DIVISION AND EXTENSION IN WEIGHTED BERGMAN-SOBOLEV SPACES

JOAQUÍN M. ORTEGA AND JOAN FÀBREGA

 $Abstract _$

Let D be a bounded strictly pseudoconvex domain of C^n with C^{∞} boundary and $Y = \{z; u_1(z) = \cdots = u_l(z) = 0\}$ a holomorphic submanifold in a neighbourhood of \overline{D} , of codimension l and transversal to the boundary of D.

In this work we give a decomposition formula $f = u_1 f_1 + \dots + u_t f_t$ for functions f of the Bergman-Sobolev space vanishing on $M = Y \cap D$. Also we give necessary and sufficient conditions on a set of holomorphic functions $\{f_\alpha\}_{|\alpha| \leq m}$ on M, so that there exists a holomorphic function in the Bergman-Sobolev space such that $D^{\alpha}f|_M = f_{\alpha}$ for all $|\alpha| \leq m$.

I. Introduction and main results

Let $D = \{z; \rho(z) < 0\}$ be a bounded strictly pseudoconvex domain of C^n with \mathcal{C}^{∞} -boundary. Let $Y = \{z; u_1(z) = \ldots = u_l(z) = 0\}$ denote a holomorphic submanifold in a neighbourhood of \overline{D} , of codimension land transversal to the boundary of $D \cap Y$, i.e. $\partial \rho \wedge \partial u_1 \wedge \ldots \wedge \partial u_l \neq 0$ on the intersection of the boundary of D and the submanifold Y.

For every $1 \le p < \infty$, $\delta > 0$, and k = 0, 1, ... we consider the weighted Sobolev space

$$L^p_{\delta,k}(D) = \{ f \text{ measurable } ; ||f||_{p,\delta,k} < \infty \}$$

where

$$||f||_{p,\delta,k} = \sup\left\{ \left(\int_D \left| D^{\alpha} \bar{D}^{\beta} f \right|^p (-\rho)^{\delta-1} \right)^{\frac{1}{p}}; |\alpha| + |\beta| \le k \right\}$$

Partially supported by the grant PB89-0311 of the DGICYT. Spain.

and $D_z^{\alpha} = \frac{\partial^{|\alpha|}}{\partial z_{\alpha}}, \ \bar{D}_z^{\beta} = \frac{\partial^{|\beta|}}{\partial \bar{z}_{\beta}}.$

Also, we define for every p, δ, k the weighted Bergman-Sobolev space as the space of holomorphic functions $A_{\delta,k}^p(D) = L_{\delta,k}^p(D) \cap \mathcal{O}(D)$.

Replacing the derivatives D_z^{α} , \bar{D}_z^{β} for tangent-derivatives on the submanifold Y, we define in the same way the spaces $L_{\delta,k}^p(M)$, and $A_{\delta,k}^p(M)$ in the submanifold $M = Y \cap D$.

It is well known (see for instance [3], [4]) that

(1.1)
$$A^{p}_{\delta,k}(D) \subset A^{t}(D), \text{ if } t = k - \frac{n+\delta}{p} > 0$$

where $A^t(D)$ denotes the corresponding space of the holomorphic Lipschitz functions. It is also well known that

(1.2)
$$A^{p}_{\delta,k}(D) = A^{p'}_{\delta',k'}(D), \text{ if } \delta - \delta' = p(k-k').$$

One of the main results that we will prove in this work is a result of division in the spaces $A_{\delta,k}^p(D)$.

We recall the following result of division in the holomorphic Lipschitz spaces, due to P. Bonneau, A. Cumenge and A. Zériahi ([6]):

If f is a holomorphic Lipschitz function of class $A^{t}(D)$ vanishing in the submanifold M, then there exist functions f_{j} , j = 1, ..., l, of class $A^{t-\frac{1}{2}}(D)$ such that $f = u_{1} f_{1} + ... + u_{l} f_{l}$.

We prove in this paper the following theorem:

Theorem 1.1.

If f is a function of class $A_{\delta,k}^p(D)$ vanishing on the submanifold $M = Y \cap D$ transversal to the boundary of D, then there exist functions f_j , $j = 1, \ldots, l$ of class $A_{\delta+\frac{p}{2},k}^p(D)$ such that

(1.3)
$$f = \sum_{j=1}^{l} u_j f_j.$$

Observe that by (1.1) and (1.2) the Theorem 1.1 is in some sense a refinement of the above result of division in the holomorphic Lipschitz spaces.

In the limit case where Y is a point ζ of D, the Theorem 1.1 is the Gleason's problem. In this case (see [11]) it is known that

$$f(z) = \sum_{j=1}^{n} (z_j - \zeta_j) f_j(z), \quad f_j \in A^p_{\delta,k}(D).$$

The second main result that we will prove is an extension theorem of jets. This consists to give necessary and sufficient conditions on a set $\{f_{\alpha}\}_{|\alpha|\leq m}$ of holomorphic functions on the submanifold $M = Y \cap D$ so that there exists a $A^p_{\delta,k}(D)$ -function f, such that $D^{\alpha}_{z} f|_{M} = f_{\alpha}$ for all $|\alpha| \leq m$.

The case m = 0, i.e. the problem of extension and restriction of functions of class $A_{\delta,k}^{p}(D)$, has been studied by many authors using different methods. (See for exemple [3], [4], [9]). The result obtained in this case is

$$A^p_{\delta,k}(D)\Big|_{\mathcal{M}} = A^p_{\delta+l,k}(\mathcal{M}).$$

The above problem in the holomorphic Lipschitz spaces has been proved by us in [12].

In order to state the result of extension let us introduce the following definitions.

We consider smooth vector fields on D

$$X = \sum_{i=1}^{n} a_i(z) \frac{\partial}{\partial z_i}.$$

For these vector fields we say that X is complex-tangential if $X\rho(z) = 0$ for every z in a neighbourhood of the boundary of D, and we define its weight w(X) in the usual way:

$$w(X) = \begin{cases} rac{1}{2} & ext{if } X ext{ is complex-tangential} \\ 1 & ext{ in other case.} \end{cases}$$

If $X = X_k \dots X_1$ is a differential operator we define its weight by

$$w(X) = \sum_{i=1}^{k} w(X_i).$$

We recall that for a holomorphic function f on D the j-th covariant differential of f at a point $z \in D$ is defined by:

$$d^{0} f_{z} = f(z)$$

$$d^{j} f_{z} (X_{1}, \dots, X_{j}) = X_{j} d^{j-1} f_{z} (X_{1}, \dots, X_{j-1}) - \sum_{i=1}^{j-1} d^{j-1} f_{z} (X_{1}, \dots, \nabla_{X_{j}} X_{i}, \dots, X_{j-1})$$

and that in coordinates we can write

$$d^{j} f_{z} = \sum_{|I|=j} \frac{\partial^{j} f(z)}{\partial \zeta_{i_{1}} \dots \partial \zeta_{i_{j}}} dz_{i_{1}} \otimes \dots \otimes dz_{i_{j}}.$$

Also, fixed m, we denote by

$$J_m f_z = \left(d^0 f_z , \dots , d^m f_z \right)$$

the holomorphic jet of order m at the point $z \in D$ induced by f.

Moreover, if the function f is of class $A_{\delta,k}^p(D)$, then it is well known (see [1], [3], [4]) that the function $d^j f_z(X_1, \ldots, X_j)|_M$ is of class $L_{\delta+l+w(X)p,k}^p(M)$ where X is the differential operator formed by the vector fields X_1, \ldots, X_j .

Thus, if we define the covariant tensors of order j at a point $z \in M$ as

$$F_z^j = d^j f_z$$

then they satisfy the following conditions for every $0 \le j \le m$:

- I-1) At every point $z \in M$, F_z^j is a *j*-covariant symmetric tensor.
- I-2) $F^{j}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \ldots, \frac{\partial}{\partial z_{n}}\right)$ are holomorphic functions on M.
- I-3) $F^{j}(X_{1},\ldots,X_{j}) = X_{j}F^{j-1}(X_{1},\ldots,X_{j-1}) -$

$$\sum_{i=1}^{j-1} F^{j-1}(X_1, \ldots, \nabla_{X_j} X_i, \ldots, X_{j-1})$$

for every tangent vector field X_j at M. I-4) $F^j(X_1, \ldots, X_j) \in L^p_{\delta+l+w(X)p,k}(M).$

Therefore, it is natural to introduce the following definition:

Definition 1.2.

 $F = (F^0, \ldots, F^m)$ is an $A^p_{\delta,k}$ -jet of order m on M if it satisfies the four previous conditions.

The condition I-3) just gives a relation of coherence between the tensors F^{j} . We point out that a $A^{p}_{\delta,k}$ -jet on M of order 0 is a function of class $A^{p}_{\delta+l,k}(M)$.

The notation of $A^{p}_{\delta,k}$ -jet is justified by the following result.

Theorem 1.3.

 $F = (F^0, \ldots, F^m)$ is a $A^p_{\delta,k}$ -jet of order m on M if and only if there exists a function f of class $A^p_{\delta,k}(D)$ such that $J_m f = F$ on M.

We recall that in [12] we said that $F = (F^0, \ldots, F^m)$ is an A^t -jet if it satisfies the conditions I-1, I-2, I-3 of the Definition 1.2 and the condition

(1.4) $|X_k \dots X_{j+1} F^j(X_1, \dots, X_j)| \leq c M(t - w(X), z)$

where the function M(s, z) is defined by

(1.5)
$$M(s,z) = \begin{cases} 1 & \text{if } s > 0 \\ |\log|\rho(z)| & \text{if } s = 0 \\ |\rho(z)|^s & \text{if } s < 0 \end{cases}$$

and the vector fields X_{j+1}, \ldots, X_k are tangential to the submanifold Y. In the same paper [12] we proved that:

(1.6) F is a A^t -jet of order m on M if and only if there exists a holomorphic Lipschitz function f of class $A^t(D)$ such that $J_m f = F$ on M.

To prove the Theorem 1.3 we will use the Theorem 1.1, the results (1.1), (1.2) and (1.6) and a result of resolution of the $\bar{\partial}$ -equation in the spaces $L^p_{\delta,k}(D)$.

As usually several different constants in the inequalities will be denoted by c.

II. Some integral formulas

In this section we give an extension operator and an explicit solution of the $\bar{\partial}$ -equation.

We denote by $\Phi(\zeta, z)$ the support function of Henkin and we put $a(\zeta, z) = -\rho(\zeta) + \Phi(\zeta, z).$

Using the results of B. Berndtsson and M. Andersson [5], for every positive integer s we can construct kernels K^s and R^s of type

(2.1)
$$K^{s}(\zeta, z) = \left(\frac{-\rho(\zeta)}{a(\zeta, z)}\right)^{n+s} \frac{\varphi_{0}(\zeta, z)}{|\zeta - z|^{2n}} + \sum_{j=1}^{n-1} \frac{(-\rho(\zeta)^{n+s-j}\varphi_{j}(\zeta, z)}{a(\zeta, z)^{n+s+1} |\zeta - z|^{2n-2j}}$$

(2.2)
$$R^{s}(\zeta, z) = \frac{(-\rho(\zeta))^{s}\varphi_{n}(\zeta, z)}{a(\zeta, z)^{n+s+1}}$$

which have the following properties:

- 1. $d_{\zeta,z} K^s = R^s$ outside the diagonal, and R^s is holomorphic in the variable z.
- 2. The forms φ_j , $j = 0, \ldots, n$ are of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$.
- 3. $|\varphi_j(\zeta, z)| \leq c |\zeta z|, \qquad j = 0, \dots, n-1.$

4. Koppelman Formulas. Let $K_{p,q}^s$ be the component of K^s of bidegree (p,q) in z, (n-p,n-q-1) in ζ , and let $R_{p,q}^s$ be the component of R^s of bidegree (p,q) in z, and (n-p,n-q) in ζ . Then, if f is a (p,q) form with coefficients in $C^1(\overline{D})$, we have

$$f(z) = (-1)^{p+q+1} \int_{D} \bar{\partial} f(\zeta) \wedge K^{s}_{p,q}(\zeta, z) +$$

$$(2.3) \qquad (-1)^{p+q} \bar{\partial}_{z} \int_{D} f(\zeta) \wedge K^{s}_{p,q-1}(\zeta, z), \qquad \text{if } q \ge 1$$

$$f(z) = (-1)^{p+1} \int_{D} \bar{\partial} f(\zeta) \wedge K^{s}_{p,0}(\zeta, z) -$$

$$\int_{D} f(\zeta) R^{s}_{p,0}(\zeta, z), \qquad \text{if } q = 0.$$

Now, if $Y = \{z; z_1 = \ldots = z_l = 0\}$ and $M = Y \cap D$, then the same construction used in [5] to prove these results gives for each $s > \frac{\delta-1}{p}$ an extension operator from the space $A^p_{\delta,k}(M)$ to the space of holomorphic functions $\mathcal{O}(D)$. This operator is defined by

(2.4)
$$E^s f(z) = \int_M f(\zeta) R^s_M(\zeta, z)$$

where

$$R^s_M(\zeta,z) \ = \ \frac{(-\rho(\zeta))^s}{a(\zeta,z)^{n-l+1+s}} \, \varphi(\zeta,z) \,, \ \ \zeta \in M, \, z \in D$$

and the form φ has coefficients of class $\mathcal{C}^{\infty}(\bar{M} \times \bar{D})$ and it is holomorphic in z.

Moreover, the same formula (2.3) also gives an explicit integral operator to solve the $\bar{\partial}$ -equation for (0,q) forms $\bar{\partial}$ -closed. This operator is given by the kernel $K_{0,q-1}^s(\zeta, z)$.

The estimates for these kernels are given by the following Lemma.

Lemma 2.1.

Let $j \leq 2n-1$ be an integer. Then with M(s,z) defined as (1.5) we have

$$\int_{D} \frac{1}{|a|^{t} |\zeta - z|^{j}} \leq c \begin{cases} M\left(n + 1 - t - \frac{j}{2}, z\right) & \text{if } j \leq 2n - 3. \\ 1 & \text{if } j = 2n - 2, t < 2. \\ M(2 - t, z) |\log|\rho(z)|| & \text{if } j = 2n - 2, t \geq 2. \\ M(1 - t, z) & \text{if } j = 2n - 1. \end{cases}$$

Proof:

Using the usual change of coordinates and computing the respective integrals we obtain these estimates. (See for instance [10]).

Now we will state some formulas of integration by parts.

The first formula is contained in the following Lemma of [7]:

Lemma 2.2.

Let f be a (0,1) form $\bar{\partial}$ -closed with coefficients of class $\mathcal{C}^1(\bar{D})$. Then

$$D_z^{\alpha} g = -\int_D D_{\zeta}^{\alpha} f \wedge K_{0,0}^s + \sum \int_D D_{\zeta}^{\gamma} f \wedge D_z^{\beta} R_{0,1,1}^{s,i}$$

where in the last terms γ and β are multiindexes with $|\gamma| + |\beta| = |\alpha| - 1$, i = 1, ..., n, and $R_{0,1,1}^{s,i}$ denotes the coefficient of dz_i in the component of the kernel \mathbb{R}^s of degree (1,0) in z and (n,n-1) in ζ .

Before to state the second formula we introduce the following kernels, that are a generalization of the extension kernels R_M^s .

Definition 2.3.

If $Y = \{z_1 = \ldots = z_l = 0\}$ and $M = Y \cap D$, we define the kernels

$$R^{s,r}_{M,\psi}(\zeta,z) \ = \ (-
ho(\zeta))^s \ \psi(\zeta,z), \quad \zeta \in M, z \in D$$

where the form $\psi(\zeta, z)$ has the coefficients of class $\mathcal{C}^{\infty}(M \times D)$, and it satisfies

$$\Big| D^{lpha}_z \, D^{eta}_\zeta \, ar{D}^{\gamma}_\zeta \, \psi(\zeta,z) \,\Big| \, \leq \, c \, | \, a(\zeta,z) \, |^{r-(|lpha|+|eta|^2+|\gamma|)}$$

for every multiindexes α , β , γ .

Let also $R_{M,\psi}^{p,r}$ denote the integral operator given by this kernel.

Observe that the extension operator $R_M^s(\zeta, z)$ is a $R_{\psi,M}^{s,-(n-l+1+s)}$ operator, because $|D_{\zeta} a(\zeta, z)| \leq c |\zeta - z| \leq c |a(\zeta, z)|^{\frac{1}{2}}$.

These operators have the following properties:

Lemma 2.4.

i)
$$D_z^{\alpha} R_{M,\psi}^{s,r} = R_{M,\psi_1}^{s,r-|\alpha|}$$

ii) $\int_M \left| R_{M,\psi}^{s,r} \right| \le c M(n-l+1+s+r,z).$

Proof:

i) is clear and ii) follows from Lemma 2.1.

Lemma 2.5.

If f is a function of class $C^k(\bar{M})$, then, fixed an integer q, we can find operators $R^{s_{\gamma},r_{\gamma}}_{M,\psi_{\alpha}}$, $R^{s_{\mu},r_{\mu}}_{M,\psi_{\alpha}}$ such that

$$D_{z}^{\alpha} R_{M,\psi}^{s,r} f = \sum_{\substack{|\gamma|=k\\s_{\gamma}+r_{\gamma} \ge s+r+k-|\alpha|\\p_{\gamma} \ge s+k}} R_{M,\psi_{\gamma}}^{s_{\gamma},r_{\gamma}} D_{\zeta}^{\gamma} f + \sum_{\substack{|\gamma|=k\\s_{\gamma}+r_{\gamma} \ge s+k\\p_{\gamma} \ge s+k}} R_{M,\psi_{\mu}}^{s_{\mu},r_{\mu}} D_{\zeta}^{\mu} f$$

Remark. Roughly speaking, the Lemma 2.4 prove that the coefficient $s + \tau$ measures the regularity of the operator $R_{M,\psi}^{s,r}$, and therefore the operators $R_{M,\psi_{\gamma}}^{s,r,r_{\gamma}}$ in Lemma 2.5 have at least the same regularity than the operator $R_{M,\psi_{\gamma}}^{s,r,r_{\gamma}}$ plus $k - |\alpha|$. On the other hand, choosing q large enought we can assume that the operators $R_{M,\psi_{\alpha}}^{s,\mu,r_{\alpha}}$ are as regular as required.

Proof:

Using the transversavility of the submanifold Y, we can choose a covering $\{U_i\}_{i=0}^{i_0}$ of M such that

- i) $M = \bigcup_{i=0}^{i_0} U_i$, and $U_0 = \{ z; \rho(z) < -\delta \}, \ \delta > 0.$
- ii) For each $i, 1 \le i \le i_0$ there is $l+1 \le j_i \le n$ such that $\frac{\partial \rho(z)}{\partial z_{j_i}} \ne 0$ on U_i .

Let $\{\chi_i\}$ be a partition of the unity for this covering and we put

$$R^{s,r}_{M,\psi} = \sum_{i=0}^{i_0} R^{s,r}_{M,\chi_i\psi}$$

We want to prove the Lemma for each one of the operators of the sum.

If i = 0 the result is clear by the properties of ψ and the property i) of the covering.

If $i \ge 1$ by the property ii) of the covering we have

$$\int_{M} R_{M,\psi}^{s,r}(\zeta,z) f(\zeta) =$$

$$\frac{1}{s+1} \int_{M} (-\rho(\zeta))^{s+1} \frac{\partial}{\partial \zeta_{j_i}} \left(\chi_i \psi(\zeta,z) \left(\frac{\partial \rho(\zeta)}{\partial \zeta_{j_i}} \right)^{-1} f(\zeta) \right) =$$

$$\int_{M} R_{M,\chi_i\psi'}^{s+1,r} \frac{\partial f}{\partial \zeta_{j_i}} + \int_{M} R_{M,\chi_i\psi''}^{s+1,r-\frac{1}{2}} f$$

Iterating this process in the terms which have less than k derivatives on the function f, and using the Lemma 2.4 i) we obtain the result.

III. Solution of the $\bar{\partial}$ -equation in the $L^p_{\delta,k}(D)$ space

The aim of this section is to prove the following Theorems.

Theorem 3.1.

If f is a (0,q) form $\overline{\partial}$ -closed with coefficients of class $L^p_{\delta,0}(D)$, $1 \leq p < \infty$, $\delta > 0$, then there exists a (0,q-1) form g with coefficients of class $L^p_{\delta^*,0}(D)$ for all $\delta^* \geq \delta - \frac{p}{2}$, $\delta^* > 0$ such that $\overline{\partial}g = f$.

Theorem 3.2.

If f is a (0,1) form $\overline{\partial}$ -closed with coefficients of class $L^p_{\delta,k}(D)$, $1 \leq p < \infty$, $\delta > 0$, $k = 0, 1, \ldots$, then there exists a function g with coefficients of class $L^p_{\delta^*,k}(D)$ for all $\delta^* \geq \delta - \frac{p}{2}$, $\delta^* > 0$ such that $\overline{\partial}g = f$.

To prove these Theorems we need the following Lemma.

Lemma 3.3.

If a kernel $K(\zeta, z)$ satisfies $|K(\zeta, z)| \leq c \frac{(-\rho(\zeta)^s}{|a(\zeta, z)|! |\zeta-z|^j} s, t \geq 0, j = 0, \ldots, 2n-1$, and f is of class $L^p_{\delta,0}(D), 1 \leq p < \infty, 0 < \delta - 1 < sp$, then the function K f is of class $L^p_{\delta^*,0}(D), \delta^* \geq \delta - \lambda p, \delta^* > 0$, where

$$\lambda = \begin{cases} n+1+s-t-\frac{3}{2} & \text{if } j \le 2n-2 \\ 2-\varepsilon+s-t & \text{if } j = 2n-2 , \ \varepsilon > 0 \\ 1+s-t & \text{if } j = 2n-1. \end{cases}$$

Proof:

We want to see that for a δ^* fixed which satisfies the previous conditions we have

$$I = \int_{\mathcal{D}} \left(\int_{\mathcal{D}} |K(\zeta, z)| |f(\zeta)| d\zeta \right)^{p} (-\rho(z))^{\delta^{*}-1} dz \leq c \int_{\mathcal{D}} |f(\zeta)|^{p} (-\rho(\zeta))^{\delta-1} d\zeta.$$

First we consider the case p = 1 and $j \neq 2n - 2$.

In this case applying the Fubini Theorem we have

$$I \leq c \, \int_{D} \, |f(\zeta)| \, (-\rho(\zeta))^{s} \, \int_{D} \, \frac{(-\rho(z))^{\delta^{*}-1}}{|a(\zeta,z)|^{t} \, |\zeta-z|^{j}} \, dz \, d\zeta$$

and using that $|a(\zeta, z)| \approx |a(z, \zeta)|, -\rho(z) \leq c|a(\zeta, z)|$ and the Lemma 2.1 we get

(3.1)
$$I \leq c \int_{D} |f(\zeta)| (-\rho(\zeta))^{s} M(\delta^{*} - 1 + \lambda - s, \zeta) d\zeta.$$

Now, if $\delta^* - 1 + \lambda - s \ge 0$ we have that $(-\rho(\zeta))^s M(\delta^* - 1 + \lambda - s, \zeta) \le c(-\rho(\zeta))^{\delta-1}$, since $s > \delta - 1$.

Moreover, if $\delta^* - 1 + \lambda - s < 0$ then $(-\rho(\zeta))^s M(\delta^* - 1 + \lambda - s, \zeta) \le c(-\rho(\zeta))^{\delta^* - 1 + \lambda} \le c(-\rho(\zeta))^{\delta - 1}$ because $\delta^* \ge \delta - \lambda$.

Hence

$$I \leq c \int_D |f(\zeta)| (-\rho(\zeta))^{\delta-1} d\zeta.$$

If p = 1 and j = 2n - 2 we obtain in (3.1) the estimate

$$I \le c \int_{D} |f(\zeta)| (-\rho(\zeta))^{s} M(\delta^{*} + 1 - t, \zeta) |\log|\rho(\zeta)|| d\zeta$$

and applying the same reasoning as in the above case we prove the result.

Now we consider the case $1 and <math>j \leq 2n - 3$.

Let $p' = \frac{p}{p-1}$. Taking r such that

$$\frac{p-1}{p} \left(n+1 - \frac{j}{2} \right) \, < \, r \, < \, \frac{p-1}{p} \, \left(n+1 - \frac{j}{2} + \frac{\delta^*}{p-1} \right)$$

and applying the Hölder inequalities we get

$$I \leq c \int_{D} \left(\int_{D} |f(\zeta)|^{p} \frac{(-\rho(\zeta))^{sp}}{|a(\zeta,z)|^{(t-r)p} |\zeta-z|^{j}} d\zeta \right) \\ \left(\int_{D} \frac{1}{|a(\zeta,z)|^{rp'} |\zeta-z|^{j}} d\zeta \right)^{\frac{p}{p'}} (-\rho(z))^{\delta^{*}-1} dz \leq \\ \leq c \int_{D} \int_{D} |f(\zeta)|^{p} (-\rho(\zeta))^{sp} \frac{(-\rho(z)^{(n+1-rp'-\frac{j}{2})(p+1)+\delta^{*}-1}}{|a(\zeta,z)|^{(t-r)p} |\zeta-z|^{j}} d\zeta dz.$$

By Fubini Theorem and the Lemma 4.2 we have

$$\begin{split} I &\leq c \int_{D} |f(\zeta)|^{p} \left(-\rho(\zeta)\right)^{sp} M \left(n+1-(t-r)p - \frac{j}{2} + (n+1-rp' - \frac{j}{2})(p-1) + \delta^{*} - 1, \zeta\right) d\zeta = \\ &c \int_{D} |f(\zeta)|^{p} \left(-\rho(\zeta)\right)^{sp} M \left((n+1-t - \frac{j}{2})p + \delta^{*} - 1, \zeta\right) d\zeta \leq \\ &c \int_{D} |f(\zeta)|^{p} \left(-\rho(\zeta)\right)^{\delta-1} d\zeta \end{split}$$

and hence this case is proved.

The cases 1 and <math>j = 2n - 2, 2n - 1 follow in the same way taking r such that

$$\frac{p-1}{p}(2n-j) < r < \frac{p-1}{p}\left(2n-j+\frac{\delta^*}{p-1}\right) \quad \blacksquare$$

Corollary 3.4.

If $R_{D,\psi}^{s,r}$ is the operator of the Definition 2.3 and f is of class $L_{\delta,k}^{p}(D)$, $\delta - 1 < sp$, then the function $R_{D,\psi}^{s,r} f$ is of class $L_{\delta^{*},k}^{p}(D)$, for all $\delta^{*} \geq \delta - (n+1+s+r)p$, $\delta^{*} > 0$.

Proof:

Applying the Lemmas 2.5, 3.3 we obtain the result.

Proof of Theorem 3.1:

We take s > 0 such that $sp > \delta - 1$ and we define the function $g = -\int_D f \wedge K^s_{0,q-1}$, where the kernel K^s is given in (2.1).

It is clear by (2.3) that $\bar{\partial}g = f$. Now, using the estimate

$$|K^{s}| \leq c \left(\frac{(-\rho)^{n+s}}{|a|^{n+s} |\zeta - z|^{2n-1}} + \sum_{i=1}^{n-1} \frac{(-\rho)^{n+s-i}}{|a|^{n+1+s} |\zeta - z|^{2n-2i-1}} \right)$$

and applying the Lemma 3.3 we obtain the result. \blacksquare

Proof of Theorem 3.2:

We define g as in the previous Theorem.

By Lemmas 2.2 and 2.4 we have

$$D_z^{\alpha} g = -\int_D D_{\zeta}^{\alpha} f \wedge K_{0,0}^s + \sum_{|\gamma|+|\beta| < |\alpha|} \int_D D_{\zeta}^{\gamma} f \wedge R_{D,\psi\gamma}^{s,-(n+1+s+|\beta|)}$$

where the kernels $R_{D,\psi_{\gamma}}^{s,-(n+1+s+|\beta|)}$ are holomorphic in z.

The same reasoning used in the proof of Theorem 3.1 shows that the term $\int_D D_{\zeta} f \wedge K^s_{0,0}$ is of class $L^p_{\delta^*,0}$.

Moreover the Corollary 3.4 shows that the term

$$\int_D D_\zeta^\gamma f \wedge K^{s, -(n+1+s+|\beta|)}$$

is of class $A^p_{\delta+|\beta|p,k-|\gamma|}(D) = A^p_{\delta,|\alpha|-|\beta|-|\gamma|}(D).$

Now, using that $|\alpha| - |\beta| - |\gamma| \ge 1$ we end the proof.

IV. Division in the $A_{\delta,k}^p$ spaces

To prove the Theorem 1.1, we will first solve the problem locally using the following projection.

Lemma 4.1.

Let $Y = \{z; z_1 = \ldots = z_l = 0\}$ be a linear submanifold transversal to the boundary of D. Then for every point w in the boundary of $M = Y \cap D$, there exists a neighbourhood V of w and a projection

$$\Pi \ : \ V \ \longrightarrow V \cap Y$$

of class $\mathcal{C}^{\infty}(\bar{V})$, such that

- i) $\Pi(z) = z + z_1 g_1 + \ldots + z_l g_l$
- ii) $\rho(\Pi(z)) \leq \rho(z) c |z'|^2$, $z' = (z_1, \dots, z_l, 0, \dots, 0), c > 0$
- iii) $|a(\zeta, z)| \leq c |a(\zeta, \Pi(z))| \leq c (|a(\zeta, z)| + |z'|^2)$

Remark. Observe that the condition ii) implies that if $z \in V \cap D$ then $\Pi(z) \in V \cap M$.

Proof:

We write

$$\langle \zeta, z \rangle = \sum_{i=1}^{n} \zeta_{i} z_{i} \quad , \qquad z'' = z - z'$$
$$\frac{\partial \rho}{\partial \zeta} = \left(\frac{\partial \rho}{\partial \zeta_{1}}, \dots, \frac{\partial \rho}{\partial \zeta_{n}}\right) \quad , \qquad \frac{\partial \rho}{\partial \zeta''} = \left(0, \dots, 0, \frac{\partial \rho}{\partial \zeta_{l+1}}, \dots, \frac{\partial \rho}{\partial \zeta_{n}}\right).$$

Let U be a neighbourhood of the boundary of M. Shrinking U and using the transversavility of Y we can assume that $\left|\frac{\partial \rho}{\partial z''}\right| \geq c > 0$ on U and therefore, for every $1 \leq j \leq l$, we can take a function $h^j: U \longrightarrow C^n$ of class $\mathcal{C}^{\infty}(U)$ such that

(4.1)
$$h^j = (0, \ldots, -1_j, \ldots, 0, h^j_{l+1}, \ldots, h^j_n), \text{ and } \langle \frac{\partial \rho}{\partial z}, h^j \rangle = 0.$$

The next step is to see that for a certain d > 0 the projection

(4.2)
$$\Pi(z) = z + z_1 h^1 + \ldots + z_l h^l - d|z'|^2 \frac{\partial \rho(z)}{\partial z''}$$

satisfies the required conditions.

It is obvious that II satisfies i) for every d.

Using the Taylor development and the properties (4.1) we have that

$$\begin{split} \rho(\Pi(z)) \leq &\rho(z) - 2d|z'|^2 \left| \frac{\partial \rho}{\partial z''} \right| + c_0 |\Pi(z) - z|^2 \leq \\ &\rho(z) - (2dc_1 - c_2)|z'|^2 + c_3 d|z'|^3 \end{split}$$

where $c_1, c_2, c_3 > 0$.

Now taking d such that $2dc_1 - c_2 > c > 0$ and shrinking U we obtain ii).

To prove iii) we recall that $\Phi(\zeta, z)$ is holomorphic in z and

$$\Phi(\zeta,z) = \langle P(\zeta,z), \zeta-z \rangle = \langle \frac{\partial \rho}{\partial \zeta}, \zeta-z \rangle + O(|\zeta-z|^2).$$

Using this and the properties (4.1), we have

(4.3)
$$a(\zeta, z) - a(\zeta, \Pi(z)) = \langle P(\zeta, z) - P(\zeta, \Pi(z)), \zeta - z \rangle + \langle P(\zeta, \Pi(z)), z - \Pi(z) \rangle = \sum_{j=1}^{l} z_j \psi(\zeta, z)$$

with

$$|\psi(\zeta,z)| \leq c(|\zeta-z|+|z'|) \approx c(|\zeta-\Pi(\zeta)|+|z'|).$$

Finally, using that $|\zeta - z| \le c |a(\zeta, z)|^{\frac{1}{2}}$ and $|\zeta - \Pi(z)|, |z'| \le c |a(\zeta, \Pi(z))|^{\frac{1}{2}}$ we obtain iii).

Lemma 4.2.

If f is a function of class $L^p_{\delta,0}(M)$, then the function $R^{s,r}_{M,\psi}$ f, $\delta-1 < sp$ is of class $L^p_{\delta^*,0}(D)$ for all $\delta^* \geq \delta - l - (n+1+s+r)p$, $\delta^* > 0$.

Proof:

Appliying the estimates of Theorem 2.4 of [3] and the same reasoning that in the Lemma 3.3, we obtain the result. \blacksquare

Corollary 4.3.

If f is a function of class $L^{p}_{\delta,k}(M)$, then the function $R^{s,r}_{M,\psi}$ f, $\delta-1 < sp$ is of class $L^{p}_{\delta^{*},k}(D)$ for all $\delta^{*} \geq \delta - l - (n+1+s+r)p$, $\delta^{*} > 0$.

Proof:

The proof is a consequence of the above Lemma and of the integration by parts formula given in the Lemma 2.5. \blacksquare

Lemma 4.4.

Let be f a (0,1) form $\bar{\partial}$ -closed with coefficients of class $L^p_{\delta,k}(D)$, $\delta > p$ and let u be a holomorphic function on a neighbourhood of \bar{D} , such that uf has coefficients of class $L^p_{\delta-\frac{p}{2},k}(D)$. Then there exists a function g of class $L^p_{\delta-\frac{p}{2},k}(D)$ such that $\bar{\partial} g = f$ and ug is of class $L^p_{\delta-p,k}(D)$.

Proof:

We take $g = -\int_D f \wedge K_{00}^p$ as in the Theorem 3.2. Hence, we only need to see that ug is of class $L_{\delta-p,k}^p(D)$.

By (2.3) we have $\int_D g R_{00}^s = 0$ and therefore we can write

$$u(z)g(z) = \int_D u(\zeta)f(\zeta) \wedge K^s_{00}(\zeta, z) + \int_D (u(z) - u(\zeta))g(\zeta) R^s_{00}(\zeta, z).$$

The Theorem 3.2 gives that the first term is of class $L^p_{\delta-p,k}(D)$.

Moreover $(u(z) - u(\zeta)) R_{00}^s(\zeta, z) = R_{D,\psi}^{s,\frac{1}{2}-(n+1+s)}$ and therefore by Corollary 4.3 we obtain that the second term is of class $L_{\delta-p,k}^p(D)$.

To prove the result of division given in the Theorem 1.1, first we consider the linear case to obtain local solutions. Finally using these solutions, the Lemma 4.4 and a result of division in the holomorphic Lipschitz spaces ([6]) we will obtain the result.

Proposition 4.5.

If $Y = \{z; z_1 = 0\}$ is transversal to the boundary of D, and f is a function of class $A^p_{\delta,k}(D)$ that is zero on M, then there exists a function f_1 of class $A^p_{\delta+k}(D)$ such that $f = z_1 f_1$.

Proof:

We consider a covering $\{U_i\}_{i=0}^{i_0}$ of D such that:

- 1) $U_0 = \{ z; \rho(z) < -\delta < 0 \}.$
- 2) If $1 \leq i < i_1$ then $z_1 \neq 0$ on U_i .
- 3) If $i_1 \leq i \leq i_0$ then there exists a projection Π_i as the one in the Lemma 4.1.

Let $\{\chi_i\}$ a partition of the unity for this covering.

We want to see that $\chi_i \frac{f}{z_i}$ is a function of class $L^p_{\delta+\frac{p}{2},k}(D)$.

We consider the three following cases.

1)
$$i = 0$$
.

In this case using that $U_0 \subset \subset D$ then we can take the function $\frac{f}{z_1}$ of class $\mathcal{C}^{\infty}(\bar{U}_0)$ and therefore the result is true.

2)
$$1 \le i < i_1$$

In this case (4.1) is clear.

3)
$$i_1 \leq i \leq i_0$$

We will write Π instead Π_i . Thus

$$f(z) = f(z) - f(\Pi(z)) = \int_D f(\zeta) \left(R^s(\zeta, z) - R^s(\zeta, \Pi(z)) \right) d\zeta = \int_D f(\zeta) \left(\frac{(-\rho(\zeta))^s \varphi(\zeta, z)}{a(\zeta, z)^{n+1+s}} - \frac{(-\rho(\zeta))^s \varphi(\zeta, \Pi(z))}{a(\zeta, \Pi(z))^{n+1+s}} \right) d\zeta$$

where $\varphi(\zeta, z)$ is a function of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$ and holomorphic in z.

Using (4.2) $\Pi(z) - z = z_1 h^1 - d|z_1|^2 \frac{\partial \rho}{\partial z''}$ where h^1 is a tangential complex vector, and thus we have

- i) $\varphi(\zeta, z) \varphi(\zeta, \Pi(z)) = z_1 \psi'(\zeta, z)$ with $\psi'(\zeta, z)$ of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$
- ii) $a(\zeta, z) a(\zeta, \Pi(z)) = z_1 \psi''(\zeta, z)$ with $\psi''(\zeta, z)$ of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$ and $|\Psi''(\zeta, z)| = O(|\zeta - z| + |\zeta - \Pi(z)|)$. (See (4.3)).

Hence, we have

$$\chi_{i}(z)\frac{f(z)}{z_{1}} = \int_{D} f(\zeta) \frac{(-\rho(\zeta))^{s} \chi_{i}(z)\psi(\zeta, z)}{a(\zeta, z)^{n+1+s}} + \sum_{j=0}^{n+s} \int_{D} f(\zeta) \frac{(-\rho(\zeta))^{s} \chi_{i}(z)\psi_{1}(\zeta, z)}{a(\zeta, \Pi(z))^{n+1+s-j} a(\zeta, z)^{j+1}}$$

where $\psi'(\zeta, z)$, $\psi_1(\zeta, z)$ are functions of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$ and $\psi_1(\zeta, z) \leq c \left(|\zeta - z| + |\zeta - \Pi(z)| \right)$.

With these notations we have that the above kernels are of the class $R_{D,\psi}^{s,-(n+\frac{3}{2}+s)}$ and therefore by Corollary 3.4 we obtain that $\chi_i(z)\frac{f(z)}{z_1}$ is a function of class $L_{\delta+\xi-k}^p(D)$.

Thus finally $f_1 = \frac{f}{z_1}$ is of class $A^p_{\delta + \frac{p}{2},k}(D)$.

Definition 4.6.

We say that the holomorphic submanifold $Y = \{z; u_1(z) = \ldots = u_l(z) = 0\}$ is totally transversal to the boundary of D if for every $1 \le j_1 < \ldots < j_s \le l$, $Y_J = \{z; u_{j_1}(z) = \ldots = u_{j_s}(z) = 0\}$ is a holomorphic submanifold of codimension s and transversal to the boundary of D.

Proposition 4.7.

If $Y = \{z : z_1 = \ldots = z_l = 0\}$ is a holomorphic submanifold totally transversal to the boundary of D and f is a function of class $A^p_{\delta,k}(D)$ such that is zero on M, then there exist functions f_j , $j = 1, \ldots, l$, of class $A^p_{\delta+\frac{p}{2},k}(D)$ such that

$$f = \sum_{j=1}^l z_j f_j$$

Moreover, for all j = 1, ..., l the functions $z_j f_j$ are of class $A^p_{\delta k}(D)$.

Proof:

We will construct the functions f_i inductively.

Say $Y_m = \{ z : z_{m+1} = \ldots = z_l = 0 \}$, $Y_l = C^n$ and $M_m = Y_m \cap D$. Using the hypothesis of total transversavility we have that for each m, M_m is a strictly pseudoconvex domain with boundary of class C^{∞} and that Y_{m-1} is transversal to the boundary of M_m .

By (1.1) we say that $f|_{M_1}$ is a function of class $A^p_{\delta+l-1,k}(M_1)$ that is zero on M_0 and hence by Proposition 4.5 there exists a function h_1 of class $A^p_{\delta+l-1+\frac{p}{2}}(M_1)$ such that $f = z_1 h_1$ on M_1 .

We define $f_1(z) = \int_{M_1} R^s_{M_1}(\zeta, z) h_1(\zeta) d\zeta$ where $R^s_{M_1}$ is the extension operador (2.3).

By Lemma 4.2 we have that f_1 is of class $A^p_{\delta+p_k}(D)$.

Also putting

$$z_1 f_1(z) = \int_{M_1} (z_1 - \zeta_1) f_1(\zeta) R^s_{M_1}(\zeta, z) d\zeta + \int_{M_1} f(\zeta) R^s_{M_1}(\zeta, z) d\zeta$$

and using that $|z_1 - \zeta_1| \leq c |a(\zeta, z)|^{\frac{1}{2}}$ and the Corollary 4.3 we have that $z_1 f_1$ is of class $A_{\delta,k}^p(D)$.

If we consider the function $f - z_1 f_1$ and we repeat the above method on M_2 we will find f_2 , and by iteration we will obtain the remaining f_j .

We introduce the following covering of D which is a variation of the one of A.Cumenge [9].

Lemma 4.8.

For $0 < \epsilon_1 < \ldots < \epsilon_{r_0}$ there exist points $\{z_i\}_{i=1,\ldots,i_0}$ of D and strictly pseudoconvex domains with \mathcal{C}^{∞} boundary $\{D_i^r\}_{i=1,\ldots,i_0}^{r=1,\ldots,r_0}$, such that:

- i) $B(w_i, \varepsilon_{r-1}) \cap D \subset D_i^r \subset B(w_i, \varepsilon_r) \cap D$ if $1 \le r \le r_0$.
- ii) $\bigcup_{i=1}^{i_0} D_i^1 = D$.
- iii) If $i_1 < i \le i_0$ there is $1 \le i_j \le l$ such that $u_{i_j} \ne 0$ in D_i^r .
- iv) If $1 \leq i \leq i_1$ then
 - a) $D_i^r \cap Y \neq \emptyset$.
 - b) For every $D_t^{r_0}$ there exists a holomorphic system of coordinates such that the l first are u_1, \ldots, u_l .
- v) Y is totally transversal to D_i^r for all $1 \le i \le i_1$, $1 \le r \le r_0$.
- vi) If r < r' and $D_{i_1}^r \cap \ldots \cap D_{i_s}^r \neq \emptyset$ then there exists a strictly pseudoconvex domain D_I^r with \mathcal{C}^{∞} boundary, such that
 - a) $D_{i_1}^r \cap \ldots D_{i_r}^r \subset D_I^r \subset D_{i_1}^{r'} \cap \ldots \cap D_{i_r}^{r'}$
 - b) If $D_I^r \cap Y \neq \emptyset$ then Y is totally transversal to the boundary of D_I^r .

Proof of Theorem 1.1:

We take the covering of D of the Lemma 4.8. We fix an r and we write D_i instead D_i^r .

By Proposition 4.7 in each D_i we have:

$$f(z) = \sum_{j=1}^{l} u_j(z) f_j^i(z)$$

$$f_j^i(z) \in A^p_{\delta + \frac{p}{2}, k}(D_i) , \qquad u_j f_j^i \in A^p_{\delta, k}(D_i)$$

We define $g_j(z) = \sum_i \chi_i(z) f_j^i(z)$ where $\{\chi_i\}$ is a partition of the unity with respect to the covering $\{D_i\}$.

It is clear that $\sum_{j=1}^{l} u_j g_j = f$.

For each j we denote by w_j the solution of the equation $\bar{\partial}w_j = \bar{\partial}g_j$ given by the Lemma 4.3 and we put

$$f = \sum_{j=1}^{l} u_j (g_j - w_j) + \sum_{j=1}^{l} u_j w_j.$$

By Lemma 4.4 and (1.2) we have

$$h_{j} = g_{j} - w_{j} \in A^{p}_{\delta + \frac{p}{2}, k}(D)$$
$$h = \sum_{j=1}^{l} u_{j} w_{j} \in A^{p}_{\delta + \frac{p}{2}, k+1}(D)$$

Hence, we have proved that for every function $f \in A^p_{\delta,k}(D)$ that is zero on M, there exist functions $h_j \in A^p_{\delta+\frac{p}{2},k}(D)$ and $h \in A^p_{\delta+\frac{p}{2},k+1}(D)$ such that

i) $f = \sum_{j=1}^{l} u_j h_j + h$ ii) h is zero on M.

Iterating this method with the function h we obtain

i) $f = \sum_{j=1}^{l} u_j h_j^r + h^r$ ii) $h^r \in A_{\delta + \frac{rp}{2}, k+r}^p(D)$ and is zero on Miii) $h_j^r \in A_{\delta + \frac{p}{2}, k}^p(D)$ $j = 1, \dots, l$.

Taking r such that $t = k - \frac{n+\delta}{p} + \frac{r}{2} > k + \frac{1}{2}$ and applying (1.1) we have that h^r is a holomorphic Lipschitz function of class $A^t(D)$ that is zero on M. Therefore by a result of [6] we have

$$h^r = \sum_{j=1}^l u_j h_j^{r+1}, \qquad h_j^{r+1} \in A^{t-\frac{1}{2}}(D) \subset \mathcal{C}^k(\bar{D}) \cap \mathcal{O}(D).$$

Finally, if we define $f_j = h_j^r + h_j^{r+1}$ we end the proof.

V. Extension of $A_{\delta,k}^p$ -jets

First we prove the extesion result in the linear case.

Theorem 5.1.

If the linear submanifold $Y = \{z \in C^n; z_1 = \ldots = z_l = 0\}$ is transversal to the boundary of D and F is an $A^p_{\delta,k}$ -jet of order m on M

then there exists a function f of class $A^{p}_{\delta,k}(D)$ such that $J_m f = F$ on M.

Proof:

First we consider the case $Y = \{ z; z_1 = 0 \}$.

We take $s > \frac{\delta}{p}$ and for j = 0, ..., m we define by induction the functions

$$g_0 = E^s F^0$$

(5.1)

$$g_j = g_{j-1} + \frac{z_1^j}{j!} E^s \left(F^j - d^j g_{j-1} \right) \left(\frac{\partial}{\partial \zeta_1}, \dots, \frac{\partial}{\partial \zeta_l} \right)$$

where the operator E^s is the extension operator (2.4) given by the kernel R_M^s .

It is clear that the function $f = g_m$ satisfies $J_m f = F$ on M.

To prove the Theorem we will show by induction on the index j in (5.1) that the functions g_j are of class $A^p_{\delta,k}(D)$.

If j = 0, using that $R_M^s = R_{M,\psi}^{s,-(n+1+s)}$ and applying the Corolary 4.3, we obtain the result.

Now we assume that $g_{j-1} \in A^p_{\delta,k}(D)$. As follows from (5.1), to prove that $g_j \in A^p_{\delta,k}(D)$ is sufficient to see that

$$h_j = z_1^j \int_{\mathcal{M}} R_M^s \left(F^j - d^j g_{j-1}
ight) \left(rac{\partial}{\partial \zeta_1}, \dots, rac{\partial}{\partial \zeta_1}
ight)$$

is of class $A^p_{\delta,k}(D)$.

Consider the normal complex field

$$N = \frac{1}{|\partial \rho|^2} \sum_{i=1}^n \frac{\partial \rho}{\partial \bar{\zeta}_i} \frac{\partial}{\partial \zeta_i}$$

defined in a neighbourhood of the boundary of D, and the decomposition of the vector field

$$Z = \sum_{i=1}^{n} (z_i - \zeta_i) \frac{\partial}{\partial \zeta_i} = \sum_{i=1}^{n} (z_i - \zeta_i) \left(\frac{\partial}{\partial \zeta_i} - \chi \frac{\partial \rho}{\partial \zeta_i} N \right) + \chi Z \rho N$$

where χ is a function with compact support and that is 1 in a neighbourhood of the boundary of D.

We denote by T_i the complex tangent vector field $T_i = \frac{\partial}{\partial \zeta_i} - \frac{\partial \rho}{\partial \zeta_i} N$. With these notations and by the properties I-1, I-2 and I-3 of the Definition 1.1, we can write

$$h_{j} = \int_{M} R_{M}^{p} \left(F^{j} - d^{j} g_{j-1} \right) \left(z - \zeta, \dots, z - \zeta \right) = \sum_{|\beta|=j} \int_{M} R_{M}^{p} \left(z_{1} - \zeta_{1} \right)^{\beta_{1}} \dots \left(z_{n} - \zeta_{n} \right)^{\beta_{n}} \left(Z \rho \right)^{\beta_{n+1}} g_{\beta}$$

where $g_{\beta} = (F^{j} - d^{j} g_{j-1}) (T_{1}, ...^{(\beta_{1})} ..., T_{1}, ..., N, ...^{(\beta_{n+1})} ..., N).$

Observe that by the hypothesis of induction and the property I-4, we have that the function g_{β} is of class $L^{p}_{\delta+\frac{\beta_{1}+\dots+\beta_{n}}{2}+\beta_{n+1},k}(M)$.

Moreover, using that $|\zeta - z|^2$, $|Z\rho| \le c |a(\zeta, z)|$ we can write

$$h_{j} = \sum_{|\beta|=j} R_{M,\psi_{\beta}}^{s,r_{\beta}-(n+1-l+s)} g_{\beta} , \qquad r_{\beta} = \frac{\beta_{1}+\ldots+\beta_{n}}{2} + \beta_{n+1}$$

and applying the Corollary 4.3 we end the proof in this case.

The proof in the case $Y = \{z; z_1 = \ldots = z_l = 0\}$ is similar to the case $Y = \{z; z_1 = 0\}$. In the same way, in this case the function f is defined by $f = g_m$, where

$$g_{0} = E^{p} F^{0}$$

$$g_{j} = g_{j-1} + E^{p} \left(\left(F^{j} - d^{j} g_{j-1} \right) \left(z - \zeta, \dots, z - \zeta \right) \right). \blacksquare$$

Before proving the Theorem 1.3 we introduce the following definition. **Definition 5.2.**

For every $\varepsilon \geq 0$ small enough, we define

$$D_{\varepsilon} = \{ \zeta; \rho(\zeta) - \varepsilon |u(\zeta)|^2 < 0 \}$$

where $|u|^2 = |u_1|^2 + \ldots + |u_l|^2$.

It is clear that these domains are strictly pseudoconvex domains with \mathcal{C}^{∞} boundary, $D_{\varepsilon} \cap Y = M$ and Y is transversal to D_{ε} .

Lemma 5.2.

If $f \in L^p_{\delta,k}(D_{\varepsilon'})$, $\delta > \frac{p}{2}$, then $u_j f \in L^p_{\delta - \frac{p}{2},k}(D_{\varepsilon})$ for every $j = 1, \ldots, l$, and $0 \leq \varepsilon < \varepsilon'$.

Proof:

The result is a consequence of the fact that

$$|u_j| \leq \frac{1}{(\varepsilon'-\varepsilon)^{\frac{1}{2}}} \left(-\rho + \varepsilon'|u|^2\right)^{\frac{1}{2}}, \quad \text{on } D_{\varepsilon}$$

for all $\delta^* \ge \delta - p$, $\delta^* > 0$.

Proof of Theorem 1.3:

We take a covering $\{D_i^r\} = \{D_i^r\}_{i=1,\dots,N}^{0 \leq r \leq r_0}$ of D as the one in the Lemma 4.8 and we also consider the domains $\{D_{i,\varepsilon}^r\}$, $\varepsilon \geq 0$.

We also take 0 < r < r'' < r' , $\ 0 < \varepsilon < \varepsilon'.$

By Proposition 5.1 we have that for every $D_{i,\epsilon'}^{r'}$ such that $D_i \cap Y \neq \emptyset$, there exists a function $f_i \in A_{\delta,k}^p(D_{i,\epsilon'}^{r'})$ such that $J_m f_i = F$ on $Y \cap D_i$.

Using (1.2) we can assume that $\delta > p$.

For the remaining D_i we define $f_i = 0$.

We consider the function $g = \sum_{i} \chi_i f_i$ where χ_i is a partition of the unity with respect to the $\{D_{i,\varepsilon'}^{r'}\}$.

This function g is of class $L^p_{\delta,k}(D)$ and verifies $J_m g = F$.

Let $w \in L^p_{\delta-\frac{p}{2},k}(D)$ be the solution of the $\bar{\partial}w = \bar{\partial}g$ given by Lemma 4.4.

Note that $h = g - w \in A^p_{\delta,k}(D)$ and that $F = J_m h + J_m w$. The next step is to see that $J_m w$ is an $A^p_{\delta+\frac{p}{\delta},k+1}$ -jet.

The next step is to be the true T_m is the $T_{0+\frac{1}{2},k+1}$.

We say $f_{ij} = f_i - f_j$ in $D_{ij}^{\tau'} \subset D_i^{\tau'} \cap D_j^{\tau'}$. Using the Theorema 1.1 we can write

$$f_{ij} = \sum_{|\gamma|=m+1} u^{\gamma} g_{ij}^{\gamma}, \qquad g_{ij}^{\gamma} \in A^{p}_{\delta+\frac{(m+1)p}{2},k}(D^{r''}_{ij,\varepsilon'}).$$

We define in D_i^r the function $g_i^{\gamma} = \sum_s \chi_s g_{is}^{\gamma}$.

This function satisfies

$$\sum_{|\gamma|=m+1} u^{\gamma} g_i^{\gamma} = f_i - \sum_s \chi_s f_s = f_i - g_s$$

By Lemma 4.4 we can take w_i^{γ} such that

$$\bar{\partial}w_i^{\gamma} = \bar{\partial}g_i^{\gamma}$$
 , $w_i^{\gamma} \in L^p_{\delta + \frac{mp}{2},k}(D_{i,\epsilon'}^{r''})$

Moreover, using the Lemma 4.4, the Lemma 5.2 and (1.2) we have that

$$h'_i = w - \sum_{|\gamma|=m+1} u^{\gamma} w_i^{\gamma} \in A^p_{\delta+\frac{p}{2},k+1}(D^r_{i,\epsilon})$$

and also $J_m h'_i = J_m g$ on $Y \cap D_i^r$.

Hence, we have that $J_m g$ is a $A^p_{\delta+\frac{p}{2},k+1}$ -jet of order m on M.

By iteration of this method we obtain

$$F = J_m h^s + J_m g^s$$

with

 $h^s \in A^p_{\delta,k}(D)$ and $J_m g^s$ is in $A^p_{\delta+\frac{sp}{2},k+s}$ -jet.

Now if we take s such that $t = k + s - \frac{n+\delta}{p} - \frac{s}{2} > k + \frac{1}{2}$, then (1.1), (1.4) and (1.6) shows that $J_m g^s$ is a A^t -jet of order m. Finally applying the extension result of A^t -jets (1.6) we can take a function h of class $A^t(D)$ such that $J_m h = J_m g^s$ on M and defining $f = h^s + h$ we end the proof.

References

- AHERN, P., BRUNA, J., Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of Cⁿ, Rev. Mat. Iberoamericana 4 (1988), 123-153.
- BEATROUS, F., L^p estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380.
- 3. BEATROUS, F., Estimates for derivatives of holomorphic functions in pseudoconvex domains, *Math. Z.* **191** (1986), 91–116.
- BEATROUS, F., BURBEA, J., Sobolev spaces of holomorphic functions in the ball, *Dissertationes Math.* 276 (1989).
- BERNDTSSON, B., ANDERSSON, M., Henkin-Ramirez Formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (1983), 91-110.
- BONNEAU, P., CUMENGE, A., ZÉRIAHI, A., Division dans les espaces de Lipschitz de fonctions holomorphes, C. R. Acad. Sc. Paris 297 (1983), 517-520.
- BRUNA, J., BURGUÉS, J. M., Holomorphic approximation in C^m-norms on totally real compact sets in Cⁿ, Math. Ann. 269 (1984), 103-117.

- 8. BRUNA, J., ORTEGA, J. M., Traces on curves of Sobolev spaces of holomorphic functions, Arkiv Mat. 29 (1991), 25-49.
- 9. CUMENGE, A, Extension dans les classes de Hardy de fonctions holomorphes et estimations de type "Mesures de Carleson" pour l'equation $\overline{\partial}$, Annales de l'Institut Fourier 33, 3 (1983), 59-97.
- 10. DAUTOV, S. A., HENKIN, G. M., The zeroes of holomorphic functions of finite order and weight estimates for solutions of the $\bar{\partial}$ -equation, *Math. USSR Sbornik* **35** (1979), 449-459.
- 11. ORTEGA, J. M., The Gleason problem in Bergman-Sobolev spaces, to appear in *Complex Variables*.
- 12. ORTEGA, J. M., FÀBREGA, J., Extension of A^t-jets from holomorphic submanifolds, to appear in *Math. Z.*

Departament de Matemàtica Aplicada i Anàlisi Facultat de Matemàtiques Universitat de Barcelona Gran Via de les Corts Catalanes 585 08007 Barcelona SPAIN

Rebut el 18 de Desembre de 1991