DIVISION AND EXTENSION IN WEIGHTED BERGMAN-SOBOLEV SPACES

Joaquín M. Ortega and Joan Fàbrega

Abstract

Abstract

Let D be a bounded striculy psendoconvex domain of C^{n} with C^{∞} boundary and $Y=\left\{z ; u_{1}(z)=\cdots=u_{i}(z)=0\right\}$ a holomorphic submanifold in an neighbourthood of \bar{D}, of coclimension t and transversal to the boundery of D.

In this work we give al decormposition formula $f=u_{1} f_{1}+\cdots+$ $u_{t} f_{l}$ for functions f of the Bergman-Sobolev space vanishing on $M=Y \cap D$. Also we give necessary and sufficient conclitions on at set of holomorphic functions $\left\{f_{0}\right\}_{|a| \leq m}$ on M, so that there exists a holomorphic function in the Bergman-Sobolev space such that $\left.D^{\alpha} f\right|_{M}=f_{\alpha}$ for all $|\alpha| \leq m$.

I. Introduction and main results

Let $D=\{z ; \rho(z)<0\}$ be a bounded strictly pseudoconvex domain of C^{n} with \mathcal{C}^{∞}-boundary. Let $Y=\left\{z ; u_{1}(z)=\ldots=u_{l}(z)=0\right\}$ denote a holomorphic submanifold in at neighbourtood of \bar{D}, of codimension l and transversal to the boundary of $D \cap Y$, i.e. $\partial \rho \wedge \partial u_{1} \wedge \ldots \wedge \partial u_{i} \neq 0$ on the intersection of the boundary of D and the submanifold Y.

For every $\mathrm{l} \leq p<\infty, \delta>0$, and $k=0,1, \ldots$ we consider the weighted Sobolev space

$$
L_{\delta, k}^{p}(D)=\left\{f \text { measurable; }\|f\|_{p, \delta, k}<\infty\right\}
$$

where

$$
\left|\mid f \|_{p, \delta, k}=\sup \left\{\left(\int_{D}\left|D^{\alpha} \bar{D}^{\beta} f\right|^{p}(-\rho)^{\delta-1}\right)^{\frac{1}{p}} ;|\alpha|+|\beta| \leq k\right\}\right.
$$

Partially supported by the grant. PB89-0311 of the DGICYT. Spain.
and $D_{z}^{\alpha}=\frac{\partial^{|q|}}{\partial z_{\alpha}}, \bar{D}_{z}^{\beta}=\frac{\partial^{|, \beta|}}{\partial \bar{z}_{\beta} \mid}$.
Also, we define for cvery p, δ, k the weighted Bergman-Sobolev space as the space of holomorphic functions $A_{\delta, k}^{p}(D)=L_{\delta, k}^{p}(D) \cap \mathcal{O}(D)$.

Replacing the derivatives $D_{z}^{\alpha}, \bar{D}_{z}^{\beta}$ for tangent-derivatives on the submanifold Y, we define in the same way the spaces $L_{\delta, k}^{p}(M)$, and $A_{\delta, k}^{p}(M)$ in the submanifold $M=Y \cap D$.

It is well known (sce for instance [3], [4]) that

$$
\begin{equation*}
A_{\delta, k}^{p}(D) \subset A^{t}(D), \text { if } t=k-\frac{n+\delta}{p}>0 \tag{1.1}
\end{equation*}
$$

where $A^{t}(D)$ denotes the corresponding space of the holomorphic Lipschitz functions. It is also well known that

$$
\begin{equation*}
A_{\delta, k}^{p}(D)=A_{\delta^{\prime}, k^{\prime}}^{p^{\prime}}(D) ; \text { if } \delta-\delta^{\prime}=p\left(k-k^{\prime}\right) \tag{1.2}
\end{equation*}
$$

One of the main results that we will prove in this work is a result of division in the spaces $A_{\delta, k}^{p}(D)$.

We recall the following result of division in the holomorphic Lipschitz spaces, due to P. Bonneau, A. Cumenge and A. Zériahi ([6]):

If f is a holomorphic Lipschitz function of class $A^{t}(D)$ vanishing in the submanifold M, then there exist functions $f_{j}, j=1, \ldots, l$, of class $A^{t-\frac{1}{2}}(D)$ such that $f=u_{1} f_{1}+\ldots+u_{i} f_{i}$.

We prove in this paper the following theorem:

Theorem 1.1.

If f is a function of class $A_{\delta, k}^{p}(D)$ vonishing on the submanifold $M=Y \cap D$ transversal to the boundary of D, then there exist functions $f_{j}, j=1, \ldots, l$ of class $A_{\delta+\frac{p}{2}, k}^{p}(D)$ such that

$$
\begin{equation*}
f=\sum_{j=1}^{l} u_{j} f_{j} \tag{1.3}
\end{equation*}
$$

Observe that by (1.1) and (1.2) the Theorem 1.1 is in some sense a refinement of the above result of division in the holomorphic Lipschitz spaces.

In the limit case where Y is a point ζ of D, the Theorem 1.1 is the Gleason's problem. In this case (see [11]) it is known that

$$
f(z)=\sum_{j=1}^{n}\left(z_{j}-\zeta_{j}\right) f_{j}(z), \quad f_{j} \in A_{\delta, k}^{p}(D)
$$

The second main result that we will prove is an extension theorem of jets. This consists to give necossary and sufficient conditions on a set $\left\{f_{\alpha}\right\}_{|\alpha| \leq m}$ of holomorphic functions on the submanifold $M=Y \cap D$ so that there exists a $A_{\delta, k}^{p}(D)$-function f, such that. $\left.D_{z}^{\alpha} f\right|_{M}=f_{\alpha}$ for all $\mid \alpha] \leq m$.
The case $m=0$, i.e. the problem of extension and restriction of functions of class $A_{\delta, k}^{p}(D)$, has beon studied by many authors using different methods. (See for exemple [3], [4], [9]). The result obtained in this case is

$$
\left.A_{\delta, k}^{p}(D)\right|_{M}=A_{\delta+1, k}^{p}(M) .
$$

The above problem in the holomorphic Lipschitz spaces has been proved by us in [12].

In order to state the result of extension let us introduce the following definitions.

We consider smooth vector fields on \bar{D}

$$
X=\sum_{i=1}^{n} a_{i}(z) \frac{\partial}{\partial z_{i}} .
$$

For thesc vector fields we say that; X is complex-tangential if $X \rho(z)=$ 0 for every z in a neighbourhood of the boundary of D, and we define its weight $w(X)$ in the usual way:

$$
w(X)= \begin{cases}\frac{1}{2} & \text { if } X \text { is complex-tangential } \\ 1 & \text { in other case }\end{cases}
$$

If $X=X_{k} \ldots X_{1}$ is a differential operator we define its weight by

$$
w(X)=\sum_{i=1}^{k} w\left(X_{i}\right) .
$$

We recall that for a holomorphic function f on D the $j-t h$ covariant differential of f at a point $z \in D$ is defined by:

$$
\begin{aligned}
d^{0} f_{z} & =f(z) \\
d^{j} f_{z}\left(X_{1}, \ldots, X_{j}\right) & =X_{j} d^{j-1} f_{z}\left(X_{1}, \ldots, X_{j-1}\right)- \\
& \sum_{i=1}^{j-1} d^{j-1} f_{z}\left(X_{1}, \ldots, \nabla_{X_{j}} X_{i}, \ldots, X_{j-1}\right)
\end{aligned}
$$

and that in coordinates we can write

$$
d^{j} f_{z}=\sum_{|I|=j} \frac{\partial^{j} f(z)}{\partial \zeta_{i_{1}} \ldots \partial \zeta_{i_{j}}} d z_{i_{1}} \otimes \ldots \otimes d z_{i_{j}}
$$

Also, fixed m, we denote by

$$
J_{m} f_{z}=\left(d^{0} f_{z}, \ldots, d^{m} f_{z}\right)
$$

the holomorphic jet of order m at the point $z \in D$ induced by f.
Morcover, if the function f is of class $A_{\delta, k}^{p}(D)$, then it is well known (see [1], [3], [4]) that the function $\left.d^{j} f_{z}\left(X_{1}, \ldots, X_{j}\right)\right|_{M}$ is of class $L_{\delta+t+w(X) p, k}^{p}(M)$ where X is the differential operator formed by the vector fields X_{1}, \ldots, X_{j}.

Thus, if we define the covariant tensors of order j at a point $z \in M$ as

$$
F_{z}^{j}=d^{j} f_{z}
$$

then they satisly the following conditions for every $0 \leq j \leq m$:
I-1) At every point $z \in M, F_{z}^{j}$ is a j-covariant symmetric tensor.
I-2) $F^{j}\left(\frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \ldots, \frac{\partial}{\partial z_{n}}\right)$ are holomorphic functions on M .
I-3) $F^{j}\left(X_{1}, \ldots, X_{j}\right)=X_{j} F^{j-1}\left(X_{1}, \ldots, X_{j-1}\right)-$

$$
\sum_{i=1}^{j-1} F^{j-1}\left(X_{1}, \ldots, \nabla_{X_{j}} X_{i}, \ldots, X_{j-1}\right)
$$

for every tangent vector field X_{j} at M .
I-4) $F^{j}\left(X_{1}, \ldots, X_{j}\right) \in L_{\delta+l+w(X) p, k}^{p}(M)$.
Thercfore, it is natural to introduce the following definition:

Definition 1.2.

$F=\left(F^{0}, \ldots, F^{m}\right)$ is an $A_{\delta, k}^{p}-$ jet of order m on M if it satisfics the four previous conditions.

The condition I-3) just gives a relation of coherence between the tensors F^{j}. We point out that a $A_{\delta ; k}^{p}$-jet on M of order 0 is a function of class $A_{\delta+l, k}^{p}(M)$.

The notation of $A_{\delta, k}^{p} k$-jet is justified by the following result.

Theorem 1.3.

$F=\left(F^{0}, \ldots, F^{m}\right)$ is a $A_{\delta, k}^{p}$-jet of order m on M if and only if there exists a function f of class $A_{\delta, k}^{p}(D)$ such that $J_{n n} f=F$ on M.

We recall that in $[12]$ we said that $F^{\prime}=\left(F^{0}, \ldots, F^{m}\right)$ is an A^{t}-jet if it satisfies the conditions I-I, I-2, I-3 of the Definition 1.2 and the condition

$$
\begin{equation*}
\left|X_{k} \ldots X_{j+1} F^{j}\left(X_{1}, \ldots, X_{j}\right)\right| \leq c M(t-w(X), z) \tag{1.4}
\end{equation*}
$$

where the function $M(s, z)$ is defined by

$$
M(s, z)= \begin{cases}1 & \text { if } s>0 \tag{1.5}\\ |\log | \rho(z)| | & \text { if } s=0 \\ |\rho(z)|^{s} & \text { if } s<0\end{cases}
$$

and the vector fields X_{j+1}, \ldots, X_{k} are tangential to the subrnanifold Y.
In the same paper [12] we proved that:
(1.6) F is a A^{t}-jet of order m on M if and only if there exists a holomorphic Lipschitz function f of class $A^{t}(D)$ such that $J_{m} f=F$ on M.
To prove the Theorem 1.3 we will use the Theorem 1.1 , the results (1.1), (1.2) and (1.6) and a result of resolution of the $\vec{\partial}$-equation in the spaces $L_{\delta, k}^{p}(D)$.

As usually several diferent constants in the inequalities will be denoted by c.

II. Some integral formulas

In this section we give an extension operator and an explicit solution of the $\bar{\partial}$-equation.

We denote by $\Phi(\zeta, z)$ the support function of Herkin and we put $a(\zeta, z)=-\rho(\zeta)+\Phi(\zeta, z)$.

Using the results of B. Berndtsson and M. Andersson [5]; for every positive integer s we can construct kernols K^{s} and R^{s} of type

$$
\begin{align*}
K^{s}(\zeta, z) & =\left(\frac{-\rho(\zeta)}{a(\zeta, z)}\right)^{n+s} \frac{\varphi_{0}(\zeta, z)}{|\zeta-z|^{2 n}}+ \tag{2.1}\\
& \sum_{j=1}^{n-1} \frac{\left(-\rho(\zeta)^{n+s-j} \varphi_{j}(\zeta, z)\right.}{a(\zeta, z)^{n+s+1}|\zeta-z|^{2 n-2 j}} \\
R^{s}(\zeta, z)= & \frac{(-\rho(\zeta))^{s} \varphi_{n n}(\zeta, z)}{a(\zeta, z)^{n+s+1}} \tag{2.2}
\end{align*}
$$

which have the following properties:

1. $d_{\zeta, z} K^{s}=R^{s}$ outside the diagonal, and R^{s} is holomorphic in the variable z.
2. The forms $\varphi_{j}, j=0, \ldots, n$ are of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$.
3. $\left|\varphi_{j}(\zeta: z)\right| \leq c|\zeta-z|, \quad j=0, \ldots, n-1$.
4. Koppelman Formulas. Let $K_{p, q}^{s}$ be the component of K^{s} of bidegree (p, q) in $z,(n-p, n-q-1)$ in ζ, and let $R_{p, q}^{s}$ be the component of R^{s} of bidegree (p, q) in z, and $(n-p, n-q)$ in ζ. Then, if f is a (p, q) form with coefficients in $\mathcal{C}^{1}(\bar{D})$, we have

$$
\begin{align*}
& f(z)=(-1)^{p+q+1} \int_{D} \bar{\partial} f(\zeta) \wedge K_{p, q}^{s}(\zeta, z)+ \\
& (-1)^{p+q} \bar{\partial}_{z} \int_{D} f(\zeta) \wedge K_{p, q-1}^{s}(\zeta ; z), \quad \text { if } q \geq 1 \tag{2.3}\\
& f(z)=(-1)^{p+1} \int_{D} \bar{\partial} f(\zeta) \wedge K_{p, 0}^{s}(\zeta, z)- \\
& \int_{D} f(\zeta) R_{p, 0}^{s}(\zeta, z), \quad \text { if } q=0 .
\end{align*}
$$

Now, if $Y=\left\{z_{;} z_{1}=\ldots=z_{i}=0\right\}$ and $M=Y \cap D$, then the same construction used in [5] to prove these results gives for each $s>\frac{\delta-1}{p}$ an extension operator from the space $A_{\delta, k}^{p}(M)$ to the space of holomorphic functions $\mathcal{O}(D)$. This operator is defined by

$$
\begin{equation*}
E^{s} f(z)=\int_{M} f(\zeta) R_{M}^{s}(\zeta ; z) \tag{2.4}
\end{equation*}
$$

where

$$
R_{M}^{s}(\zeta, z)=\frac{(-\rho(\zeta))^{s}}{a(\zeta, z)^{n-l+1+s}} \varphi(\zeta, z), \quad \zeta \in M, z \in D
$$

and the form φ has coefficients of class $\mathcal{C}^{\infty}(\bar{M} \times \bar{D})$ and it is holomorphic in z.

Moreover, the same formula (2.3) also gives an explicit integral operator to solve the $\bar{\partial}$-equation for $(0, q)$ forms $\bar{\partial}$-closed. This operator is given by the kernel $K_{0, q-1}^{s}(\zeta, z)$.

The estimates for these kernels are given by the following Lemma.

Lemma 2.1.

Lei $j \leq 2 n-1$ be an integer. Then with $M(s, z)$ defined as (1.5) we have

$$
\int_{D} \frac{1}{|a|^{t}|\zeta-z|^{j}} \leq c \begin{cases}M\left(n+1-t-\frac{j}{2}, z\right) & \text { if } j \leq 2 n-3 . \\ 1 & \text { if } j=2 n-2, t<2 . \\ M(2-t, z)|\log | \rho(z)| | & \text { if } j=2 n-2, t \geq 2 . \\ M(1-t, z) & \text { if } j=2 n-1 .\end{cases}
$$

Proof:
Using the usual change of coordinates and computing the respective integrals we obtain these estimates. (See for instance [10]).

Now we will state some formulas of integration by parts.
The first formula is contained in the following Lemma of $\{\mathbf{7}$):

Lemma 2.2.

Let f be a (0,1) form $\bar{\partial}$-closed with cocfficients of class $\mathcal{C}^{1}(\bar{D})$. Then

$$
D_{z}^{\alpha} g=-\int_{D} D_{\zeta}^{\bigcirc} f \wedge K_{0,0}^{s}+\sum \int_{D} D_{\zeta}^{\gamma} f \wedge D_{z}^{\beta} R_{0,1,1}^{s, i}
$$

where in the last terms γ and β are multiindexes with $|\gamma|+|\beta|=|\alpha|-1$, $i=1, \ldots, n$, and $R_{0,1,1}^{s, i}$ denotes the coefficient of $d z_{i}$ in the component of the kernel R^{s} of degree (1,0) in z and ($n, n-1$) in ζ.

Before to state the second formula we introduce the following kernels, that are a generalization of the extension kernels R_{M}^{s}.

Definition 2.3.

If $Y=\left\{z_{1}=\ldots=z_{l}=0\right\}$ and $M=Y \cap D$, we define the kernels

$$
R_{M, \psi}^{s, r}(\zeta, z)=(-\rho(\zeta))^{s} \psi(\zeta, z), \quad \zeta \in M, z \in D
$$

where the form $\psi(\zeta, z)$ has the coefficients of class $\mathcal{C}^{\infty}(M \times D)$, and it satisfies

$$
\left|D_{z}^{\alpha} D_{\zeta}^{\beta} \bar{D}_{\zeta}^{\gamma} \psi(\zeta, z)\right| \leq c|a(\zeta, z)|^{r-\left(|\alpha|+\frac{|\beta|}{2}+|\gamma|\right)}
$$

for every multindexes α, β, γ.
Let also $R_{M, \psi}^{p, r}$ denote the integral operator given by this kernel.
Observe that the extension operator $R_{M}^{s}(\zeta, z)$ is a $R_{\psi, M}^{s,-(n-l+1+s)}$ operator, because $\left|D_{\zeta} a(\zeta, z)\right| \leq c|\zeta-z| \leq c|a(\zeta, z)|^{\frac{1}{2}}$.

These operators have the following properties:

Lemma 2.4.
i) $D_{z}^{\alpha} R_{M, \psi}^{s, r}=R_{M, \psi_{1}}^{s, r-|\alpha|}$
ii) $\int_{M}\left|R_{M, \psi}^{s, r}\right| \leq c M(n-l+1+s+r, z)$.

Proof:
i) is clear and ii) follows from Lemma 2.1.

Lemma 2.5.

If f is a function of class $\mathcal{C}^{k}(\bar{M})$, then, fixed an integer q, we can find operators $R_{M, \psi_{\gamma}}^{s_{\gamma}, \tau_{\gamma}}, R_{M_{\psi} \psi_{\mu}}^{s_{\mu}, \tau_{\mu}}$ such that

$$
D_{z}^{\alpha} R_{M, \psi}^{s, r} f=\sum_{\substack{|\gamma|=k \\ s_{\gamma}+r_{\gamma} \geq s+r+k-|\alpha| \\ p_{\gamma} \geq s+k}} R_{M, \psi_{\gamma}}^{s_{\gamma}, r_{\gamma}} D_{\zeta}^{\gamma} f+
$$

Remark. Roughly speaking, the Lemma 2.4 prove that the coefficient $s+r$ measures the regularity of the operator $R_{M, \psi}^{s, r}$, and therefore the operators $R_{M, \psi_{\gamma}}^{s_{\gamma}, r_{\gamma}}$ in Lemma 2.5 have at least the same regularity than the operator $R_{M, \psi}^{s, r}$ plus $k-|\alpha|$. On the other hand, choosing q large enought we can assume that the operators $R_{M, \psi_{s}}^{s_{\mu}, p_{\mu}}$ are as regular as required.

Proof:
Using the transversavility of the submanifold Y, we can choose a covering $\left\{U_{i}\right\}_{i=0}^{i_{0}}$ of M such that
i) $M=\cup_{i=0}^{i_{0}} U_{i}$, and $U_{0}=\{z: \rho(z)<-\delta\}, \delta>0$.
ii) For each $i, 1 \leq i \leq i_{0}$ there is $l+1 \leq j_{i} \leq n$ such that $\frac{\partial \rho(z)}{\partial z_{j_{i}}} \neq 0$ on U_{i}.
Let $\left\{\chi_{i}\right\}$ be a partition of the unity for this covering and we put

$$
R_{M, \psi}^{s, r}=\sum_{i=0}^{i_{0}} R_{M, \chi_{i} \psi}^{s, r}
$$

We want to prove the Lemma for each one of the operators of the sum.
If $i=0$ the result is clear by the properties of ψ and the property i) of the covering.

If $i \geq 1$ by the property ii) of the covering we have

$$
\begin{gathered}
\int_{M} R_{M, \psi}^{s, \psi^{*}}(\zeta, z) f(\zeta)= \\
\frac{1}{s+1} \int_{M}(-\rho(\zeta))^{s+1} \frac{\partial}{\partial \zeta_{j_{i}}}\left(\chi_{i} \psi(\zeta, z)\left(\frac{\partial \rho(\zeta)}{\partial \zeta_{j_{i}}}\right)^{-1} f(\zeta)\right)= \\
\int_{M} R_{M, \chi_{i} \psi^{\prime}}^{s+1, \tau} \frac{\partial f}{\partial \zeta_{j_{i}}}+\int_{M} R_{M, \chi_{2} \psi^{\prime \prime}}^{s+1, z^{\prime \prime}} f
\end{gathered}
$$

Iterating this process in the terms which have less than k derivatives on the function f, and using the Lemma 2.4 i) we obtain the result.

III. Solution of the $\bar{\partial}$-equation in the $L_{\delta, k}^{p}(D)$ space

The aim of this section is to prove the following Theorems.

Theorem 3.1.

If f is a ($0, q$) form $\bar{\partial}$-closed with coefficients of class $L_{\delta, 0}^{p}(D), 1 \leq p<$ $\infty, \delta>0$, then there exists a $(0,4-1)$ form g with coefficients of class $L_{\delta, 0}^{p}(D)$ for all $\delta^{*} \geq \delta-\frac{p}{2}, \delta^{*}>0$ such that $\bar{\partial} g=f$.

Theorem 3.2.

If f is a $(0,1)$ form $\bar{\partial}$-closed with cocfficients of class $L_{s, k}^{p}(D), 1 \leq p<$ $\infty, \delta>0, k=0,1, \ldots$, then there exists a function g with coefficients of class $L_{\delta^{*}, k}^{p}(D)$ for all $\delta^{*} \geq \delta-\frac{p}{2}, \delta^{*}>0$ such that $\bar{\partial} g=f$.

To prove these Theorems we need the following Lemma.

Lemma 3.3.

If a kernel $K(\zeta, z)$ satisfies $|K(\zeta, z)| \leq c \frac{\left(-p(\zeta)^{s}\right.}{|a(\zeta, z)|^{\mid}|\zeta-z|^{3}}, s, t \geq 0, j=$ $0, \ldots, 2 n-1$, and f is of class $L_{\delta, 0}^{p}(D), 1 \leq p<\infty, 0<\delta-1<s p$, then the function $K f$ is of class $L_{\delta, 0}^{p}(D), \delta^{*} \geq \delta-\lambda p, \delta^{*}>0$, where

$$
\lambda= \begin{cases}n+1+s-t-\frac{j}{2} & \text { if } j \leq 2 n-2 \\ 2-\varepsilon+s-t & \text { if } j=2 n-2, \varepsilon>0 \\ I+s-t & \text { if } j=2 n-1 .\end{cases}
$$

Proof:

We want to see that for a δ^{*} fixed which satisfies the previous conditions we have

$$
\begin{aligned}
I= & \int_{D}\left(\int_{D}|K(\zeta, z)||f(\zeta)| d \zeta\right)^{p}(-\rho(z))^{\delta^{*}-1} d z \leq \\
& c \int_{D}|f(\zeta)|^{p}(-\rho(\zeta))^{\delta-1} d \zeta
\end{aligned}
$$

First we consider the case $p=1$ and $j \neq 2 n-2$.
In this case applying the Fubini Theorem we have

$$
I \leq c \int_{D}|f(\zeta)|(-\rho(\zeta))^{s} \int_{D} \frac{(-\rho(z))^{\delta^{*}-1}}{|a(\zeta ; z)|^{\phi}|\zeta-z|^{j}} d z d \zeta
$$

and using that $|a(\zeta, z)| \approx|a(z, \zeta)|,-\rho(z) \leq c|a(\zeta, z)|$ and the Lemma 2.1 we get

$$
\begin{equation*}
I \leq c \int_{D}|f(\zeta)|(-\rho(\zeta))^{s} M\left(\delta^{*}-1+\lambda-s, \zeta\right) d \zeta . \tag{3.1}
\end{equation*}
$$

Now, if $\delta^{*}-1+\lambda-s \geq 0$ we have that $(-\rho(\zeta))^{s} M\left(\delta^{*}-1+\lambda-s, \zeta\right) \leq$ $c(-\rho(\zeta))^{\delta-1}$, since $s>\delta-1$.
Moreover, if $\delta^{*}-1+\lambda-s<0$ then $(-\rho(\zeta))^{s} M\left(\delta^{*}-1+\lambda-s ; \zeta\right) \leq$ $c(-\rho(\zeta))^{\delta^{*}-1+\lambda} \leq c(-\rho(\zeta))^{\delta-1}$ because $\delta^{*} \geq \delta-\lambda$.

Hence

$$
I \leq c \int_{D}|f(\zeta)|(-\rho(\zeta))^{\delta-1} d \zeta
$$

If $p=1$ and $j=2 n-2$ we obtain in (3.1) the estimate

$$
I \leq c \int_{D}|f(\zeta)|(-\rho(\zeta))^{s} M\left(\delta^{*}+1-t, \zeta\right)|\log | \rho(\zeta)| | d \zeta
$$

and applying the same reasoning as in the above case we prove the result.
Now we consider the case $1<p<\infty$ and $j \leq 2 n-3$.
Let $p^{\prime}=\frac{p}{p-1}$. Taking r such that

$$
\frac{p-1}{p}\left(n+1-\frac{j}{2}\right)<r<\frac{p-1}{p}\left(n+1-\frac{j}{2}+\frac{\delta^{*}}{p-1}\right)
$$

and applying the Hölder inequalities we get

$$
\begin{aligned}
I & \leq c \int_{D}\left(\int_{D}|f(\zeta)|^{p} \frac{(-\rho(\zeta))^{s p}}{|a(\zeta, z)|^{(t-r) p}|\zeta-z|^{j}} d \zeta\right) \\
& \quad\left(\int_{D} \frac{1}{|a(\zeta, z)|^{r p^{\prime}}|\zeta-z|^{j}} d \zeta\right)^{\frac{p}{p^{\prime}}}(-\rho(z))^{\delta^{*}-1} d z \leq \\
& \leq c \int_{D} \int_{D} \left\lvert\, f(\zeta)^{p}(-\rho(\zeta))^{s p} \frac{\left(-\rho(z)^{\left(n+1-r p^{\prime}-\frac{j}{2}\right\}(p-1)+\delta^{*}-1}\right.}{|a(\zeta, z)|^{(t-r) p}|\zeta-z|^{j}} d \zeta d z .\right.
\end{aligned}
$$

By Fubini Theorem and the Lemma 4.2 we have

$$
\begin{aligned}
I \leq & c \int_{D}|f(\zeta)|^{p}(-\rho(\zeta))^{s p} M\left(n+1-(t-r) p-\frac{j}{2}+\right. \\
& \left.\left(n+1-r p^{\prime}-\frac{j}{2}\right)(p-1)+\delta^{*}-1, \zeta\right) d \zeta= \\
& c \int_{D}|f(\zeta)|^{p}(-\rho(\zeta))^{s p} M\left(\left(n+1-t-\frac{j}{2}\right) p+\delta^{*}-1, \zeta\right) d \zeta \leq \\
& c \int_{D}|f(\zeta)|^{p}(-\rho(\zeta))^{\delta-1} d \zeta
\end{aligned}
$$

and hence this case is proved.
The cases $1<p<\infty$ and $j=2 n-2,2 n-1$ follow in the same way taking r such that

$$
\frac{p-1}{p}(2 n-j)<r<\frac{p-1}{p}\left(2 n-j+\frac{\delta^{*}}{p-1}\right)
$$

Corollary 3.4.

If $R_{D, \psi}^{s, r}$ is the operator of the Definition 2.3 and f is of class $L_{\delta, k}^{p}(D)$, $\delta-1<s p$, then the function $R_{D, \psi}^{s, r} f$ is of class $L_{\delta \cdot, k}^{p}(D)$, for all $\delta^{*} \geq$ $\delta-(n+1+s+r) p, \delta^{*}>0$.

Proof:

Applying the Lemmas 2.5, 3.3 we obtain the result.
Proof of Theorem 3.1:
We take $s>0$ such that $s p>\delta-1$ and we define the function $g=-\int_{D} f \wedge K_{0,4-1}^{s}$, where the kernel K^{s} is given in (2.1).

It is clear by (2.3) that $\bar{\partial} g=f$. Now, using the estimate

$$
\left|K^{s}\right| \leq c\left(\frac{(-\rho)^{n+s}}{|a|^{n+s}|\zeta-z|^{2 n-1}}+\sum_{i=1}^{n-1} \frac{(-\rho)^{n+s-i}}{|a|^{n+1+s}|\zeta-z|^{2 n-2 i-1}}\right)
$$

and applying the Lemma 3.3 we obtain the result.
Proof of Theorem 3.2:
We define g as in the previous Theorem.
By Lemmas 2.2 and 2.4 we have

$$
\left.D_{z}^{\alpha} g=-\int_{D} D_{\zeta}^{\alpha} f \wedge K_{0,0}^{s}+\sum_{|\gamma|+|\beta|<|\alpha|} \int_{D} D_{\zeta}^{\gamma} f \wedge R_{D, \psi_{\gamma}}^{s,-(n+1+s+|\beta|}\right)
$$

where the kernels $R_{D, \psi_{\tau}}^{s,-(n+1+s+|\beta|)}$ are holomorphic in z.
The same reasoning used in the proof of Theorem 3.1 shows that the term $\int_{D} D_{\zeta} f \wedge K_{0,0}^{s}$ is of class $L_{\delta^{+}, 0}^{p}$.

Moreover the Corollary 3.4 shows that the term

$$
\int_{D} D_{\zeta}^{\gamma} f \wedge K^{s_{1}-(n+1+s+|\beta|)}
$$

is of class $A_{\delta+|\beta| p, k-i \gamma \mid}^{p}(D)=A_{\delta,|\alpha|-|\beta|-|\gamma|}^{p}(D)$.
Now, using that $|\alpha|-|\beta|-|\gamma| \geq 1$ we end the proof.

IV. Division in the $A_{\delta, k}^{p}$ spaces

To prove the Theorem 1.1, we will first solve the problem locally using the following projection.

Lemma 4.1.

Let $Y=\left\{z ; z_{1}=\ldots=z_{i}=0\right\}$ be a linear submanifold transversal to the boundary of D. Then for every point w in the boundary of $M=Y \cap D$, there exists a neighbourhood V of w and a projection

$$
\Pi: V \longrightarrow V \cap Y
$$

of class $\mathcal{C}^{\infty}(\bar{V})$, such that
i) $\Pi(z)=z+z_{1} g_{1}+\ldots+z_{i} g_{t}$
ii) $\rho(\Pi(z)) \leq \rho(z)-c\left|z^{\prime}\right|^{2}, \quad z^{\prime}=\left(z_{1}, \ldots, z_{i}, 0 \ldots, 0\right), c>0$
iii) $|a(\zeta, z)| \leq c \mid a\left(\zeta, \Pi I(z) \mid \leq c\left(|a(\zeta, z)|+\left|z^{\prime}\right|^{2}\right)\right.$

Remark. Observe that the condition ii) implies that if $z \in V \cap D$ then $\Pi(z) \in V \cap M$.

Proof:
We write

$$
\begin{gathered}
\langle\zeta, z\rangle=\sum_{i=1}^{\pi} \zeta_{i} z_{i} \quad, \quad z^{\prime \prime}=z-z^{\prime} \\
\frac{\partial \rho}{\partial \zeta}=\left(\frac{\partial \rho}{\partial \zeta_{1}}, \ldots, \frac{\partial \rho}{\partial \zeta_{n}}\right), \quad \frac{\partial \rho}{\partial \zeta^{\prime \prime}}=\left(0, \ldots, 0, \frac{\partial \rho}{\partial \zeta_{l+1}}, \ldots, \frac{\partial \rho}{\partial \zeta_{n}}\right)
\end{gathered}
$$

Let U be a neighbourhood of the boundary of M. Shrinking U and using the transversavility of Y we can assume that $\left|\frac{\partial p}{\partial z^{\prime \prime}}\right| \geq c>0$ on U and therefore, for every $1 \leq j \leq l$, we can take a function $h^{j}: U \longrightarrow C^{n}$ of class $\mathcal{C}^{\infty}(U)$ such that
(4.1) $h^{j}=\left(0, \ldots,-1_{j}, \ldots, 0, h_{l+1}^{j}, \ldots, h_{n}^{j}\right)$, and $\left\langle\frac{\partial \rho}{\partial z}, h^{j}\right\rangle=0$.

The next step is to see that for a certain $d>0$ the projection

$$
\begin{equation*}
\Pi(z)=z+z_{1} h^{1}+\ldots+z_{l} h^{l}-d\left|z^{\prime}\right|^{2} \frac{\partial \rho(z)}{\partial z^{\prime \prime}} \tag{4,2}
\end{equation*}
$$

satisfies the required conditions.
It is obvious that II satisfics i) for every d.
Using the Taylor development and the properties (4.1) we have that

$$
\begin{gathered}
\rho(\Pi(z)) \leq \rho(z)-2 d\left|z^{\prime}\right|^{2}\left|\frac{\partial \rho}{\partial z^{\prime \prime}}\right|+c_{0}!\Pi I(z)-\left.z\right|^{2} \leq \\
\rho(z)-\left(2 d c_{1}-c_{2}\right)\left|z^{\prime}\right|^{2}+c_{3} d\left|z^{\prime}\right|^{3}
\end{gathered}
$$

where $c_{1}, c_{2}, c_{3}>0$.
Now taking d such that $2 d c_{1}-c_{2}>c>0$ and shrinking U we obtain ii).

To prove iii) we recall that $\Phi(\zeta: z)$ is holomorphic in z and

$$
\Phi(\zeta, z)=\langle P(\zeta, z), \zeta-z\rangle=\left\langle\frac{\partial \rho}{\partial \zeta}, \zeta-z\right\rangle+O\left(|\zeta-z|^{2}\right)
$$

Using this and the properties (4.1), we have

$$
\begin{align*}
a(\zeta, z)-a(\zeta, \Pi(z))= & \langle P(\zeta, z)-P(\zeta, \Pi(z)), \zeta-z\rangle+ \tag{4.3}\\
& \langle P(\zeta, \Pi(z)), z-\Pi(z)\rangle=\sum_{j=1}^{i} z_{j} \psi(\zeta, z)
\end{align*}
$$

with

$$
|\psi(\zeta, z)| \leq c\left(|\zeta-z|+\left|z^{\prime}\right|\right) \approx c\left(|\zeta-11(\zeta)|+\left|z^{\prime}\right|\right) .
$$

Finally, using that $|\zeta-z| \leq c|a(\zeta, z)|^{\frac{1}{2}}$ and $|\zeta-\Pi \Pi(z)|,\left|z^{\prime}\right| \leq c|a(\zeta, \Pi(z))|^{\frac{1}{2}}$ we obtain iii).

Lemma 4.2.

If f is a function of class $L_{\delta, 0}^{p}(M)$, then the function $R_{M, \psi}^{s, r} f, \delta-1<s p$ is of class $L_{\delta^{*}, 0}^{p}(D)$ for all $\delta^{*} \geq \delta-l-(n+1+s+r) p, \delta^{*}>0$.

Proof:
Appliying the estimates of Theorem 2.4 of [3] and the same reasoning that in the Lemma 3.3, we obtain the result.

Corollary 4.3.

If f is a function of class $L_{\delta, k}^{p}(M)$, then the function $R_{M, \psi}^{s, r} f, \delta-1<s p$ is of class $L_{\delta \cdot, k}^{p}(D)$ for all $\delta^{*} \geq \delta-l-(n+1+s+r) p ; \delta^{*}>0$.

Proof:
The proof is a consequence of the above Lemma and of the integration by parts formula given in the Lemma 2.5.

Lemma 4.4.

Let be f a $(0,1)$ form $\bar{\partial}$-closed with coefficients of class $L_{\delta, \hat{k}}^{p}(D), \delta>p$ and let u be a holomorphic function on a neighbourhood of \bar{D}, such that uf has coefficients of class $I_{\delta, \frac{p}{2}, k}^{p}(D)$. Then there exists a function g of class $L_{\delta-\frac{p}{2}, k}^{p}(D)$ such that $\bar{\partial} g=f$ and $u g$ is of class $L_{\delta-p, k}^{p}(D)$.

Proof:

We take $g=-\int_{D} f \wedge K_{00}^{p}$ as in the Theorem 3.2.
Hence, we only need to see that $u g$ is of class $L_{\delta-p, k}^{p}(D)$.
By (2.3) we have $\int_{D} g R_{00}^{5}=0$ and therefore we can write

$$
u(z) g(z)=\int_{D} u(\zeta) f(\zeta) \wedge K_{00}^{s}(\zeta, z)+\int_{D}(u(z)-u(\zeta)) g(\zeta) R_{00}^{s}(\zeta, z)
$$

The Theorem 3.2 gives that the first term is of class $L_{\delta-p, k}^{p}(D)$.
Moreover $(u(z)-u(\zeta)) R_{00}^{s}(\zeta ; z)=R_{D ; \psi}^{s, \frac{1}{2}-(n+1+s)}$ and therefore by Corollary 4.3 we obtain that the second term is of class $L_{\delta-p, k}^{p}(D)$.

To prove the result of division given in the Theorem 1.1, first we consider the linear case to obtain local solutions. Finally using these solutions, the Lemma 4.4 and a result of division in the holomorphic Lipschitz spaccs ([6]) we will obtain the result.

Proposition 4.5.

If $Y=\left\{z ; z_{1}=0\right\}$ is transversal to the boundary of D, and f is a function of class $A_{\delta, k}^{p}(D)$ that is zero on M, then there exists a function f_{1} of class $A_{\delta+\frac{p}{2}, k}^{p}(D)$ such that $f=z_{1} f_{1}$.

Proof:

We consider a covering $\left\{U_{i}\right\}_{i=0}^{i_{0}}$ of D such that:

1) $U_{0}=\{z ; \rho(z)<-\delta<0\}$.
2) If $1 \leq i<i_{1}$ then $z_{1} \neq 0$ on U_{i}.
3) If $i_{1} \leq i \leq i_{0}$ then there exists a projection Π_{i} as the one in the Lenma 4.1.
Let $\left\{\chi_{i}\right\}$ a partition of the unity for this covering.
We want to sce that $\chi_{i} \frac{f}{z_{1}}$ is a function of class $L_{\delta+\frac{p}{2}, k}^{p}(D)$.
We consider the three following cases.
4) $i=0$.

In this case using that $U_{0} \subset \subset D$ then we can take the function $\frac{f}{z_{1}}$ of class $\mathcal{C}^{\infty}\left(\bar{U}_{0}\right)$ and therefore the result is true.
2) $1 \leq i<i_{1}$

In this case (4.1) is clear.
3) $i_{1} \leq i \leq i_{0}$

We will write Π instead Π_{i}. Thus

$$
\begin{array}{r}
f(z)=f(z)-f(\Pi(z))=\int_{D} f(\zeta)\left(R^{s}(\zeta, z)-R^{s}(\zeta, \Pi(z))\right) d \zeta= \\
\int_{D} f(\zeta)\left(\frac{(-\rho(\zeta))^{s} \varphi(\zeta, z)}{a(\zeta, z)^{n+1+s}}-\frac{(-\rho(\zeta))^{s} \varphi(\zeta, \Pi(z))}{a(\zeta, \Pi(z))^{n+1+s}}\right) d \zeta
\end{array}
$$

where $\varphi(\zeta, z)$ is a function of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$ and holomorphic in z.
Using (4.2) $\Pi(z)-z=z_{1} h^{1}-d\left|z_{1}\right|^{2} \frac{\partial \rho}{\partial z^{\prime \prime}}$ where h^{1} is a tangential complex vector, and thus we have
i) $\varphi(\zeta, z)-\varphi(\zeta, \Pi(z))=z_{1} \psi^{\prime}(\zeta, z)$ with $\psi^{\prime}(\zeta, z)$ of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$
ii) $a(\zeta, z)-a(\zeta, \Pi(z))=z_{1} \psi^{\prime \prime}(\zeta, z)$ with $\psi^{\prime \prime}(\zeta, z)$ of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$ and $\left|\Psi^{\prime \prime}(\zeta, z)\right|=O(|\zeta-z|+|\zeta-\Pi(z)|)$. (See (4.3)).
Hence, we have

$$
\begin{aligned}
& \chi_{i}(z) \frac{f(z)}{z_{1}}=\int_{D} f(\zeta) \frac{(-\rho(\zeta))^{s} \chi_{i}(z) \psi(\zeta: z)}{a(\zeta, z)^{n+1+s}}+ \\
& \quad \sum_{j=0}^{n+s} \int_{D} f(\zeta) \frac{(-\rho(\zeta))^{s} \chi_{i}(z) \psi_{1}(\zeta, z)}{a(\zeta, \Pi(z))^{n+1+s-j} a(\zeta, z)^{j+1}}
\end{aligned}
$$

where $\psi^{\prime}(\zeta, z), \psi_{1}(\zeta, z)$ are functions of class $\mathcal{C}^{\infty}(\bar{D} \times \bar{D})$ and $\psi_{1}(\zeta ; z) \leq c(|\zeta-z|+|\zeta-\Pi(z)|)$.
With these notations we have that the above kernels are of the class $R_{D, \psi}^{s,-\left(n+\frac{3}{2}+s\right)}$ and therefore by Corollary 3.4 we obtain that $\chi_{i}(z) \frac{f(z)}{z_{1}}$ is a function of class $L_{6+\frac{\pi}{2}, k}^{p}(D)$.

Thus finally $f_{1}=\frac{f}{z_{1}}$ is of class $A_{\delta+\frac{p}{2}, k}^{p}(D)$.

Definition 4.6.

We say that the holomorphic submanifold $Y=\left\{z ; u_{1}(z)=\ldots=\right.$ $\left.u_{l}(z)=0\right\}$ is totally transversal to the boundary of D if for every $1 \leq$ $j_{1}<\ldots<j_{s} \leq l, Y_{J}=\left\{z ; u_{j_{1}}(z)=\ldots=u_{j_{s}}(z)=0\right\}$ is a holomorphic submanifold of codimension s and transversal to the boundary of D.

Proposition 4.7.

If $Y=\left\{z: z_{1}=\ldots=z_{i}=0\right\}$ is a holomorphic submanifold totally transversal to the boundary of D and f is a function of class $A_{\delta, k}^{p}(D)$ such that is zero on M, then there exist functions $f_{j}, j=1, \ldots, l$, of class $A_{\delta+\frac{p}{2}, k}^{p}(D)$ such that

$$
f=\sum_{j=1}^{t} z_{j} f_{j}
$$

Moreover, for all $j=1, \ldots, l$ the functions $z_{j} f_{j}$ are of class $\Lambda_{\delta, k}^{p}(D)$.
Proof:
We will construct the functions f_{j} inductively.
Say $Y_{m}=\left\{z: z_{m+1}=\ldots=z_{i}=0\right\}, Y_{l}=C^{n}$ and $M_{m}=Y_{m} \cap D$.
Using the hypothesis of total transversavility we have that for each m, M_{m} is a strictly pseudoconvex domain with boundary of class \mathcal{C}^{∞} and that Y_{m-1} is transversal to the boundary of M_{m}.

By (1.1) we say that $\left.f\right|_{M_{1}}$ is a function of class $A_{\delta+i-1, k}^{p}\left(M_{1}\right)$ that is zero on M_{0} and hence by Proposition 4.5 there exists a function h_{1} of class $A_{\delta+1-1+\frac{p}{2}}^{p}\left(M_{1}\right)$ such that $f=z_{1} h_{1}$ on M_{1}.

We define $f_{1}(z)=\int_{M_{1}} R_{M_{1}}^{s}(\zeta ; z) h_{1}(\zeta) d \zeta$ where $R_{M_{1}}^{s}$ is the extension operador (2.3).

By Lemma 4.2 we have that f_{1} is of class $A_{\delta+\frac{p}{2}, k}^{p}(D)$.
Also putting

$$
z_{1} f_{1}(z)=\int_{M_{1}}\left(z_{1}-\zeta_{1}\right) f_{1}(\zeta) R_{M_{1}}^{s}(\zeta, z) d \zeta+\int_{M_{1}} f(\zeta) R_{M_{1}}^{s}(\zeta ; z) d \zeta
$$

and using that $\left|z_{1}-\zeta_{1}\right| \leq c\left|a\left(\zeta_{2} z\right)\right|^{\frac{1}{2}}$ and the Corollary 4.3 we have that $z_{1} f_{1}$ is of class $A_{\delta, k}^{p}(D)$.

If we consider the function $f-z_{1} f_{1}$ and we repeat the above method on M_{2} we will find f_{2}, and by iteration we will obtain the remaining f_{j}.

We introduce the following covering of D which is a variation of the one of A.Cumenge [9].

Lemma 4.8.

For $0<\varepsilon_{1}<\ldots<\varepsilon_{r_{0}}$ there exist points $\left\{z_{i}\right\}_{i=1, \ldots, i_{0}}$ of D and strictly pseudoconvex domains with \mathcal{C}^{∞} boundary $\left\{D_{i}^{r}\right\}_{i=1, \ldots, i_{0}}^{r=1, \ldots, r_{0}}$, such that:
i) $B\left(w_{i}, \varepsilon_{r-1}\right) \cap D \subset D_{i}^{r} \subset B\left(w_{i}, \varepsilon_{r}\right) \cap D$ if $1 \leq r \leq r_{0}$.
ii) $\cup_{i=1}^{i_{0}} D_{i}^{1}=D$.
iii) If $i_{1}<i \leq i_{0}$ there is $1 \leq i_{j} \leq l$ such that $u_{i_{j}} \neq 0$ in D_{i}^{r}.
iv) If $1 \leq i \leq i_{1}$ then
a) $D_{i}^{\top} \cap Y \neq \emptyset$.
b) For every $D_{2}^{r_{0}}$ there exists a holomorphic system of coordinates such that the l first are u_{1}, \ldots, u_{t}.
v) Y is totally transversal to D_{i}^{r} for all $1 \leq i \leq i_{1}, 1 \leq r \leq r_{0}$.
vi) If $r<r^{\prime}$ and $D_{i_{1}}^{r} \cap \ldots \cap D_{i_{s}}^{r} \neq \emptyset$ then there exists a strictly pseudoconvex domain D_{I}^{r} with \mathcal{C}^{∞} boundary, such that
(a) $D_{i,}^{r} \cap \ldots D_{i_{u}}^{r} \subset D_{I}^{r} \subset D_{i_{1}}^{r^{\prime}} \cap \ldots \cap D_{i_{s}}^{r^{\prime}}$.
b) If $D_{I}^{r} \cap Y \neq 0$ then Y is totally transversal to the boundary of D_{I}^{r}.

Proof of Theorem 1.1:
We take the covering of D of the Lermma 4.8. We fix an r and we write D_{i} instead D_{i}^{r}.

By Proposition 4.7 in each D_{i} we have:

$$
\begin{aligned}
& f(z)=\sum_{j=1}^{l} u_{j}(z) f_{j}^{i}(z) \\
& f_{j}^{i}(z) \in A_{\delta+\frac{p}{2}: k}^{p}\left(D_{i}\right), \quad u_{j} f_{j}^{i} \in A_{\delta, k}^{p}\left(D_{i}\right)
\end{aligned}
$$

We define $g_{j}(z)=\sum_{i} \chi_{i}(z) \int_{j}^{i}(z)$ where $\left\{\chi_{i}\right\}$ is a partition of the unity with respect to the covering $\left\{D_{i}\right\}$.

It is clear that $\sum_{j=1}^{d} u_{j} g_{j}=f$.

For each j we denote by w_{j} the solution of the equation $\bar{\partial} w_{j}=\bar{\partial} g_{j}$ given by the Lemma 4.3 and we put

$$
f=\sum_{j=1}^{t} u_{j}\left(g_{j}-w_{j}\right)+\sum_{j=1}^{t} u_{j} w_{j} .
$$

By Lemma 4.4 and (1.2) we have

$$
\begin{aligned}
h_{j} & =g_{j}-w_{j} \in A_{\delta+\frac{p}{2}, k}^{p}(D) \\
h & =\sum_{j=1}^{l} u_{j} w_{j} \in A_{\delta+\frac{p}{2}, k+1}^{p}(D) .
\end{aligned}
$$

Hence, we have proved that for every function $\int \in A_{\delta, k}^{p}(D)$ that is zero on M, there exist functions $h_{y} \in A_{\delta+\frac{p}{2}, k}^{p}(D)$ and $h \in A_{\delta+\frac{p}{2}, k+1}^{p}(D)$ such that
i) $f=\sum_{j=1}^{l} u_{j} h_{j}+h$
ii) h is zero on M.

Iterating this method with the function h we obtain
i) $f=\sum_{j=1}^{l} u_{j} h_{j}^{r}+h^{r}$
ii) $h^{r} \in A_{\delta+\frac{p}{2}, k+r}^{p}(D)$ and is zero on M
iii) $h_{j}^{r} \in A_{\delta+\frac{p}{2}, k}^{p}(D) \quad j=1, \ldots, l$.

Taking r such that $t=k-\frac{n+\delta}{p}+\frac{r}{2}>k+\frac{1}{2}$ and applying (1.1) we have that h^{r} is a holomorphic Lipschitz function of class $A^{l}(D)$ that is zero on M. Therefore by a result of [6] we have

$$
h^{r}=\sum_{j=1}^{l} u_{j} h_{j}^{r+1} ; \quad h_{j}^{r+1} \in A^{t-\frac{1}{2}}(D) \subset \mathcal{C}^{k}(\bar{D}) \cap \mathcal{O}(D)
$$

Finally, if we define $f_{j}=h_{j}^{r}+h_{j}^{r+1}$ we end the proof.

V. Extension of $A_{\delta, k}^{p}$-jets

First we prove the extesion rosult in the linear case.

Theorem 5.1.

If the linear submanifold $Y=\left\{z \in C^{n} ; z_{1}=\ldots=z_{l}=0\right\}$ is transversal to the boundary of D and F is an $A_{\delta, k}^{p}$-jet of order m on M
then there exists a function f of class $A_{\delta, k}^{p}(D)$ such that $J_{m} f=F$ on M.

Proof:
First we consider the case $Y=\left\{z ; z_{1}=0\right\}$.
We take $s>\frac{\delta}{p}$ and for $j=0, \ldots, m$ we define by induction the functions

$$
\begin{equation*}
g_{0}=E^{s} F^{0} \tag{5.1}
\end{equation*}
$$

$$
g_{j}=g_{j-1}+\frac{z_{1}^{j}}{j!} E^{s}\left(F^{j}-d^{j} g_{j-1}\right)\left(\frac{\partial}{\partial \zeta_{1}}, \ldots, \frac{\partial}{\partial \zeta_{1}}\right)
$$

where the operator E^{s} is the extension operator (2.4) given by the kernel R_{M}^{s}.

It is clear that the function $f=g_{m}$ satisfies $J_{n} f=F$ on M.
To prove the Theorem we will show by induction on the index j in (5.1) that the functions g_{j} are of class $A_{\delta, k}^{p}(D)$.

If $j=0$, using that $R_{M}^{s}=R_{M, \psi}^{s,-(n+1+s)}$ and applying the Corolary 4.3, we obtain the result.

Now we assume that $g_{j-1} \in A_{\delta, k}^{p}(D)$. As follows from (5.1), to prove that $g_{j} \in A_{\delta, k}^{p}(D)$ is sufficient to see that

$$
h_{j}=z_{1}^{j} \int_{M} R_{M}^{s}\left(F^{j}-d^{j} g_{j-1}\right)\left(\frac{\partial}{\partial \zeta_{1}}, \ldots: \frac{\partial}{\partial \zeta_{1}}\right)
$$

is of class $A_{\delta, k}^{p}(D)$.
Consider the normal complex field

$$
N=\frac{1}{\mid \partial \rho_{\left.\right|^{2}}^{2}} \sum_{i=1}^{n} \frac{\partial \rho}{\partial \bar{\zeta}_{i}} \frac{\partial}{\partial \zeta_{i}}
$$

defined in a neighbourhood of the boundary of D, and the decomposition of the vector field

$$
Z=\sum_{i=1}^{n}\left(z_{i}-\zeta_{i}\right) \frac{\partial}{\partial \zeta_{i}}=\sum_{i=1}^{n}\left(z_{i}-\zeta_{i}\right)\left(\frac{\partial}{\partial \zeta_{i}}-\chi \frac{\partial \rho}{\partial \zeta_{i}} N\right)+\chi Z \rho N
$$

where χ is a function with compact support, and that is 1 in a neighbourhood of the boundary of D.

We denote by T_{i} the complex tangent vector field $T_{i}=\frac{\partial}{\partial \zeta_{i}}-\frac{\partial \rho}{\partial \zeta_{\mathrm{i}}} N$.
With these notations and by the properties I-1, I-2 and I-3 of the Definition 1.1, we can write

$$
\begin{aligned}
& h_{j}=\int_{M} R_{M}^{p}\left(F^{j}-d^{j} g_{j-1}\right)(z-\zeta, \ldots, z-\zeta)= \\
& \sum_{|\beta|=j} \int_{M} R_{M}^{p}\left(z_{1}-\zeta_{1}\right)^{\beta_{1}} \ldots\left(z_{n}-\zeta_{n}\right)^{\beta_{n}}(Z \rho)^{\beta_{n+1}} g_{\beta}
\end{aligned}
$$

where $g_{\beta}=\left(F^{j}-d^{j} g_{j-1}\right)\left(T_{1}, . .{ }^{\left(\beta_{1}\right)} . ., T_{1}, \ldots, N_{1} . .{ }^{\left(\beta_{n+1}\right)}{ }_{n}, N\right)$.
Observe that by the hypothesis of induction and the property I-4, we have that the function g_{β} is of class $L_{\delta+\frac{\beta_{1}+\ldots+\beta_{n}}{2}+\beta_{n+1}, k}(M)$.

Moreover, using that $|\zeta-z|^{2},|Z \rho| \leq c|a(\zeta, z)|$ we can write

$$
h_{j}=\sum_{|\beta|=j} R_{M, \psi_{\beta}}^{s, r_{3}-\{n+1-l+s\}} g_{\beta}, \quad r_{\beta}=\frac{\beta_{1}+\ldots+\beta_{n}}{2}+\beta_{n+1}
$$

and applying the Corollary 4.3 we end the proof in this case.
The proof in the case $Y=\left\{z ; z_{1}=\ldots=z_{l}=0\right\}$ is similar to the case $Y=\left\{z ; z_{1}=0\right\}$. In the same way, in this case the function f is defined by $f=g_{m}$, where

$$
\begin{aligned}
& g_{0}=E^{p} F^{0} \\
& \cdots \cdots \ldots \ldots \\
& g_{j}=g_{j-1}+E^{p}\left(\left(F^{j}-d^{j} g_{j-1}\right)(z-\zeta, \ldots, z-\zeta)\right) .
\end{aligned}
$$

Before proving the Theorem 1.3 we introduce the following definition.

Definition 5.2.

For every $\varepsilon \geq 0$ small errough, we define

$$
D_{\varepsilon}=\left\{\zeta_{i} \rho(\zeta)-\varepsilon|u(\zeta)|^{2}<0\right\}
$$

where $\left|u_{i}\right|^{2}=\left|u_{1}\right|^{2}+\ldots+\left|u_{t}\right|^{2}$.
It is clear that these domains are strictly pseudoconvex domains with \mathcal{C}^{∞} boundary, $D_{\varepsilon} \cap Y=M$ and Y is transversal to D_{ε}.

Lemma 5.2.

If $f \in L_{\delta, k}^{p}\left(D_{\varepsilon^{\prime}}\right), \delta>\frac{p}{2}$, then $u_{j} f \in L_{\delta-\frac{p}{2}, k}^{p}\left(D_{\varepsilon}\right)$ for every $j=$ $1, \ldots, l$, and $0 \leq \varepsilon<\varepsilon^{\prime}$.

Proof:
The result is a consequence of the fact that

$$
\left|u_{j}\right| \leq \frac{1}{\left(\varepsilon^{\prime}-\varepsilon\right)^{\frac{1}{2}}}\left(-\rho+\varepsilon^{\prime}|u|^{2}\right)^{\frac{1}{2}} ; \quad \text { on } \quad D_{\varepsilon}
$$

for all $\delta^{*} \geq \delta-p, \delta^{*}>0$.
Proof of Theorem 1.3:
We take a covering $\left\{D_{i}^{r}\right\}=\left\{D_{i}^{r}\right\}_{\imath=1}^{0 \leq 1, \ldots, N}$ of D as the one in the Lemma 4.8 and we also consider the domains $\left\{D_{i, \varepsilon}^{r}\right\}, \varepsilon \geq 0$.

We also take $0<r<r^{\prime \prime}<r^{\prime}, 0<\varepsilon<\varepsilon^{\prime}$.
By Proposition 5.1 we have that for every $D_{i, \varepsilon^{\prime}}^{r^{\prime}}$ such that $D_{i} \cap Y \neq \emptyset$, there exists a function $f_{i} \in A_{\delta, k}^{\mu}\left(D_{i, \varepsilon^{\prime}}^{v^{\prime}}\right)$ such that $J_{m} f_{i}=F$ on $Y \cap D_{i}$.

Using (1.2) we can assume that $\delta>p$.
For the remaining D_{i} we define $f_{i}=0$.
We consider the function $g=\sum_{i} \chi_{i} f_{i}$ where χ_{i} is a partition of the unity with respect to the $\left\{D_{i . \varepsilon^{\prime}}^{r^{\prime}}\right\}$.

This function g is of class $L_{\delta, k}^{p}(D)$ and verifies $J_{m} g=F$.
Let $w \in L_{\delta-\frac{p}{2}, k}^{p}(D)$ be the solution of the $\bar{\partial} w=\bar{\partial} g$ given by Lemma 4.4.

Note that $h=g-w \in A_{\delta, k}^{p}(D)$ and that $F=J_{m} h+J_{m} w$.
The next step is to sec that $J_{m} w$ is an $A_{\delta+\frac{p}{2}, k+1^{-}}^{p}$-jet.
We say $f_{i j}=f_{i}-f_{j}$ in $D_{i j}^{r^{\prime \prime}} \subset D_{i}^{r^{\prime}} \cap D_{j}^{r^{\prime}}$.
Using the Theorema 1.1 we can write

$$
f_{i j}=\sum_{|\gamma|=m+1} u^{\gamma} g_{i j}^{\gamma}, \quad g_{i j}^{\gamma} \in A_{\left.\delta+\frac{(m+1) p, k}{p}, D_{i j, \varepsilon^{\prime}}^{r^{\prime \prime}}\right) .}
$$

We define in D_{i}^{r} the function $g_{i}^{\gamma}=\sum_{s} \chi_{s} g_{i s}^{\gamma}$.
This function satisfies

$$
\sum_{|\gamma|=m+1} u^{\gamma} g_{i}^{\gamma}=f_{i}-\sum_{s} \chi_{s} f_{s}=f_{i}-g .
$$

By Lemma 4.4 we can take w_{i}^{γ} such that,

$$
\bar{\partial} w_{i}^{\gamma}=\bar{\partial} g_{i}^{\gamma} \quad, \quad w_{i}^{\gamma} \in L_{\delta+\frac{m p}{2}, k}^{p}\left(D_{i, \varepsilon^{\prime}}^{\gamma^{\prime \prime}}\right) .
$$

Moreover: using the Lemma 4.4, the Lemma 5.2 and (1.2) we have that

$$
h_{i}^{\prime}=w-\sum_{|\gamma|=m+1} u^{\gamma} w_{i}^{\gamma} \in A_{\delta+\frac{p}{2}, k+1}^{p}\left(D_{i, \epsilon}^{r}\right)
$$

and also $J_{m} h_{i}^{\prime}=J_{m} g$ on $Y \cap D_{i}^{r}$.
Hence, we have that $J_{m} g$ is a $A_{\delta+\frac{p}{2}, k+1}^{p}$-jet of order m on M.
By iteration of this method we obtain

$$
F=J_{m} h^{s}+J_{m} g^{s}
$$

with

$$
h^{s} \in A_{\delta, k}^{p}(D) \quad \text { and } \quad J_{2 n} g^{s} \quad \text { is in } \quad A_{\delta+\frac{s p}{2}, k+s}^{p} \text {-jet. }
$$

Now if we take s such that $t=k+s-\frac{n+\delta}{p}-\frac{s}{2}>k+\frac{1}{2}$, then (1.1), (1.4) and (1.6) shows that $J_{m} g^{s}$ is a A^{t}-jet of order m. Finally applying the extension result of A^{t}-jets (1.6) we can take a function h of class $A^{t}(D)$ such that $J_{m} h=J_{m} g^{s}$ on M and defining $f=h^{s}+h$ we end the proof.

References

1. Ahern, P., Bruna, J., Maximal and area integral characterizations of Hardy-Sobolev spaces in the unit ball of C^{n}, Rev. Mat. Iberoamericana 4 (1988), 123-153.
2. Beatrous, F., L^{p} estimates for extensions of holomorphic functions, Michigan Math. J. 32 (1985), 361-380.
3. Beatrous, F., Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116.
4. Beatrous, F., Burbea, J., Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
5. Berndfsson, B., Andersson, M., Henkin-Ramirez Formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (1983), 91-110.
6. Bonneau, P., Cumbnge, A., Zériahi, A., Division dans les espaces de Lipschitz de fonctions holomorphes, C. R. Acad. Sc. Paris 297 (1983), 517-520.
7. Bruna, I., Burgués, J. M., Holomorphic approximation in \mathcal{C}^{m}-norms on totally real compact sets in C^{n}, Math. Ann. 269 (1984), 103-117.
8. Bruna, J., Ortega, J. M., Traces on curves of Sobolev spaces of holomorphic functions, Arkiv Mat. 29 (1991), 25-49.
9. Cumenge, A, Extension dans les classes de Hardy de fonctions holomorphes et estimations de type "Mesures de Carleson" pour l'equation $\bar{\partial}$, Annales de l'Institut Fourier 33, 3 (1983), 59-97.
10. Dautov, S. A., Henkin, G. M., The zeroes of holomorphic functions of finite order and weight estimates for solutions of the дु-equation, Math. USSR Sbornik 35 (1979), 449-459.
11. Ortega, J. M., The Gleason problern in Bergman-Sobolev spaces, to appear in Complex Variables.
12. Ortega, J. M., Fàbrega, J., Extension of A^{t}-jets from holomorphic submanifolds, to appear in Math. \%.

Departament de Matemàtica Aplicada i Anàlisi Facultal de Matemàtiques Universitat de Barcelona Gran Via de les Corts Catatanes 585 08007 Barcelona SPAIN

