0, u > u*,
Wsz{ux—-u3—-3u+3ux+2, u < u¥, (7)

—

O L1

=

—XdJ 1

4 e)

FIG. 1. (a)—(c) Basic units giving three possible partitions
of a square lattice; (d) the AFF lattice; (e) the basic cell of
a decorated Ising model where each spin pair of the square
lattice (1,2) is decorated with two extra spins (3,4). In (d) and
(e) ferromagnetic (antiferromagnetic) interactions are shown
as solid (dashed) lines.
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FIG. 2. Nine of the sixteen interaction configurations, la-
beled by , in which a plaquette of the AFF model can be de-
composed. The infinite strength ferromagnetic bonds (antifer-
romagnetic) are shown as solid (dashed) lines; no line means
zero strength interaction. The integers in brackets give the
number of interaction configurations to which we assign the
same weight. The configuration a = 16, made of four infinite
strength interactions, is irrelevant since the associated weight,
Wie, always enters in the combination Wige™PHi(a=16,{S:})
which is O for any spin configuration.

where u = e~278 and u* is the solution of the equa-
tion (1 + 3u?)u® — u® — 3u = 0. Furthermore, W3 =
Wr = Wy = 0. From the W, using (10) we get the P,.
For X = 0 (diluted ferromagnetic Ising model) it can be
shown, after some algebra, that the solution factorizes
and gives the standard solution [21] which, in this case,
is extremely efficient. For X = 1 (FF model) we get
W, = u3 and Wy = W5 = u(l — u?) while all the other
weights vanish. The resulting cluster dynamics is differ-
ent from that initially proposed in Ref. [5] and coincides
with the one proposed later by the same authors, which
gives very good results [7]. To check the efficiency for
general X we have calculated for various values of X and
lattice sizes L up to L = 120 the magnetization M, and
the autocorrelation function

b() = (M@IIM©O)) - (M ©)])?
(M(0)%) — (M(0)])?

for various temperature ranges around the critical tem-
peratures T.(X). The averages are taken over 50 000 MC
sweeps after discarding the first 10000. For the various
values of X studied we find, around the critical tempera-
tures, a very strong reduction of the critical slowing down
as shown in Fig. 3 for X = 0.5. We have also calculated
the critical temperature T.(X), the susceptibility expo-
nent <, and the correlation exponent v and found that
the data agree, within the numerical errors, with the ex-
act values [24,25] which are T, =0, y = 3/2, and v = 1
for X = 1, while Tc(X) # 0, v = 7/2, and v = 1 for
X # 1. To check whether Eq. (6) is reasonably satis-
fied for the entire lattice we have calculated the percola-
tion temperature T,(X), the mean cluster size exponent
vp, and the correlation length exponent v, and we have
found, within the numerical error, that T,(X) = Tc(X),

(18)
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FIG. 3. The relaxation function ¢(t) [see Eq. (18)] as a
function of the time (MC steps) for the heat bath dynamics
(dashed line) and for the cluster dynamic studied in this Let-
ter (solid line) for the AFF model with X = 0.5. The system
size is L = 32 and the temperature T' = 1.3. Inset: The esti-
mated value of the autocorrelation time 7 = Y o, ¢(t) as a
function of the system size L (L = 32,48,64,96,128) at the
critical temperature T, = 1.23. The estimated value of the
dynamical exponent is z ~ 0.3.

vp = v, and 7, = 7. More details will be published in a
forthcoming paper [15].

We have also investigated the geometrical structure of
the critical clusters at Tp(X) for X = 0 and X =1
(Fig. 4). In the Ising case (X = 0) we find that a typical
configuration of critical clusters is a fractal made of links
and blobs as predicted theoretically [13]. For the FF case
(X = 1), instead, we find a fractal structure made of a
self-avoiding chain with fractal dimension D = 3(d +
v/v) = I which coincides with the fractal dimension of
a 2D self-avoiding walk (SAW) at the 6 point [26].

We have also applied the same scheme to a ferromag-
netic Ising model where each spin pair is decorated as in
Fig. 1(e). Again our scheme, applied at a level of single
spin pair (standard SW dynamics), does not reduce the
slowing down while, applied to the set of spins formed by

(a) (b)

FIG. 4. Critical clusters at the critical temperature for sys-
tems with L = 60; (a) for the diluted ferromagnetic Ising
model (X = 0); (b) for the FF model (X =1).
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a spin pair plus the two decorating spins, it restores the
efficiency of the cluster algorithm [15].

It is natural to wonder if the same scheme can be used
for the +J Ising spin glass model. We have simulated
the Ising spin glass model for different concentrations,
¢, of antiferromagnetic interactions with cluster dynam-
ics based (1) on a pair unit [Fig. 1(a)] and (2) on a
plaquette [Fig. 1(b)]. In the range 0 < ¢ < 0.1, we
have found that in the first case the percolation tem-
perature Tp(c) is higher than that found in the second
case. At the same time, as expected from the lowering
of Tp(c), the estimated relaxation time for the plaquette
dynamics becomes smaller than the one for the dynamics
based on a pair unit. Therefore we have registered an im-
provement passing from pair to plaquette dynamics [15].
These results suggest that going to dynamics based on
larger units [Fig. 1(c)] would be possible to decrease the
critical slowing down in a systematic way.

In conclusion, we have proposed a systematic way to
improve the SW cluster algorithm for frustrated spin
models. At the lowest level (pair) the algorithm coin-
cides with the SW algorithm which is efficient for non-
frustrated systems. At the next level (plaquette) we find
a cluster dynamics which efficiently applies to the AFF
model for all values of the parameter X. For spin glass
one has to go to higher levels by choosing larger units.
This is currently being investigated. We have also found
the intriguing result that the critical cluster in the FF
model is a typical SAW configuration at the 6 point. This
means that correlations travel along a one-dimensional
path consistently with the zero temperature transition.

We wish to thank F. di Liberto for enlightening dis-
cussions.
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