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A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the
spin Hamiltonian in a local representation provides the first general framework to extract accurate values
for the many body terms of extended spin Hamiltonians from periodic first-principle calculations.
Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and
for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental
evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin
amplitudes are found together with Jl=Jr � 1 and non-negligible ferromagnetic interladder exchange.
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The strong antiferromagnetic interactions observed in
lamellar cuprates are fundamental ingredients of the
high-Tc (HTC) superconductivity microscopic mechanism
[1,2]. Magnetic interactions arise from the particular crys-
tal and electronic structure of these cuprates with Cu2�

ions arranged in edge sharing Cu4O4 plaquettes. The elec-
tronic ground state involves a single dx2�y2-type hole in
each Cu�3d� shell leading to a network of effective spin
S � 1=2 particles. Nevertheless, these systems are strongly
correlated in nature, making standard band theory tech-
niques unable to accurately describe either their valence or
low energy spectrum [3,4].

The low energy spectrum and collective properties of
these compounds are assumed to be governed by a
Heisenberg Hamiltonian as in the first term of Eq. (1) ac-
counting for the magnetic coupling Jij between nearest-
neighbor (NN) centers i and j only. This is in agreement
with the widely accepted general picture for HTC super-
conductivity involving a ‘‘Heisenberg sea’’ where holes are
introduced by doping the perfect structures. However, to
fully understand the magnetic excitations and the infrared
and neutron scattering spectra of 2D [5–11] and spin ladder
cuprates [12,13], it has been necessary to extend the spin
Hamiltonian as in Eq. (1),
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with other two-body exchange constants Jij [hereafter
referred as J for NN interactions in square lattices and Jd
for next-nearest-neighbor (NNN) interactions], four-body
cyclic terms Jring, and higher order terms. The largest
coupling is expected to be precisely J as found for almost
all existing HTC superconductor cuprates parent com-

pounds. Nevertheless, NNN interactions may be non-
negligible or even of the same order of magnitude as in
the case of the S � 1=2 CuGeO3 system [14,15]. Likewise,
Jring terms may be important in Cu4O4 plaquettes since
they are originated by the electrons cyclic circulation
around the ring with a clear analogy to � conjugated
systems [16]. Similar four-body terms are crucial to de-
scribe the ground state properties of 3He [17].

Although there is a general agreement about the role of
Jring in determining the properties of cuprates [9–12], only
very recently Toader et al. [18] provided definitive evi-
dence of its existence in La2CuO4. They suggest Jring �

0:5J, comparable to the pairing energies, and propose that
the resulting circulating currents could have an important
role in the mechanism of superconductivity. Notwith-
standing, previous estimates of Jring for 2D and spin ladder
cuprates, obtained from either indirect measurements or
numerical simulations with an extended Heisenberg
model, propose substantially smaller amplitudes with
Jring � 0:30J [7,9,10,12,19]. The Jring terms as evaluated
by Toader et al. rely on NN and NNN coupling constants of
J � 111:8 meV and Jd � �11:4 meV, respectively, ex-
tracted from one of the various fittings of the magnon
spectrum [10]. However, it is important to point out that
(i) this value for J is smaller than another experimental
estimate of 135	 6 meV obtained with a nearest-neighbor
Heisenberg Hamiltonian [20] and (ii) the ferromagnetic
nature of Jd contradicts theoretical predictions [21] and
measurements on materials with similar exchange paths
[22]. For the SrCu2O3 ladder compound the recent Raman
response experiments by Schmidt et al. propose Jr �
140 meV, Jring=Jr � 0:2, and Jl=Jr � 1:5 [23].

Clearly, a bottom-up accurate and independent determi-
nation of all important terms in the spin Hamiltonian in
Eq. (1) for La2CuO4 —or any other similar system—is
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highly desirable. For various cuprates, unrestricted
Hartree-Fock (HF) cluster model predictions for J are in
agreement with those resulting from equivalent periodic
calculations, thus validating the finite models [24].
Subsequent configuration interaction (CI) calculations on
embedded cluster models lead to results which are in very
good agreement with available experimental data [25].
Cluster models were also used to extract Jd and Jring in
2D and spin ladder cuprates [26–28]. For the Jring=J ratio,
CI calculations predict values in the 0.11–0.22 range.
However, the embedded cluster derived Jring values are
difficult to validate since (i) convergence check with re-
spect to the cluster model size requires exceedingly large
calculations and (ii) a general procedure to validate the
cluster results for Jring from periodic calculations is still
lacking. Martin and Illas [29] suggested that hybrid density
functional (DF) theory could provide a convenient frame-
work for the description of the local magnetic interaction
in systems with localized spins. This can be equally appli-
cable to periodic or cluster models, and a suitable choice of
the hybrid exchange-correlation potential permits one to
reproduce the experimental J values [4,30]. Up to date, this
procedure has been restricted to the determination of two-
body terms (J and Jd) only. In this Letter, we present a
general procedure which enables the simultaneous and
independent calculation of essentially all parameters defin-
ing the spin Hamiltonian of Eq. (1) from periodic DF
calculations.

The generalization comes from a careful analysis of the
procedure used to extract J in cluster and periodic models
[24,31]. For a system with two localized S � 1=2 spins, the
Heisenberg Hamiltonian [Eq. (1)] has two spin eigenfunc-
tions—a singlet (S) and a triplet (T)—with energies �J
and 0, respectively [32], and hence E�S� � E�T� � �J.
Using pure spin electronic ab initio CI wave functions to
describe the corresponding electronic states of such a
system permits one to establish a direct one-to-one map-
ping between the energies of the S and T electronic states
and to compute J from this energy difference. However, in
a band theory framework one is constrained to write the
wave function or the electron density by means of a single
Slater determinant, and this mapping cannot be used. A
way to circumvent the problem is to rely on the expectation
energy for the single Slater determinant ferromagnetic
(jFMi) and antiferromagnetic (jAFMi) broken symmetry
solutions. For the simple case above, one has jFMi � j""i
and jAFMi � j"#i or j#"i. For these ‘‘magnetic phases’’ one
can easily show that the expectation energies of the
Heisenberg Hamiltonian are hFMjHjFMi � 0 and
hAFMjHjAFMi � �J=2, but hFMjHjFMi and
hAFMjHjAFMi are precisely E�AFM� and E�FM� and
hence E�AFM� � E�FM� � �J=2. The same solution is
obtained by making use of the Ising spin Hamiltonian [32],
although one has to assume that the system is equally well
described by a Heisenberg or a Ising model Hamiltonian.

The use of expectation values for the FM and various AFM
broken symmetry solutions is the clue to extract the vari-
ous parameters of the model Hamiltonian in Eq. (1) using a
periodic approach. In fact, in a periodic system one can
find self-consistent field (SCF) solutions—either for HF or
DF potentials—representing jFMi � j""" � � � "i and vari-
ous jAFM�i�i � j"# � � � #"#i phases with different spin
alignments along the relevant dimensions. The resulting
SCF solutions can be related to a localized valence bond
(VB) picture where nondynamical correlation effects are
introduced partly through spin polarization [33,34]. A
quasidegenerate perturbation theory expansion of the ma-
trix representation of a Hubbard-type Hamiltonian in the
neutral VB basis up to fourth order permits one to extract
the leading interactions—J, Jd, and Jring —involved in
each neutral VB localized spin setting. Using cluster mod-
els for La2CuO4 and SrCu2O3, Calzado and Malrieu [28]
have shown that, apart from J, the dominant terms of
Eq. (1) correspond precisely to Jd and Jring. The latter
appears at fourth order and implies a cyclic circulation of
the electrons around a plaquette; notice that in a plaquette
with all spins parallel (hSz � 	2i) such a current is im-
possible. However, for spin settings on the plaquette with
hSzi � 0;	1 these currents lead to additional off-diagonal
and diagonal corrections (see Tables III–VIII in Ref. [28]).
This is the kernel of the general mapping procedure pro-
posed here to extract these terms from periodic calcula-
tions. This permits one to obtain the terms in Eq. (1)
simultaneously, avoiding any possible bias due to the
choice of a too limited material model.

The calculated energy of several magnetic solutions
(either per formula unit or per Cu atom) can be mapped
onto the diagonal part of the matrix representation of
Eq. (1) in a localized VB basis set [28]. To obtain J in
La2CuO4 or Sr2CuO2Cl2, two magnetic solutions (FM and
AFM) are enough (see Ref. [24]). However, several mag-
netic phases are needed to extract the relevant Jd and Jring

terms. Technically, the main difficulty is to obtain a suffi-
cient number of magnetic SCF solutions so as to construct
a large enough set of equations that permits one to extract
the numeric values of the relevant terms from appropriate
energy differences. The complete set of magnetic solutions
together with the full justification and development of the
set of equations necessary to carry out the mapping proce-
dure exceeds the length of this Letter and will be reported
elsewhere [35]. Relevant magnetic solutions and the cor-
responding equations for La2CuO4 and Sr2CuO2Cl2 are
given in Table I and Fig. 1. For the SrCu2O3 ladder com-
pound ten magnetic solutions have been considered [35];
relative energies are in Table II. Notice that double count-
ing is avoided by considering interactions inside a given
cell only.

The next and final point is to carry out suitable estimates
of the energy of each relevant magnetic solution. To this
end periodic hybrid DF calculations using the Fock-35
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exchange-correlation potential have been performed as
done by Moreira et al. for NiO [4]. Crystalline orbitals
are built as linear combinations of Bloch functions, which
in turn are built from atomic orbitals (AOs) optimized for
the crystal environment. The AOs are contracted real solid
spherical harmonic Gaussian-type functions. Extended all-
electron basis sets have been used to describe the Cu2� and
O2� ions in the ionic environment, whereas core pseudo-
potentials have been used to represent inner electrons of
the remaining ions [36]. Strict convergence criteria and a
set of 105 points in the irreducible Brillouin zone have
been used to ensure a numerical accuracy of 10�7 hartree
per formula unit. Calculations have been carried out using
the CRYSTAL03 code [37] and experimental cell parameters.

The amplitudes of J, Jd, and Jring estimated from the
energy differences corresponding to equations given in
Tables I and II are reported in Table III (see also Fig. 1).
For the La2CuO4 and Sr2CuCl2O2 2D systems, the set of
equations is determined and the values in Table III are
univocal. For the SrCu2O3 ladder, a least square procedure
has been used to solve the overdetermined set of equations.
For the 2D systems, the J values predicted by the Fock-35
potential are close to experiment, as expected from pre-
vious work on similar systems [24,28,34], thus further
confirming the accuracy of the present approach. Next,
we come to the most important result of the present
work: the first direct estimate of the amplitude of the
Jring terms from ab initio periodic calculations. For
La2CuO4, the outcome of the present periodic approach
is in agreement with the only available theoretical results
for this compound, although arising from cluster calcula-
tions [26–28]. Second, the present estimate of Jring �

35:8 meV is in excellent agreement with the indirect evalu-
ations of Coldea et al. (Jring � 38	 8 meV) [10] and the

simulations of Mizuno et al. (Jring � 40 meV) [19]. Notice,
however, that the Jring=J � 0:25 ratio predicted here is
smaller than that reported by Toader et al. [18], which is
of 0.5, but in excellent agreement with a more generally
accepted ratio Jring=J� 0:3 [9,10,19] for this compound.
Also, the Fock-35 method predicts an antiferromagnetic
Jd � 8:8 meV, again consistent with the values provided
by embedded cluster calculations. Hence, it will be of great
interest to repeat the fit in the experiments by Toader et al.
[18] by using the present estimate of both J and Jd. For
Sr2CuO2Cl2, there are no previous values for the amplitude
of the four-body exchange terms. Present calculations
predict values that are slightly smaller than the correspond-
ing ones in La2CuO4 consistent with larger NN and NNN
distances in the latter (3.809 vs 3.972 Å for NN and�5:38
vs 5.62 Å for NNN distances). There exists a good agree-
ment between the estimate of the NN interaction (J�
130 meV) and the experimental value (J � 125	 6 meV
[38]); the Jd coupling is also predicted to be antiferromag-
netic and the Jring=J ratio �0:20 is somewhat smaller than
that for La2CuO4 but still consistent with previous
estimates.

Finally, for the ladder compound the dominant interac-
tions are the couplings across the rungs (Jr) and along the
legs (Jl) which are nearly equal in magnitude, i.e.,
�Jr=Jl� � 1 as expected from the similarity of the Cu-O-
Cu exchange paths. On the other hand, Jd is antiferromag-

TABLE I. Energy expressions per Cu atom relative to FM
phase for the magnetic solutions in Fig. 1 and their correspond-
ing values (in meV) for the 2D cuprates.

Phase
Energy

expressions
Values in
La2CuO4

Values in
Sr2CuO2Cl2

AFM �J �140:1 �130:8
AFM1 ��J=2� Jd=2� Jring=8� �78:9 �70:1
AFM2 ��J=2� Jd� �78:8 �68:2
FM 0 0.0 0.0

FM AFM AFM1 AFM2

FIG. 1. Schematic representation of the magnetic solutions
calculated to extract J, Jd, and Jring in the 2D layered cuprates.

TABLE II. Energy expressions per Cu atom relative to the
AFM_gs (ground state) phase and the corresponding values (in
meV) for the ladder compound.

Phase
Energy

expression
Values in
SrCu2O3

AFM9 �Jl=6� Jr=6� 3Jd=2� 0:05Jring 44.98
AFM8 �Jl=4� Jd=4� Ji=8 31.92
AFM7 �Jl=2� Jd=2� Ji=4 67.38
AFM6 �Jl=2� Jd=2� Ji=4 83.78
AFM5 �Jl=4� Jr=8� Jd=4� Ji=8� 0:075Jring 57.68
AFM4 �Jr=4� Jd=2 38.87
AFM3 �Jl=4� Jr=8� Jd=4� 0:075Jring 53.43
AFM2 �Jr=8� Jd=4 16.20
AFM1 �Jl=8� Jr=16� Jd=8� 0:0375Jring 26.68
AFM_gs 0 0.0

TABLE III. Two- and four-body exchange amplitudes (in
meV) for La2CuO4, Sr2CuO2Cl2, and SrCu2O3. Experimental
values in parenthesis (from Refs. [20,38]).

System J Jd Jring Jring=J

La2CuO4 140:1�135	 6� 8.8 35.8 0.25
Sr2CuO2Cl2 130:0�125	 6� 2.8 26.4 0.20

Jl Jr Jd Ji Jring Jring=J
SrCu2O3 153.1 155.6 2.7 �34:2 48.8 0.31
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netic as in the 2D cuprates and a non-negligible interladder
ferromagnetic exchange is found, Ji � �0:22Jl. Hence,
one should not consider these as noninteracting ladders.
Regarding Jring, both its amplitude and the Jring=Jr ratio are
larger than for 2D cuprates, but still close to 0.3 in agree-
ment with various experiments [9–12]. In particular, cal-
culated Jr and Jring=Jr are close to those reported by
Schmidt et al. extracted from Raman response experiments
[23], although they ignore Ji and, to justify some differ-
ences between ladder and 2D magnetic systems, they
propose Jl=Jr � 1:5. The present results do not support
such large anisotropy between Jl and Jr. Interestingly
enough, we found that neglecting Jring results in a larger
anisotropy in the fitting. These results strongly suggest
revising previous fittings using the present estimates as
starting points.

To summarize, the present work proposes a new, gen-
eral, and unprejudiced scheme to predict the amplitude of
the parameters defining a general spin Hamiltonian from
DF periodic calculations. The procedure does not need to
make assumptions on the relative amplitude of these terms.
Instead, it relies on a mapping approach between the
energy of pertinent magnetic solutions and the diagonal
terms of the spin Hamiltonian in a local representation.
Then, the unique possible bias arises from the quality of the
exchange-correlation potential. In particular, the present
work provides an independent confirmation of the impor-
tance of four-body terms in La2CuO4 recently evidenced
from the experimental work of Toader et al. [18] and
supplies reliable values for spin Hamiltonian parameters
of other key compounds. It is predicted that the importance
of four-body terms is likely to be similar for most of the
HTC related cuprates and even more important in ladder
compounds in agreement with the recent experiments of
Schmidt et al. [23]. It is also suggested that the fit to
neutron scattering data should be revised by considering
alternative values for both J and Jd magnetic coupling
terms. Finally, the present study adds further evidence
that the ferromagnetic interladder exchange introducing
spin frustration between legs and the four-body term in
the SrCu2O3 ladder should not be neglected.
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