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We use holography to analyze relativistic collisions in a one-parameter family of strongly coupled gauge
theories with thermal phase transitions. For a critical value of the parameter, the transition is second order,
for subcritical values it is first order, and for supercritical values it a smooth crossover. We extract the gauge
theory stress tensor from collisions of gravitational shock waves on the dual geometries. Regardless of the
nature of the transition, for values of the parameter close to the critical value, almost all the energy of the
projectiles is deposited into a long-lived, quasistatic blob of energy at midrapidity. This configuration is
well described by the constitutive relations of second-order hydrodynamics that include all second-order
gradients that are purely spatial in the local rest frame. In contrast, a Müller-Israel-Stewart-type formulation
of hydrodynamics fails to provide a good description. We discuss possible implications for searches of the
QCD critical point.
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Introduction.—“Holographic Collisions,” namely
collisions of gravitational shock waves in an asymptotically
anti–de Sitter (AdS) spacetime, have provided interesting
insights into the far-from-equilibrium properties of hot,
strongly coupled, non-Abelian plasmas that are potentially
relevant for the quark-gluon plasma (QGP) created in heavy
ion collision experiments (see, e.g., Ref. [1] for a review).
The first examples [2–8] considered gravity models dual to
conformal field theories (CFTs). These studies were sub-
sequently extended to nonconformal theories in Refs. [9,10]
based on the set of models introduced in Ref. [11].
The purpose of this Letter is to perform the first

simulations of holographic collisions in theories with
thermal phase transitions; previous holographic studies
of time evolution in theories with phase transitions include
Refs. [12–15]. Our main motivation is that, if QCD
possesses a critical point, future collision experiments,
such as the BES-II program at RHIC, the CBM experiment
at FAIR or upcoming experiments at NICA, may probe the
out-of-equilibrium dynamics of the QGP across a phase

transition. We will show that the formulation of hydro-
dynamics that could potentially describe this dynamics is
not the formulation that is widely used in hydrodynamic
codes [16]. While the consequences of this conclusion are
far-reaching, fortunately our results also suggest the direc-
tion in which these codes may need to be modified in order
to capture the correct physics.
The model.—Our gravity model is described by the

Einstein-scalar action
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with l a length scale and ϕM a free parameter. This is
exactly the potential of Ref. [13]. It has a maximum at
ϕ ¼ 0, where it admits an exact AdS solution of radius l.
The dual gauge theory is a CFT deformed by a source Λ for
the dimension-three scalar operator O dual to the scalar
field ϕ. Additional details may be found in Refs. [13,17].
The thermodynamics of the theory depends crucially on

the value of ϕM, as shown by the plots in Fig. 1. For the
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critical value ϕ�
M ≃ 2.521, the theory possesses a second-

order phase transition and the speed of sound squared, c2s ,
vanishes at the critical temperature. For subcritical values
ϕ≲ ϕM the transition is first order and c2s attains negative
values. For supercritical values ϕ≳ ϕM the transition is
actually a smooth crossover and c2s attains small but always
positive values.
Collisions.—We collide gravitational shock waves in

the model [Eq. (1)] as described in Refs. [9,13]. We use
“1/2-shocks” in the language of Ref. [3]. We choose the
energy of the projectiles so that the postcollision evolution
explores the transition region of the gauge theory phase
diagram.
The result of the collisions is shown in Fig. 2, where we

plot the gauge theory energy density as a function of time t
and of position along the collision direction z. The main
two lessons are as follows. First, most of the energy of the
incoming projectiles is deposited into a long-lived, quasi-
static blob of energy at midrapidity. This in contrast to
collisions in theories without phase transitions [2–10],
where the energy density profile after the collision exhibits
a minimum at midrapidity and two maxima away from
midrapidity. Second, the physics of the collision is quali-
tatively identical for the three values of ϕM shown in Fig. 1,
regardless of whether the equilibrium physics is that of a
first-order transition, a second-order transition or a smooth
crossover.
Hydrodynamics.—We will now show that the long-lived,

quasistatic state formed in these collisions is well described

by second-order hydrodynamics. We focus on the value
ϕM ¼ 2.3, for which the transition is first order, because in
this case the relevant second-order transport coefficients
can be extracted from the static, inhomogeneous configu-
rations of Ref. [13].
In modern language we define hydrodynamics as a

gradient expansion around local equilibrium that, at any
given order, includes all possible gradients of the hydro-
dynamic variables that are purely spatial in the local rest
frame. Let us refer to this as the purely spatial formulation.
To second order the hydrodynamic stress tensor takes the
form

Tμν ¼ Tμν
ideal þ Πμν; Πμν ¼ Πμν

ð1Þ þ Πμν
ð2Þ; ð3Þ

with

Πμν
ð1Þ ¼ −ησμν − ζð∇ · uÞΔμν; ð4aÞ

Πμν
ð2Þ ¼ πμνð2Þ þ ΔμνΠð2Þ: ð4bÞ

In these expressions uμ is the fluid four velocity, Δμν is
the projector onto spatial directions in the local rest frame,
and Πμν

ð1Þ contains the first-order corrections, with η and ζ

the shear and bulk viscosities, respectively. The shear
tensor is σμν ¼ ∇hμuνi, where ∇μ ≡ Δμν∂ν and Ahμνi
denotes the symmetric, transverse, and traceless part of
any rank-two tensor. Note that all first-order terms are

FIG. 1. Energy density (left) and speed of sound squared (right) for different theories. Emss is the energy density with the minimal value
of c2s , which is given by 103Emss ¼ f5.7; 5.8; 5.4g for ϕM ¼ f2.50;ϕ�

M; 2.55g, respectively.

FIG. 2. Spacetime evolution of the gauge theory energy density resulting from the collisions.
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linear in the velocity. As in other holographic models as,
e.g., Ref. [18], the bulk viscosity remains finite at the
second-order phase transition as a consequence of the
large-Nc approximation implicit in the holographic setup
[19]. All the second-order terms are contained in Πμν

ð2Þ. For
the case of interest here of fluid motion in flat space in
1þ 1 dimensions its tensor and scalar parts may be
expanded as

πμνð2Þ ¼ c̃1Õ
μν
1 þ c̃2Õ

μν
2 þ c̃7Õ

μν
7 ; ð5aÞ

Πð2Þ ¼ b̃2S̃2 þ b̃3S̃3 þ b̃4S̃4: ð5bÞ

In order to make contact with Ref. [13] we chose the
basis of operators to be

Õμν
1 ¼ 2∇hμ∇νiE; Õμν

2 ¼ 2∇hμE∇νiE; ð6aÞ

Õμν
7 ¼ ∇ · u

3
σμν; S̃2 ¼ 2∇μE∇μE ð6bÞ

S̃3 ¼ 2∇2E; S̃4 ¼ ð∇ · uÞ2: ð6cÞ
Part of the notation above is chosen to make contact with
Refs. [20,21] below. The coefficients c̃1, c̃2, b̃2, b̃3 are
known because they are related to the coefficients cL, cT ,
fL, fT determined in Ref. [13]. We have not computed the
coefficients c̃7, b̃4, but they are not needed in order to
obtain a good hydrodynamic description. As in Ref. [13],
the reason is that the operators Õμν

7 , S̃4 are highly sup-
pressed in the dynamical situation under consideration

because they are quadratic in the fluid velocity, which is
very small because the blob is quasistatic. This result is
illustrated in Fig. 3, where we compare the exact pressures
PL, PT read off from gravity with the second-order
hydrodynamic pressures Phyd

L , Phyd
T . To obtain the latter,

we read off the energy density and the fluid velocity from
gravity and we apply the constitutive relations [Eq. (3)]
withΠμν

ð2Þ given by Eq. (5) omitting the contributions of Õμν
7

and S̃4. In Fig. 3(top row) we see that the result agrees well
with the exact pressures at midrapidity after a hydro-
dynamization time thyd ≃ 19.01=Λ ≃ 4.64=Thyd, with
Thyd the temperature at midrapidity at t ¼ thyd. After this
time 90% of the fluid energy is moving with velocity
vz < 0.1, hence our use of the term “quasistatic.” In fact,
hydrodynamics describes well not just the time dependence
of the pressures at midrapidity, but also the spatial profile of
the blob away from midrapidity at sufficiently late times, as
illustrated by Fig. 3 (bottom row). In Fig. 3 we have also
plotted the ideal (equilibrium) pressure, as well as the
hydrodynamic pressures obtained by including only the
first-order viscous corrections. The fact that both agree with
one another at late times, but fail to describe the exact
pressures, shows that the first-order terms are suppressed and
that the second-order terms are as large as the ideal terms.
The purely spatial formulation of hydrodynamics is an

acausal theory for which the initial-value problem is not well
posed. For second-order hydrodynamics, a cure that is vastly
used in hydrodynamic codes consists of using the first-order
equations ofmotion to exchange the termswith second-order
purely spatial derivatives in the local rest frame for termswith

FIG. 3. (Top row) Pressures at midrapidity. (Bottom row) Snapshots of the pressures at t ¼ 50=Λ > thyd. PL, PT are the exact

pressures extracted from gravity. Peq is the equilibrium pressure. Phydð1Þ
L , Phydð1Þ

T are the hydrodynamic pressures with only first-order

viscous corrections included, i.e., those in Tμν
ideal þ Πμν

ð1Þ. P
hyd
L , Phyd

T are the second-order hydrodynamic pressures in the purely spatial

formulation omitting the contributions of Õμν
7 and S̃4. P

hydMIS
L , PhydMIS

T are the second-order hydrodynamic pressures in the MIS-type
formulation.
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one time and one spatial derivative (see Ref. [16] for a
review). This results in what we will call a Müller-Israel-
Stewart-type (MIS) formulation. We emphasize that, strictly
speaking, what is known as the MIS formulation is the
phenomenological approach introduced in Refs. [22–24],
which is not second-order accurate. Building on it, different
second-order accurate formulations have been constructed
[20,21,25], to which we will collectively refer as MIS-type
formulations. The key point is that, while they differ from
MIS and they may also differ from one another in certain
details, all these formulations share the common property
that a second-order spatial derivative is replaced by one time
and one spatial derivative as a first step to make the initial-
value problem well posed. Since these two sets of second-
order terms differ by higher-order terms, the purely spatial
formulation and the MIS-type formulations are equivalent if
all gradients are small [26]. Since second-order gradients are
large in our situation, one may expect that the two for-
mulations will differ, as we will now verify. We follow
Ref. [21], which is completely general for a nonconformal
neutral fluid (see Ref. [20] for the conformal case).
In 3þ 1 dimensions the tensor and the scalar parts of

Πμν
ð2Þ can be expanded in a basis of eight tensor operators

Oμν
i and seven scalar operators Sj, respectively [21]. For

the case of fluid motion in flat space in 1þ 1 dimensions
only the following operators of the basis chosen in Ref. [21]
do not vanish identically [27]:

Oμν
1 ¼ −2c2sð∇hμ∇νi log s − c2s∇hμ log s∇νi log sÞ; ð7aÞ

Oμν
3 ¼ σhμλ σ

λνi; Oμν
7 ¼ Õμν

7 ; ð7bÞ

Oμν
8 ¼ ∇hμ log s∇νi log s; S1 ¼ σμνσ

μν; ð7cÞ

S3¼ c2s∇μ∇μ logsþc4s
2
∇μ logs∇μ logsþ1

6
ð∇ ·uÞ2; ð7dÞ

S4 ¼ S̃4; S6 ¼ ∇μ log s∇μ log s: ð7eÞ

In these expressions, s is the entropy density and
∇μ log s ¼ s−1∇μs. Note that the Oμν

7 and S4 operators
are the same in both basis. Moreover, in 1þ 1 dimensions
we have

Oμν
3 ¼ 2Oμν

7 ; S1 ¼
8

3
S4; ð8Þ

showing that the number of independent operators is the
same as in Eq. (5). The first-order equations of motion
imply the following identities

Dσμν þOμν
7 ¼ Oμν

1 −
1

2
Oμν

3 − 2
dc2s

d log s
Oμν

8 ; ð9aÞ

Dð∇uÞ ¼ −
1

4
S1 − S3 −

1

6
S4 þ

�
3

2
c4s −

dc2s
d log s

�
S6;

ð9bÞ

where D ¼ uμ∂μ is the time derivative in the local rest
frame and the equal signs here mean equality up to third-
and higher-order terms. These identities may be used to
replace Oμν

1 and S3 in the expansions of πμνð2Þ and Πð2Þ in
favor of the left-hand sides of Eq. (9) [21], thus replacing
terms with two spatial derivatives in the local rest frame for
terms with one time and one spatial derivative. Upon these
replacements, the expansions read

πμνð2Þ ¼ητπðDσμνþOμν
7 Þþð2λ1þητ�πÞOμν

7 þλ4O
μν
8 ; ð10aÞ

Πð2Þ ¼ ζτΠDð∇ · uÞ þ
�
8

3
ξ1 þ ξ2

�
S4 þ ξ4S6; ð10bÞ

where we have made use of Eq. (8) and we have labeled the
second-order coefficients as in Ref. [21]. The coefficients in
this expansion can be related to those in Eq. (5) by
changing from one basis of operators to the other. Upon
this change the fact that in our dynamical situation c̃7Õ

μν
7 ≃

b̃4S̃4 ≃ 0 translates into

ð2λ1 þ ητ�πÞOμν
7 ≃ 2ητπO

μν
7 ; ð11aÞ

�
8

3
ξ1 þ ξ2

�
S4 ≃ ζτΠS4: ð11bÞ

Using Eq. (11) in Eq. (10) we finally arrive at the MIS-
type constitutive relations

πμνð2Þ ¼ ητπðDσμν þOμν
7 Þ þ 2ητπO

μν
7 þ λ4O

μν
8 ; ð12aÞ

Πð2Þ ¼ ζτΠDð∇ · uÞ þ ζτΠS4 þ ξ4S6: ð12bÞ

As shown in Fig. 3, the second-order hydrodynamic
pressures determined from these constitutive relations,
PhydMIS
L and PhydMIS

T , fail to describe the exact pressures.
Discussion.—We have seen that holographic collisions

in the model [Eq. (1)] result in the formation of a long-
lived, quasistatic blob regardless of the order of the
transition. In other words, out-of-equilibrium physics
smooths out the details of the transition. We emphasize
that this is a statement about the one-point function of the
stress tensor. It would be interesting to investigate whether
two-point functions exhibit qualitative differences between
the case of a second-order phase transition, in which
fluctuations are expected to be enhanced [28,29], and
the other two cases.
We emphasize that our model differs from QCD in

important respects. The conjectured critical point in QCD
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lies at nonzero baryon chemical potential, meaning that the
physics near the critical point involves a dynamical baryon
charge density. Moreover, the critical point in QCD would
be characterized by a conserved order parameter. Both of
these features are absent in our model, in which there is no
dynamical baryon charge and no conserved order param-
eter. Despite these differences, however, it is plausible that
our results may hold qualitative lessons for the dynamics
near a putative critical point in QCD. The reason is that the
formation of the blob seems to be due to a property that is
shared by any critical point, namely the vanishing of the
speed of sound. Indeed, the freezing of the blob dynamics,
which is ultimately responsible for the failure of the MIS-
type hydrodynamics, seems to be caused by the fact that the
speed of sound in absolute value is small at the energy
densities of the blob, jc2s j ≃ 10−2, as can be seen from
Figs. 1 and 2. If ϕM ≫ ϕ�

M the crossover is no longer a
rapid one, and the minimum of c2s is no longer small.
Consistently, in this case, no blob is formed [9,10]. It would
be interesting to investigate if the blob formation persists in
theories with ϕM ≪ ϕ�

M in which the first-order phase
transition is stronger and the minimum of c2s is negative but
again not small in absolute value. It would also be
interesting to allow for nontrivial dynamics in the trans-
verse plane, since regions with negative c2s should suffer
from a spinodal instability with the consequent formation
of inhomogeneities [13].
At a time such that thydThyd ∼Oð1Þ the time evolution of

the blob at midrapidity becomes well described by the
purely spatial formulation of hydrodynamics. As time
progresses the spatial profile of the blob becomes well
described too. We emphasize that this early hydrodynam-
ization is only achieved when second-order terms are
included. Presumably the agreement with first-order hydro-
dynamics would eventually occur at much later times in
accordance with Ref. [15].
Purely spatial hydrodynamics is known to be acausal.

This was not an issue for us since we did not evolve in time
the hydrodynamic equations but simply verified the con-
stitutive relations, but it is an issue in situations in which
hydrodynamics is the only available description. In the
MIS-type formulation, acausality is remedied by replacing
terms with second-order spatial derivatives in the local rest
frame by terms with one time and one space derivative. In
the limit of small gradients this produces an equivalent
formulation at long wavelengths. However, in our situation,
the result is not equivalent and in fact it fails to describe the
correct evolution of the stress tensor even at late times such
that tT ≫ 1. This is not surprising since the quasistatic,
inhomogeneous blob has small time gradients but large
spatial gradients. Although deviations from MIS-type
formulations for large gradients have been reported pre-
viously [30], for fluids with small viscosity, those were
limited to early-time evolution. Note that, strictly speaking,
the MIS formulation would require a second step in which

the tensor Πμν is promoted to a dynamical variable. We
have not considered this second step since the first one
already produces an inequivalent description.
The success of hydrodynamics in the presence of large

spatial gradients has been noted before [2–8,31,32]. In all
those cases first-order viscous corrections were as large as
the ideal terms, and the combination of the two produced a
good description of the flow. In contrast, in our dynamical
simulation first-order gradients are suppressed, and the
leading gradients are the second-order terms, which
become comparable to the ideal terms. The agreement
with the exact pressures implies that the sum of all higher-
order gradient contributions is small. However, this cru-
cially depends on having organized the hydrodynamic
expansion in terms of purely spatial gradients. The failure
of the MIS-type formulation to describe the microscopic
dynamics shows that, for other choices of second-order
gradients, those additional higher-order terms cannot be
neglected. The inequivalence of the different second-order
choices has also been observed in the limit of large number
of dimensions, where only the purely spatial formulation
becomes exact [33] without introducing field redefini-
tions [34,35].
It would be extremely interesting to develop a new causal

formulation of hydrodynamics that includes the necessary
purely spatial gradients. This could have a tremendous
impact on the current world efforts for locating the QCD
critical point. Our results suggest that hydrodynamic codes,
which are based on an MIS-type formulation, may need to
be modified in order to describe the early-time evolution of
high-density heavy ion collisions. Note also that, near a
critical point, the slow dynamics associated to the long-
lived fluctuations of the order parameter lead to modifica-
tions of hydrodynamics [36] complementary to those that
we have described. In our model, the order parameter is a
combination of the energy density, E, and the expectation
value of the scalar operator, ΛhOi. Both of these quantities
jump discontinuously across the first-order phase transition
and their susceptibilities diverge at the second-order phase
transition. Correspondingly, on the gravity side, fluctua-
tions of the metric mix with those of the scalar field and the
mode whose correlation length diverges at the critical point
is a linear combination of these fluctuations. However, the
effects of this single new soft mode are 1=N2

c suppressed
with respect to those in the OðN2

cÞ hydrodynamic stress
tensor [19], and are therefore postponed to parametrically
later times. Understanding the interplay of these two types
of modifications in QCD may be essential to correctly
interpret high-baryon density heavy ion data.
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