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DIVISION AND EXTENSION IN WEIGHTED
BERGMAN-SOBOLEV SPACES

A bstract

where

,IOAQUIN M . ORTEGA AND JOAN FÁBREGA

L,et D be a bounded strictly pseudoconvex domain of C" with
C°° boundary and Y = {z ; ul (z) = . = ut(z) = 0} a holomor-
phic submanifold in a neighbourhood of D, of codimension l anca
transversal to the boundary of D .

In this work we give a decomposition formula f = uifl -}-

	

-F
21.t ft for functions f of the Bergrrian-Sobolev space vanishing on
M = 1' n D. Also we give necessary and sufficient conclitions on a
set of holomorplaic functions {f.}Iaj<_ on M, so that there exists
a holornorphic function in the Bergman-Sobolev space such that
D° f I A4 = fn for all jnl < -na. .

I . Introduction and main results

Let D = {z; p(z) < 0 } be a bounded strictly pseudoconvex domain
of C" with C°°-boundary. Let Y = { z ; u, (z) = . . . = ti, (z) = 0 } denote
a holornorphic submanifold in a neighbourhood of D, of codimension l
and transversal to the boundary of D f1 Y, Le . á p A cgul A . . . A c) ut 7~ 0
on the intersection of the boundary of D and the submanifold Y .

For every 1 <_ p < oo, S > 0, and k = 0, 1 ., . . . we consider the weighted
Sobolev space

Ló.k (D) _ { f mensurable ;

	

1f ip,h,k < oo }

lf I Ip,h,k =

	

SLIP {(ID 1
Dce D"

f I p (-p)ó-r
)

7;

;

	

¡al +

	

k
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and D- -_ _a"~ Df' _
_a""

z

	

a z~~ z - azp'

Also, we define for every p, S, k the weighted Bergman-Sobolev space
as the space of holomorphic functions A6.k(D) = Lp6.k(D) n C(D) .

Replacing the derivatives D', DQ for tangent-derivatives on the sub-
manifold Y, we define in the same way the spaces L6,,,(M), and A'5,k (M)
in the submanifold M = Y nD.

It is well known (see for instante [3], [4]) that

(1.1)

	

Ap,k(D) C At (D) ;

	

if

	

t = k - n ~
6

	

> 0

where A' (D) denotes the corresponding space of the holomorphic Lips-
chitz functions . It is also well known that

(1. .2)

	

A6 k(D) = A6, k,(D),

	

if

	

S- S' = p(k - k') .

One of the main results that we will prove in this work is a result of
division in the spaces AP,k(D) .

We recall the following result of division in the holomorphic Lipschitz
spaces, due to P. Bonneau, A. Cumenge and A. Zériahi ([61) :

If f is a holomorphic Lipschitz function of class AL(D) vanishing in
the submanifold M, then there exist functions fj , j = 1, . . . , l ; of chlss
At- z (D) such that f = u,. fl + . . . + ul fi .
We prove in this paper the folio-sving theorem:

Theorem 1.1 .
If f is a function of class A',,k(D) vanishing on the submanifold
M = Y f1 D transversal to the boundary of D, then there exist functions
fj , j = 1, . . . , l of class A6+a,k(D) such that

2

cj fj .

Observe that by (1.1) and (1 .2) the Theorem 1 .1 is in some sense a
refinement of the above result of division in the holomorphic Lipschitz
spaces .

In the limit case where Y is a point ~ of D, the Theorem 1 .1 is the
Cleason's problem . In this case (see [11]) it is known that

7L

f(z) _

	

(zj - ~j) fj(z) ,

	

fj

	

E Al k (D) .

j=1
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The second main result that we will prove is an extension theorem of
jets . This consists to give necessary and sufficient conditions on a set
{ fa }~,,1<m of holomorphic functions on the submanifold M = Y f1 D so
that there exists a A6,k(D)-function f, such that Dz f ¡ A,, = f,, for all

< 9ra .
The case m, = 0, Le . the problern of extension and restriction of func-

tions of class A6,k(D) ; has been studied by many authors using different
methods . (See for exemple [3], [4], [9]) . The result obtained in this case
is

The above problem in the holornorphic Lipschitz spaces has been
proved by us in [12] .

In order to state the result of extension let us introduce the following
definitions .
We consider smooth vector fields on D

X =

For these vector fields we say that; X is complex-tangential if Xp(z) =
0 for every z in a neighbourhood of the boundary of D, and we define
its weight w(X) in the usual way :

q

	

1
w(X) -

	

2

	

if X is complex-tangential

1

	

in other case .

If X = X1, �. . X1 is a differential operator we define its weight by

k

w(X) =

'vVe recall that for a holornorphic function f on D the j - th covariant
differential of f at a point z E D is defined by :

d° fZ = f(z)
d1 .Íz(Xl, . . . ,Xj) = Xjdi-'fz(XI, . . ,Xj_1)-

j-1
di- ' fz (Xl, . . . , vxj Xi) . . . , Xj_1)

i=1
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and that in coordinates we can write

as

Di f(z)d1 fz =

	

dzii ® . . . ® dzij .~- ai

	

Ó~ixl . . .
~i3

Also, fixed m, we denote by

Definition 1 .2 .

J�zfz = ( do fz, . . . , dm fz)

the holomorphic jet of order m at the point z E D induced by f .
Moreover, if the function f is of class A6,k(D), then it is well known

(see [1], [3], [4]) that the function di fz(X1, . . . ,Xj )1, is of class

L6+l+w(X)p,k(M) where X is the differential operator formed by the
vector fields X1 , . . . , Xj .

Thus, if we define the covariant tensors of order j at a point z E M

FzF;-,' =d3 fz

then they satisfy the following conditions for every 0 < j < m:
I-1) At every point z E M, Fz is a j-covariant symmetric tensor .
I-2) Fi

( ae, , . . . , aá,
, . . . ,a

C9 z,

, . . . ,

aa
) are holomorphic functions

on M.
1-3) Fi (X,, . . .

	

Xj) = Xj Fj-1 (X1 , . . . ,Xj_ 1 )-

Fj-1 (X1, . . . ,OXJi, . . . ,Xj-1)

for every tangent vector field Xj at M.
1-4) Fi (X,, . . . , Xj ) E L6+l+.(x) n,k(M)'
Therefore, it is natural to introduce the following definition :

F = (F°.... ; F") is an A'6,k-jet of order m on M if it satisfies the four
previous conditions .
The condition I-3) just gives a relation of coherente between the ten-

sors Fi . We point out that a A6 k-jet on M of order 0 is a function of
class Al+l,k
The notation of As,k-jet is justified by the following result .



DIVISION AND EXTENSION IN BERGMAN-SOBOLEV

	

841

Theorem 1 .3 .
F = (F o , . . . , F�ti) is a Aó

	

-jet of order m on M if and only if there
exists a function f of clase Á6,k (D) such that J,, f = F on M.

We recall that in [12] we said that F = (F', . . . , Fm) is arl A'-jet if it
satisfies the conditions I-1, I-2, 1-3 of the Definition 1 .2 and the condition

(1 .4)

	

I Xk . . .Xj+1 Fi (X,, . . . ,Xj) I < cM(t-w(X),z)

where the function A11(s, z) is defined by

1

	

ifS>0
(1 .5)

	

M(S, z)

	

_

	

1 logip(z)1 1

	

if s = 0

IP(z)I,

	

if s < 0

and the vector fields Xj+1, . . . , Xk are tangential to the submanifold Y.
In the sarne paper [12] we proved that :

(1 .6) F is a AL-jet of order ni on M if and only if there exists a holo-
morphic Lipschitz function f of class At (D) such that Jm f = F
on M.

To prove the Theorem 1 .3 we will use the Theorem 1.1, the results
(1 .1), (1 .2) and (1 .6) and a result of resolution of the á-equation in the
spaces Lp.k(D) .

As usually several diferent constante in the inequalities will be denoted
by c.

II . Some integral formulas

In this section we give an extension operator and an explicit solution
of the c) -equation .
We denote by <h(~, z) the support function of Henkin and we put

a(~, z) = -P(S) + `D«, z) .
Using the results of B. Berndtsson and M. Andersson [5], for every

positive integer s we can construct kernels Ks and Rs of type

KS(C, z) -
(

	

P(,)
_

	

+s

	

~Po(~, z) +
a«, z)

	

K - zl2n

wj (~, z)
a ~ Z)n+s+l

I( -
zl2n-2j

=1
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which have the following properties :

1. d~, Z Ks = RS outside the diagonal, and Rs is holomorphic in the
variable z .

2. The forms cpj , j = 0, . . . , n are of class C°° (D x D).

3. lWj(~,z)i ~ cid - zi,

	

j=O, . . .,n-1.

4.

	

Koppelman Formulas . Let Kps,q be the component of Ks of
bidegree (p,q) in z, (n-p,n-q-1) in S, and let RP e be the component of RS
of bidegree (p, q) in z, and (n-p, n-q) in S. Then, if f is a (p,q) form with
coefficients in C1 (D), we have

(2 .3)

where

in z .

.f (z) = (-1)r+e+ 1

	

á f(S) A KP,a(~, z) +
D

(_1)r+g &
ID

f(~) A KP,q-~

	

z),

.f(z) = (-1)r+1 L

	

D f(S) A KP,o(~, z) -
D

f f(0 RP,0K z),

	

if q = 0.
D

ifq>1

Now, if Y = { z; z1 = . . . = zl = 0} and M = Y n D, then the same
construction used in [5] to prove these results gives for each s > 'p11 an
extension operator from the space AP6,k(M) to the space of holomorphic
functions O(D) . This operator is defined by

(2.4)

	

ES .f(z) =
J

	

f(S) RÑt (S, z)
,w

Rñt«,z) =

	

(-P(O)3
a(~ z)n-l+1+s `P(~, z) ,

	

E M, z E D
,

and the form ep has coefficients of class C°° (M x D) and it is holomorphic

Moreover, the same formula (2.3) also gives an explicit integral oper-
ator te solve the á-equation for (0,q) forms á-closed . This operator is
given by the kernel Kó e-1(~, z) .

The estimates for these kernels are given by the following Lemma.
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Lemma 2.1 .
Let j < 2n - 1 be an integer.

	

Then with M(s, z) defined as (1.5) we
have

1

Jo lalt l~ - z1 .i

M(n+1-t- 2,z)

1
M(2 - t, z) 1 logl p(z)I
M(1 - t, z)

ifj<2n-3 .

if j = 2n - 2, t < 2.

if j=2n-2,t>2.

ifj=2n-1 .

P1-00f..

Using the usual chango of coordinates and computing the respectivo
integrals we obtain these estimates . (See for instante [10]) .

Now we will state some formulas of integration by parts .
The first formula is contained in the following Lemma of [7] :

Lemma 2 .2 .
Let f be a (0,1) forja á-closed with coefficients of class Cl (D) . Then

Dz9= -ID DC`f /\Kos,o + `-J fDDCfA DáR0,1,l

where in the last terms y and 0 are multiindexes with ¡y¡ +

	

¡al - 1,
i = 1, . . . , n, arad R';i,I denotes the coefjlcient of d zi ira the component

of the kernel Rs of degree (1,0) in z cand (n,n-1) in ~.

Before to state the second formula we introduce the following kernels,
that are a generalization of the extension kernels Rn,, .

Definition 2.3 .
lf Y = {z, = . . . = za = 0 } and AI = Y f1 D, we define the kernels

RAiz)

	

z),

	

( E M, z E D

where the forro 0(~, z) has the coefficients of class C°° (M x D), and it
satisfies

Da DI' D" 0(~, z)

	

< e 1 a«, z)
I
r-(I«¡+2 +171)

for every multiindexes a, ,0, y .
Let also RIÍ,I, denote the integral operator given by this kernel .

Observe that the extension operator Rñ~ (S, z) is a Rs'-(n-a+l+s)

operator, because 1 DC a(~, z) 1 < (ji~~ - zi < cla«, z)12' .

These operators have the following properties :
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Lemma 2.4 .

1) Dá RM,lp = RM
~inl

ii) fn~

	

RMip

	

< eM(n-1+1+s+ r, z) .

Proof..
i) is clear and ii) follows from Lemma 2.1 .

Lemma 2.5 .
If f is a function of class Ck(M), then, fixed an integer q, we can find

operators RM,r' , RM,G1 such that

Da s,r
Z RM,O f =

171=k
s,+r,, > s+r+k-Ial

p.y >s+k

IM<k
s N+r, > q
s,>s+k

Rs"r' D7

	

+M,lp .y	( .f

R si"r,. D'` fM ,o ' ,

	

S

Remark. Roughly speaking, the Len-una 2.4 prove that the coefficient
s + r measures the regularity of the operator RM~p, and therefore the
operators Rs1,r" in Lemma 2.5 have at least the same regularity than the
Operator RM, plus k-1a1 . On the other hand, choosing q large enought
we can assume that the operators R5I,"" are as regular as required .

Proof.
Using the transversavility of the submanifold Y, we can choose a cov-

ering {Ui}i°_o of M such that
i) M = Ul°_o Ui, and Uo = {z ; p(z) < -b},

	

S > 0 .
ii) For each i, 1 < i < io there is l + 1 < ji < n such that a('

	

:,A 0- -

	

j<
on Ui .

Let {Xi} be a partition of the unity for this covering and we put

Rs,r
M,wG'

We want to prove the Lemma for each one of the operators of the sum.
If i = 0 the result is elear by the properties of 0 and the property i)

of the covering.
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If i > 1 by the property ii) of the covering we have

f

	

RS T

	

z

	

_

til
All

,~l, ,

s+1

s + 1 f

	

(-p(S))

	

C9
Siz

	

(Xiv,(~, z)

	

aP~,)

	

f(o
M

Rs+l,r

	

a f

	

+

	

Rs+l,r-2
fM,xilY g(jifm

	

b,Íi

	

M

Iterating this process in the tercos which have less than k derivatives
on the function f, and using the Lernrna 2.4 i) we obtain the result .

III. Solution of the a-equation in the LP,,,(D) space

The aim of this section is to prove the following Theorems .

Theorem 3 .1 .
If f is a (0,q) form á-closed with coefficients of class LP,o(D), 1 <_ p <

oo, b > 0, then there exists a (0,q-1) form q with coeffcients of class
L6. e (D) for all S* > S - 2, 5* > 0 such that ag = f.

Theorem 3 .2 .
If f is a (0,1) form á-closed with coefficients of class L6,ti(D), 1 <_ p <

oo, S > 0, k = 0, 1, . . . , then there exists a function g with coefficients
of class L6 " ,k(D) for all b* > b - 2, b* > 0 such that ag = f.

To prove these Theorems we need the following Lemma.

Lemma 3 .3 .
If a kernel K(~, z) satisfties 1 K«, z) 1 < c- l(L«,=)i

	

t -> 0, j
0, . . . , 2n - 1, and f is of class L6,o (D), 1 <_ p < oo, 0 < 5 - 1 < sp,
then tlae function K f is of class L6 0 (D), b* > S - Ap, b* > 0, where

n+ .1+s-t- 2

	

if j < 2n-2

2-e+s-t

	

ifj=2n-2, e>0

1+S-t,

	

ifj =2n-1.
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Proof.

We want to see that for a 6* fixed which satisfies the previous condi-
tions we have

I

	

IIi«, z) I l f «) I d S )
p

(-P(z))5.-1 dz <

c
~D

I f (S)I
r

(-P(~))
ó-1 d~ .

First we consider the case p = 1 and j qÉ 2n - 2 .
In this case applying the Fubini Theorem we have

I < c

	

. If(0I (-P(0)s

	

(-P(z) 6.-1

	

dzd~
JD

	

.ID la«, z)I 1 IS
-

zh

and using that la(~, z) I ti Ia(z, ~)1 , -p(z) _< cla«, z) I and the Lemma
2.1 we get

I < c
ID

I f (~) I ( -P(S)) s M(6* - 1 + A - s, C) «.

Now, if S* -1+A-s >_ 0 we have that ( -p(0)S M(S*-1+A-s; ~) _<
c(-p«))ó-1, since s > 6 - 1 .

Moreover, if S* - 1 + A - .s < 0 then (-p(S))s M(6* - 1 + A -
c(-P«))ó'-1+a < c(-p«» 6` because S* > 6 - A .
Hence

I < c

	

l f(« ( -P(C))á-1 dS .
D

If p = 1 and j = 2n - 2 we obtain in (3.1) the estimate

I < c
J

	

I f(S)I (-P(S))s M(6* + 1- t, () Ilo9IP(S) II d~
D

and applying the same reasoning as in the above case we prove the result .
Now we consider the case 1 < p < oc and j < 2n - 3 .
Let p' =

	

1 . Taking r such that

pp 1

Cn+1-2/
< r <

pp1
Cn+1-2+p~*1



and applying the Hólder inequalities we get

9

I <
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If(S)IP

	

(-P"))''P

	

j « l
D D

	

la«,z)l( - ) l~ - zl

1
D

1

	

do

	

P

	

(-p(z))6.-l dz <
a-(S, z) lrP~~ - zh

<_ c

	

f lf(S)IP(-P(0),'' (-t'(z)(
n+1-,,p'-2)(P-1)+e' -1

S
n

	

D

	

la(~, z)l ( t-r)PlS - zh

	

d

	

dz.

By "bini Theorem and the Lemma 4 .2 we llave

<_c

	

lf(S)l P (- p(0) ,P M Cn+1-(t-r)p-2+
"fD

(n+1-rp, -2)(p - 1)+b*	d(=

lf(~) I P ( -p(~))'P M C(n + 1 - t -
2 )p

+ 5* - 1,(

	

d( <
n

c

	

lf(~)IP (-p(C)) ó-l d(

and hence this case is proved .
The cases 1 < p < oo and j = 2n - 2, 2n - 1 follow in the same way

taking r such that

p-1 (2n-j) <r<
pp1

(2n-j+p5
.1/

Corollary 3 .4 .
If RD~ is the operator of the Definition 2.3 and f is of caass Lp,k(D),

S - 1 < sp, then the function RDr~P .Í is of CIaSS L5.,k(D), for all 5* >
S-(n+1+s+r)p, S* > 0 .

Proof..
Applying the Lernmas 2.5, 3 .3 we obtain the result .

Proof of Theorern 3.1 :
We take s > 0 such that sp > 5 - 1 and we define the function
= - fDf A Kó ,q- 1 , where the kernel K9 is given in (2.1) .
It is clear by (2 .3) that ág = f . Now, using the estimate

Ks l < c

	

(-
,)n+s

	

n-1

	

(-
P)n+s-i

l aln+s I~ - zl2n-1
+ E IaIn+l+s l( - zl2n-2i-1
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and applying the Lemma 3.3 we obtain the result .

Proof of Theorem 3.2 :
We define g as in the previous Theorém .
By Lemmms 2.2 and 2 .4 we have

D" g - -

	

D-f A K,', , , +

	

DS f A RD-G7
+i+s+IQ1)

D

	

I71+IRIlal D

where the kernels RS'-(n+1+s+Ial) are holomorphic in z .D,~P 7
The same reasoning used in the proof of Theorem 3 .1 shows that the

term fD DS f n Ká ,o is of class LP.,o .
Moreover the Corollary 3.4 shows that the term

of class C'(V), such that

D(Y f A Ks,-(n+i+s+IPI)
D

is of class Aó+IQin,ti-171(D ) - `96,l_l-IRI-171(D)'
Now, using that jaj - 1,3 1 - 1yl > 1 we end the proof .

IV. Division in the Aó,, spaces

To prove the Theorem 1.1, we will first solve the problem locally using
the following projection .

Let Y = { z ; zl = . . . = z, = 0 } be a linear submanifold transversal lo
the boundary ofD. Then for every point w in the boundary ofM = YnD,
there exists a neighbourhood V of w and a projection

II : V ->Vny

i) II(z) = z + zl gi + . . . + zt gt
ü) P(II(z)) ~ P(z) - c Iz'la_

	

z, = (Z1 5 . . . , Z,,0'...0), e > 0
iii)

	

la«, z) j

	

< cla«, II(z) j

	

<

	

e ( la(~, z) 1 + Iz'12)

Remark. Observe that the condition ii) implies that if z E V n D
then II(z) E V n M.
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«, z) = (i zi
1

á~ _
(Y1

, . . . , C9(~ )

	

,

	

r9� = C0, . . . , 0,
0S1

P
1 ,

. . .
1 .9(.

.

Let U be a neighbourhood of the boundary of M. Shrinking U and
using the transversavility of Y we can assume that á > c > 0 on U

and therefore, for every 1 <_ j < l, we can take a function hj : U -> Cn
of class C°° (U) such that

(4 .1)

	

h-7 =(O, . . . , -lj, . . . , 0, hi+1, . . . ) hñ) ,

	

and

	

(
F

, h3 ) = 0 .

The next step is to see that for a certain d > 0 the projection

(4.2)

	

11(z) = z + zlhl + . . . + z,h l - djz'12 CgP(z)
áz"

satisfies the required conditions .
lt is obvious that 11 satisfies i) for every d.

Using the Taylor development and the properties (4.1) we have that

P(n(z)) CP(z) - 2dIz'12

	

P,
~ + co 111(Z) - z1 2 <_

n(z) - (2dc1 - c2)Iz'I
2
+ C3diz'13

where cl, c2, c3 > 0.
Now taking d such that 2dc1 - c2 > c > 0 and shrinking U we obtain

ii) .
To prove iii) we recall that 4)(i, z) is holomorphic in z and

wlth

q>K z) = (P(~, z), C - Z) _ ( ~P,

	

- z) + O(I( - ZI2) .

Using this and the properties (4.1), we have

(4 .3) a(C, z) - a(S, n(z)) = (P(S, z) - P«,ll(z)), ~ - z) +
1

(PK r, (z», z - U(z)) _ E zj

	

z)
j=1

WKz)l < c(IK-zi+lz'l) ,zz~ c(¡(-11(01+lz'I) .

Finally, using that j(-z1 :5 cla«, z)12 and j(-fl(z)1, lz'I< cla«, H(z))12
we obtain iii) .
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Lemma 4.2 .
If f is a function of class L6,o(M) ; then the function R¡,'

	

f, S-1 < sp
is of class L6.,o(D) for all S* > S - l - (n + 1 + s + r)p, S* > 0.

Proof..
Appliying the estimates of Theorem 2 .4 of [3] and the same reasoning

that in the Lemma 3.3, we obtain the result .

Corollary 4.3 .
If f is a function of class L6,~ (M), then the function Rn~

	

f, S-1 < sp
is of class L6. .k (D) for all S* > S - l - (n + 1 -f- s + r)p ; S* > 0.

Proof..
The proof is a consequence of the above Lemma and of the integration

by parts formula given in the Lemma 2 .5 .

Lemma 4.4 .
Let be f a (0,1) form á-closed with coeficients of class L6,ti(D), S > p

and let u be a holomorphic function on a neiglibouriiiood of D, such that
uf has coefficients of class Ló_ 1	(D). Then there exists a function g of

2 ,k
class Ll_p,k(D) such that ág = f and ug is of class L6_p,k (D).

Proof..

We take g = - fD f n K(')0 as in the Theorem 3.2 .
Hence, we only need to see that ug is of class L6_P,k(D) .

By (2.3) we have fD gRáo = 0 and therefore we can write

U(Z)g(z) = ID

	

ID

	

,z).

The Theorem 3.2 gives that the first term is of class L6_1,,k(D) .

Moreover (u(z) - u(C)) Róo(S, z)

	

= RD
7p
_
(n+l+s) and therefore by

Corollary 4.3 we obtain that the second term is of class L6_r,ti (D) .

To prove the result of division given in the Theorem 1 .1, first we
consider the linear case to obtain local solutions . Finally using these
solutions, the Lemma 4.4 and a result of division in the holomorphic
Lipschitz spaces ([6]) we will obtain the result .
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Proposition 4.5 .
If Y = { z ; zl = 0 } is transversal to the boundary of D, and f is a

function of caass A6,k(D) that is zero on M, then there exists a function

fI of caass A'5+Ezk (D) such that f = zl fl .,

Proof..
We consider a covering {Ui}?°_o of D such that :

1) Uo = { z ; P(z) < -S < o}.
2) If 1 <_ i < i l then z l :~É 0 on U¡ .
3) If i l <_ i _< io then there exists a projection II i as the one in the

Lemma 4.1 .
Let { Xi } a partition of the unity for this covering .
We want to see that Xi 1- is a function of caass Ló+2,k (D) .

We consider the there following cases .
1) i=0.
In this case using that Uo CC D then we can take the function 1- of

caass C°°(Uo) and therefore the result is true .
2) 1<i<il
In this case (4.1) is clear .
3) il < i < io
We will write II instead IIi . Thus

f(z) = f (z) - f(II(z)) = f f(S) (R%, z) - R%, II(z)) ) d( =
D

f
f(S)

	

(-P(O)S ~o(~, z) _ (-P(0)s ~o«, II(z))

	

d(
D

	

a«, z)n+i+s

	

a(~, II(z)) n+i+s	)

where ;P(~, z) is a function of caass C°°(D x D ) and holomorphic in z .
Using (4.2) II(z) - z = zl hl - dizl 12

á where hl is a tangential
complex vector, and thus we have

i) W(~, z) - W(C, II(z)) = zlo'(S, z) with

	

z) of caass C°° (D xD)
ii) a(~, z)-a(~, II(z)) = zI ip"«, z) with o"«, z) of cassss C, (D xD)

and IMP"«, z) 1 = 0(1~ - z1 + 1( - II(z)l) . (See (4.3)) .

Hence, we have

Xi f(z)

	

f
f(~) (-

P(~»sXi(z)~«, z)
zl = D

	

+

a(~, z)n+i+s
l

n+s
(-PO'SXi(z),p1Kz)

f
f(~) a(~, 1I(z))n+I+s-i a(S, z)j+i

j=0 D
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where

	

z) , 0i«, z) are functions of class C°° (D x D) and
Oi«,z)-<c(K-z1+K-II(4) .
With these notations we have that the above kernels are of the class

RD-on+Z+S) asid therefore by Corollary 3 .4 we obtain that xi(z) f-i 1 is
a function of class Ló+ P,k (D) .

Thus finally fi = 1- is of class Aó+1,k(D).

Definition 4.6 .
We say that the holomorphic submanifold Y = { z ; ul (z)

u, (z) = 0 } is totally transversal to the boundary of D if for every 1 _<
j l < . . . < js < l ; Yi _ { z, uj, (z) _ . . . = ujs (z) = 0 } is a holomorphic
submanifold of codimension s and transversal to the boundary of D.

Proposition 4 .7 .
If Y = {z : zl = . . . = zl = 0 } is a holomorphic submanifold totally

transversal to the boundary of D and f is a function of class Ap,k (D)
such that is zero on M, then there exist functions fj , j of
class Ab+E,k(D) such that

Moreover; for all j = 1, . . . , l the functions zj fj are of class Ap,k (D) .

Proof.-
We will construct the functions fj inductively .
SayYm = {z : z�L+1= . . .=zi=0} , Y =CnandM,=Y,nD.
Using the hypothesis of total transversavility we have that for each m,
M�, is a strictly pseudoconvex domain with boundary of class C°° and
that Ym_ 1 is transversal to the boundary of Mm .
By (1 .1) we say that f ¡M l is a function of class A6+1-1,k(M1) that is

zero on Mo and hence by Proposition 4.5 there exists a function hl of
class Aá+~_1+2 (Ml) such that f = zl hl on Ml .

We define fi (z) = fM, Rñtl «, z) hl (~) « where RM, is the extension
operador (2.3) .
By Lemma 4.2 we have that fi is of class Aó+2,k(D) .

Also putting

zifi(z) = f (zi
M I

R', «, z) d( + f

	

f(S) R'l1 (~z) dS
M1
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and using that Izl - ~11 < c la(~, z) 1 2 and the Corollary 4.3 we have that
z l fl is of class AP6.k(D).

If we consider the function f - z,fl and we repeat the above method
on M2 we will find f2, and by iteration we will obtain the remaining

We introduce the following covering of D which is a variation of the
one of A.Cumenge [9] .

Lemma 4.8 .
For 0 <

	

el

	

<

	

. . .

	

< e,, there exist points { zi }i-1,, . . ,i,,

	

of D and
strictly pseudoconvex dom,ains witla C°° boundary { D? }Z-

	

,~o , such
that:

i) B(wi, e,._l) nD C Di C B(wi, e,.) nD if 1 < r < ro .
ii) U'0 1 D' = D.
iii) If il < i < io there is 1 <_ ij _< l such that uij 9~ 0 in D',
iv) If 1 < i < i l then

a) Di nYOO.
b) For every D"' there exists a holomorphic system of coordi-

nates such that the l first are u,, . . . , u¿ .
v) Y is totally transversal to Di for all 1 <_ i <_ il , 1 < r <_ ro .
vi) If r < r' and DZl n . . . n Dy

	

0 then there exists a strictly
pseudoconvex domain D¡ with C°° boundary, such that
a) D2'1 n . . .DÁcD;C D'n . . .nD",, .

b) If DI n Y

	

0 then Y is totally transversal to the boundary
of D¡ .

Proof of Theorern 1 .1 :

We take the covering of D of the Lernma 4.8 . We fix an r and we write
Di instead Dz' .

By Proposition 4.7 in each Di we have :

c
.f (z)

	

_

	

4/,j (z) f? (z)
j-1

fj(z) E A<5+2 k (Di)

	

Uj fj, E Ah k (Di)

We define gj(z) =

	

Z:i xi(z) fj (z) where {Xi} is a partition of the
unity with respect to the covering { .D i } .

It is clear that E,1=1 ni gj = f .
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For each j we denote by wj the solution of the equation ówj = a.9j
given by the Lemma 4.3 and we put

f Uj (gj - wj)
j=1

	

j=1

By Lemma 4.4 and (1 .2) we have

hj = gj - wj E Aá+P,k(D)
c

h =

	

ujiuj E A'+E,k+1 (D) .
j=1

Hence, we have proved that for every function f E A6,k(D) that is
zero on M, there exist functions hj E Al+£ k (D) and h E Aá+2k,+1(D )
such that

i) f = ~~= 1 uj hj + h
ii) h is zero on M.

Iterating this method with the function h wé obtain

i) f = E~=1 uj W + lar
ii) lar E Aá+-2p,k+r (D) and is zero on M
iii)

	

hjr

	

E

	

A6+P k (D)

	

j = 1, . . . , l .
z ,

Taking r such that t = k - n+b +

	

> k +

	

and applying (1 .1) we2 á
have that h' is a holomorphic Lipschitz function of class A' (D) that is
zero on M. Therefore by a result of [6] we have

a
hr =

	

uj h'+1 ,

	

h"+1 E Ac-2 (D)

	

Ck(D ) n C(D) .
j=1

Finally, if we define fj = hí: + h,
+1 we end the proof.

V. Extension of Aá,k-jets

First we prove the extesion result in the linear case .

Theorem 5 .1 .
If the linear submanifold Y

	

=

	

{ z E Cn ; zl

	

= . . . = zl = 0 } is
transversal to the boundary ofD and F is an A'6,k-jet of order m ou M



then there exists a function f of class A'6,ti (D) such that J�, f = F on
M.

Proof...
First we consider the case Y = { z ; z I = 0 } .

We take s > ó and for j = 0, . . . , m we define by induction the
functions

go = E9 Fo
(5.1)

Z =
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gj = gj-I +

h~ =

where the operator Es is the extension operator (2.4) given by the kernel
Rsm .

It is clear that the function f = g�, satisfies J,n f = F on M.

To prove the Theorem we will show by induction on the index j in
(5.1) that the functions gj are of class Ap5.k(D) .

If j = 0, using that R¡m = Rs-(n+I
+s) and applying the Corolary

4 .3, we obtain the result .
Now we assume that gj_ 1 E A6,k (D) . As follows from (5.1), to prove

that gj E A6p .k (D) is sufficient to see that

Rs (F' _ djgj_I)

is of class Al,k (D) .
Consider the normal complex field

N
lapa

a a

Cc9~l1
. . . ,

~l/

ap a

a(, asZ

a

	

a

)sI 1 . . . ,

	

~l

defined in a neighbourhood of the boundary of D, and the decomposition
of the vector field

a
n

	

a ap
(zZ - ~Z )

	

(zi -

	

x-NN

	

+ x Zp N
i-1

where x is a function with compact support and that is 1 in a neigh-
bourhood of the boundary of D .
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We denote by Ti the complex tangent vector field Ti = -2~ -

	

N.S
With these notations and by the properties I-1, 1-2 and I-3 of the

Definition 1 .1, we can write

= fM RM (F' - di

	

_ 1 ) (z - ~~ . . , z - S) _

RM (zi -

	

(z., - (J16- (Z p )Pn+1
gP

IPI=i ~M

where go = (Fi - dj gj_i ) (Tl , ..(P~) . . Tl , . . . , N, -W-0. . N) .
Observe that by the hypothesis of induction and the property I-4, we

have that the function gP is of class L6+p1+. . .+A�
+Pn+l,k(M)

.
2

Moreover, using that I~ -
ZI2 , I Z p I < c I a«, z) I we can write

hj _

	

RM00
h.+i-l+s) gP ,

	

rP =

	

31 + . . . + On
2

	

+

and applying the Corollary 4.3 we end the proof in this case .
The proof in the case Y = { z ; zl = . . . = zl = 0 } is similar to the

case Y = { z ; zl = 0 } . In the same way, in this case the function f is
defined by f = g�,,, where

go = Ep Fo

g3 = gj-i + Er ((Fi - di gj-1) (z -( . . . ,z-~)) .

Before proving the Theorem 1 .3 we introduce the following definition .
Definition 5 .2 .
For every E > 0 small enough, we define

Df = { C ; P«) - E IU(C)
12

< 0 }

where IUI2 = Iu1 I2
+ . . . + Iui I 2 .

It is clear that these domains are strictly pseudoconvex domains with
C°° boundary, DE fl Y = 111 and Y is transversal to DE .

Lemma 5 .2 .
If f

	

E

	

Ló,k(DE,) , 5 >

	

2 , then v,j f

	

E

	

Ló-
z ,k

(Df ) for every j =

1, . . . , l, and 0 < E < E' .
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Proof:
The result is a consequence of the fact that

luj1

	

<_

	

1(E' - E) 12

(-p +E'lul2 )2 ,

for all S* > 5 - p, 8* > 0 . E

Proof of Theorem 1 .3 :
We take a covering {Di }

	

}°<i..~, of D as the one in the
Lemma 4.8 and we also consider the domains {Di

E
} , E > 0 .

Wealsotake0<r<r"<r' , 0<E<E'.

By Proposition 5 .1 we have that for every D,,:, such that DinY :7~ 0,
there exists a function fi E AP,k(D%E,) such that J�,, fi = F on Y n Di .

Using (1 . .2) we can assume that 6 > p .
For the remaining Di we define fi = 0.
We consider the function g = j: i xi fi where Xi is a partition of the

unity with respect to the { Dr,E , } .
This function g is of class L6,k (D) and verifies J�L g = F.

Let w E L6_? ,k (D) be the solution of the á w = á g given by Lemma
4.4 .

Note that h = g - w E A6,k(D) and that F = J�1 h + J�,, w .

The next step is to see that J, w is an A6+2,k+1-jet .

We say fij = fi - fj in

	

D~

	

C Di n Dr .
Using the Theorema 1.1 we can write

fij = u-Y g7ij

We define in Di the function gi = ~s XS g5.
This function satisfies

ulY gi = fi - i: xs f, = fi - g .

I-rl=m+1

	

s

By Lemma 4.4 we can take wti such that

on DE

g E Aáz3

	

+ ,n+, n k (D ij E,)
z

wi E L6+ ,2 � k (D¡ E ,) .
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Moreover ; using the Lemma 4.4, the Lernma 5.2 and (1.2) we have
that

h2 = w -

	

U'Ywi

	

E AP P

	

(Di,e)6-F a ,k+1
¡ .y¡=-+1

and also J�, hi = J,, g on Y n Di .
Hence, we have that J�,, g is a A6+5,k+1-jet of order m on M.
By iteration of this method we obtain

with

F =Jmhs + J,,, g'

hs E Al,k (D)

	

and

	

J� , g'

	

is in

	

Aó+ 2 1k+,-jet .

Now if we take s such that t = k + s - nP6 - z > k + 1 , then (1.1),
(1.4) and (1.6) shows that Jn, ys is a At -jet of order m. Finally applying
the extension result of Al-jets (1 .6) we can take a function h of class
A'(D) such that J�, h = J�, gs en 1VI and defining f = h' + h we end
the proof.
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