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Long-Tailed Trapping Times and Lévy Flights in a Self-Organized Critical Granular System
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We present a continuous time random walk model for the scale-invariant transport found in a self-
organized critical rice pile [K. Christenset al., Phys. Rev. Lett77, 107 (1996)]. From our analytical
results it is shown that the dynamics of the experiment can be explained in terms of Lévy flights for
the grains and a long-tailed distribution of trapping times. Scaling relations for the exponents of these
distributions are obtained. The predicted microscopic behavior is confirmed by means of a cellular
automaton model. [S0031-9007(97)03489-3]

PACS numbers: 64.60.Lx, 05.40.+j, 46.10.+z, 64.60.Ht

Self-organized criticality (SOC), or the spontaneousfor a tracer to escape from the pile, was measured experi-
emergence of scale invariance in nonequilibrium systemsnentally. The results led to a power-law distribution of
has attracted a great interest as an explanation of fractaansit times for long times preceded by a flat region, i.e.,
behavior in nature [1]. Sandpiles rapidly became the para-
digm of SOC, but it has been only very recently that P(T) ~ {constant for smalf’, (1)
they have been shown to be characterized by power-law . 1/T for largeT,
distributions of avalanches [2,3]. On the other hand, un- . .
derstanding the complex behavior of granular media is &/th @ = 2.4 = 0.2[5]. Moreover, when the system size
challenge of fundamental physiper se. Between many 'S varied, the distribution verifies a finite size scaling,
other amazing properties, granular systems can behave si- P.(T,L) = L””F(T/L”), (2)
multaneously as solids or liquids and show a glassy dYgith » = 1.5 + 02 and»’ = 14 + 0.2 [5]. The fact of
namics with extremely slow relaxations [4]. In addition, having» = »' follows from the normalization condition.
the transport properties found in granular systems display=,om here, the scaling of the mean transit time with sys-

ing SOC [5] turn out to be very similar to the dispersive (o size was found to be “very anomalous,”
transport taking place in amorphous semiconductors and

polymers [6]. Finally, there are close connections between (T) ~ L”. (3)
sandpile models and interface depinning [7]. The goal of this Letter is to study the microscopic
The experimental system that we want to analyze is @roperties of the transport of grains inside the rice pile,
rice pile, built in the narrow gap between two vertical by means of a continuous time random walk model [8].
plates, over a quasi-one-dimensional support of ledigth Comparing our theory with the experimental findings, we
Rice grains are added to the left side, where a vertical bazan give a form for the distribution of trapping times and
between the two plates forms a wall that keeps the grainthe distribution of flights in the real system. In addition,
inside the system. In contrast, the right side is open, andie test our conclusions using a one-dimensional cellular
allows the exit of the grains out of the pile. Starting with automaton modeling the experiment [5] that connects
an empty system, the slow addition of grains makes théransport with avalanche dynamics.
pile grow until the profile reaches the open boundary at We are going to consider the motion of a single grain or
the right. After this transient time, the pile arrives at aparticle through the profile as essentially one dimensional.
quasistationary state where the average slope fluctuat@fis can be done because in the experiments the path of
around a well defined angle of repose, and the influx othe particles takes place between two points, it starts at
grains at the left equals on average the outflux at the righthe top of the pile, next to the left wall, and ends at the
exit. At this point it has been shown by the Oslo grouprightmost extreme of the support. The rice grain remains
[2] that the rice pile displays SOC if the shape of theat rest, trapped at position during a random time inter-
grains is anisotropic enough to prevent the rolling of theval ¢ until some avalanche reaches it. At this point the
grains down the slope, suppressing the inertial effects angrain performs an instantaneous jump, or flight, of ran-
enhancing the dissipation by means of the friction. Thisdom lengthi, after which it becomes trapped at+ |.
result, apart from being the first unambiguous evidence oThen the dynamics of a particle is described in terms of a
SOC in granular media [2,3], points out the fact that SOCcontinuous time random walk, fully specified by the dis-
is associated with strongly dissipative systems. tribution of trapping times/(¢) and by the distribution of
Christenseret al. [5] have studied the transport proper- flights ¢ (/). To be precisel(r) dr is the probability that
ties of individual grains through the Oslo rice pile. Thethe particle is trapped at a given position a time between
transit time of tracer grains, defined as the time necessaryand r + dt, wherease (/) dl gives the probability that
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the particle jumps a distance betwdesnd! + dI during  become linear and straightforwardly solvable. In particu-
an avalanche. Notice that we can assume 0 always, lar, P, turns out to be

since in the experiment no mechanism allows the grains 4 B 5

to climb the profile, always decreasing to the right. ThisP (s, w) = 1 [1 _u "//(S)]{IA '“A[l d’(w)]}]
will be a great simplification in the calculations in com- w 1 = §(s)p(w)

parison with models for diffusion in amorphous semicon- (7)
ductors [9]. In addition, the length of the flighwill not  1ha | aplace transform of the mean transit tikig £

be limited by the system size. Both variableand/ are .5 pe gasily obtained frol, (s, ) as WR(L))
taken as independent random processes. The assumption o

of statistical independence has succeeded in reproducian(a))> _ —[if’ (s w)} _1- p(l — @) @)
experimental results, for instance, in Ref. [10]. Finally as T $=0 w(l — (E';) ’
note that with the hypothesis of instantaneous jumps we (8)

are nothing else than fulfilling the usual condition for SOC, , ,
that is to have a slowly driven system with two separateq'here the existence dff' (w)) depends directly on the
time scales, where the motion of grains (or avalanches§Xistence of the first moment gf(r), (1) = [q ry(r) dt =
happens at infinite velocity in comparison with any exter-—(d¥/ds);=o. As in the experimen{7' (L)) was found
nal time scale. to be finite, we conclude that) exists as well. The same
The magnitude of interest is the distribution of transit"€asoning fongT?(.E )) that was infinite in the experiment
times P (T, L), where P (T, L) dT gives the probabil- implies that(+=) is not defined, and then we assume
ity that the particle takes a time betwe€rand7 + dT y(r) ~ B/1**#, whent — o, with0 < B8 = 1.
to travel from the origin to positiom = £ = L. In the
: o 9)
context of stochastic processes the transit time is, in fact, ]
the first passage time to level . This distribution can This means that in Laplace space [12]
be easily related tg(x,t), defined in such a way that Jj(s) ~ 1 — (t)s + B['(—=1 — B)s'™# whens — 0,
p(x, 1) dx is the probability that at time a particle is in a
! . ; (10)
position betweenr andx + dx, the time being measured _ _ o _
since the addition of the particle. The probability of beingwhereI'() is the gamma function. Substituting this ex-
atx = £ attimer is equal to the probability of having a Pression into the equation faf, (7) and inverting the
transit time7 > r; mathematically, Laplace transform fos we obtain

|l —pl-¢) B
w(l — ¢) 12+B’
for t — «. Comparing (9) and (11) we see how the dis-
On the other handy(x, t) depends on the renewal density tribution of transit times, that is, a macroscopic quantity,
h(x,t), whereh(x, t) dx gives the probability of jump per is closely related to the distribution of trapping times, a
unit time in a position between andx + dx [11]. We  microscopic magnitude. In fact, both are long-tailed dis-
can write close equations relatipgx, ) andh(x, r), using  tributions with the same exponent. Linking with the ex-
(1) and (1), perimental result (1) we can conclude that the trapping
W 1) = [pd(x) + (1 — w)80)]w () times are power law distributed with an exponent

2+ B=a. (12)

t X
/ ! /
* /0 ]0 hee, 1)plx = XYt = 7)dx dr, Notice that the tail of the transit time distribution only
(5) depends on the trapping time distribution, and not on the
distribution of jumps. Alternatively, going back to Eq. (7)
px,t) =[pudx) + (1 — w)d(x)]¥(r) we can perform first the long distance limit, i.ex,— 0.
I orx If we consider that the jump distribution has mean value
+ f f h(x', 7)p(x — x"YW(t — 7)drdx, but not second moment, that is,
0 0

© O ~C/P whenl—e  with0o<y=1,
where (1) = [7 (¢') dt’ gives the probability that the R - _ o (13) .
particle survives a time larger thantrapped at any po- thené(w) verifies an equation similar to (10) that substi-

sition. u is the probability that at = 0 the particle is tuting on (7) and inverting the Laplace transform gives
moving. Equations (4)—(6) contain the solution to our C < I ) 1

i)tr(ts (l)) -~

L t
f plx,0)dx =1 —f Po(T,L)dT.  (4) (11)
0 0

problem, relating a measurable magnitudg, (T, L), Pu(s, L) ~ )T
with the magnitudes that define the microscopic dynamics, 4

() and ¢ (1). Applying the Laplace transform, defined when £ — . This behavior will correspond to times
as f(w,s) = [, dx [, dte"“*e ' f(x,1), the equations “smaller” thanL . For small times, the movement of the
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grains will be shallow and the probability of a given tran- It would be difficult to design an experiment to measure
sit time up to a position will be independent on system the distributions of trapping times and jumps that are mi-
size; in other words, Eq. (14) will not depend én If  croscopic magnitudes, although in granular materials mi-
we makeL = L, this means that the scaling with system croscopic and macroscopic scales are not so well separated
size is the same as with position. Denoting the latter byas in the usual states of matter [4]. As an alternative
subindicesy, andv’, i.e.,P. (T, L) = L " F(T/L*), to support our predictions we use the cellular automaton
this implies thatr’ = v, and comparing with the scaling model introduced in Ref. [5], which was found to repro-
found in the experiment (2) we have duce the transport properties of grains quite well. We
1+ 5= (15) believe that similar results can be obtained for similar mod-
, ) els [14]. On a one-dimensional lattice, from= 1to L,
One can consider other asymptotic forms /), but  gp jnteger variablé, gives the height of the pile at posi-
it is only the one given by Eq. (13) that reproduces anjgp . Defining the local slope at asz, = hy — hy+1
exponent’ between 1 and 2. From here we can deduche dynamics of the model is fully determined by the
that in the rice pile the scaling @t given by (2) means following rules: ifz, = z¢ Vx = z; — z; + 1 (a grain
that the distribution of jumps has a finite medhbut an ;g added); ifz, > z¢ and x < L — el — ey + 1,
|nf|n|§e variance. This klnd_ of dl_strlbutlons corre_sporjdszx — 2y — 2, Ze41 = 241 + 1, andz¢ — rand1,2); if
to Lev_y flights [13], and gives rise to a superdiffusive w> =g —aa +1, =z — 1, andzf —
behavior, as one can verify by findif(w, s) and from 5441 2); where all the sites have to be updated in par-
here obtain [similarly as in Eq. (8)] that(1)) ~ «1)/{t)  allel and randl,2) means 1 or 2 at random, with equal

and(x*(r)) = <_12> = % , , probability. The external input of grains at= 1 sets the
Moreover, if the limits — 0 is performed in Eq. (14), time unit.

one obtains the behavior for large times, but smaller than The results of Ref. [5] show that Egs. (1)—(3) are still

L, that turns out to be independent on valid, but the exponents are determined with more accu-
C 1 (t) racy. We reanalyze these results to obtair= 2.21 +
Polt, L) ~ Gy Tir e Whent <y Lo 005, = 1.25 + 0.10,andy’ = 1.25 = 0.10, in concor-

(16) dance with (20). The distribution of trapping times can
be obtained from simulations as the number of trappings
This corresponds to the flat region observed in the transif a given duration divided by the total number of trap-
time distribution before the power-law decay. In fact, pings. The results are displayed in Fig. 1. Indeed we
the appearance of a plateaufty is an indication of the obtain a power-law distribution for long times, where the
existence ofy). exponent turns out to b2 + 8 = 2.20 = 0.05, in very
Now that the asymptotic form o (/) is known, one good agreement with our prediction (12) if we compare
can go back to Egs. (11) and (8) to perform the longwith the independent measure @f One can also mea-
distance limit in order to obtain the scaling Bf with L  sure the distribution of flight lengths. The behavior for
for large times and the scaling of the mean transit time, |ong distances corresponds indeed to a power law, whose

B [ (1) exponent i2 + y = 2.13 * 0.05, see Fig. 2, where we
P.(t,L) ~ 0B whent > o L, A7)
(T(L)y ~ L{t)Y/{D), whenL — .  (18) 01
From here one obtains that = 1, in contrast with the 0.01 7
value of v, = 1 + y. The reason to have, # v/, is 0.001 .

simple: the model does not show finite size scaling for all
T and £ . Indeed we have found scaling only for a region
T < L{)/{I) andT > L(tr)/{l). By using numerical 1e-05
simulations we will see that this behavior is right and one =

can expect in the experime(® (L)) ~ £ as well. If we S 1o

0.0001

impose the continuity of,, at the crossover poirif, ~ 1e-07 .
L we obtain 108 ]
B=v. (19) 1e-09 4
that is, ¢ (r) and ¢ (1) must have the same power-law tail. ]
Employing also Egs. (12) and (15) we get el 10 100 1000 10000 100000  1e+06
a=1+7r. (20) t (trapping time)

This equation relates the exponent of the power-law tail of,5 1 Trapping time distributions(r) in a system of size

Py with its scaling with system size, and it is well fulfilled 1 = 400. The two straight lines are power laws with exponents
by the experimental values of Ref. [5]. —0.97 + 0.05 and —2.20 = 0.05.
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being y the roughness exponent of the profile of the pile,
that is, the fluctuations of the profile scalelas. On the
other hand, in Ref. [7] it was argued th&Xx =2 + y,
with D the fractal dimension of the avalanches, i.e.,
the size of the avalanches scalesds. As v = v/,
combining these relations with (20) one gets

a=D. (22)

Taking D = 2.23 = 0.03 [7] this last result is in a fair
agreement with the measured valuenof
In summary, from analytical results and computer simu-
lations we present a coherent scenario for the transport in
] a self-organized critical granular system. The scale in-
' ‘ ' variance of the process is associated with long-tailed trap-
1 10 100 1000 . . . . . . . .
. ping time distributions and Lévy flights of the grains.
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