Pub. Mat. UAB Vol. 28 Nº 2-3 Set. 1984

ON A CERTAIN TYPE OF PRIMITIVE REPRESENTATIONS OF RATIONAL INTEGERS AS SUM OF SQUARES Angela Arenas

Introduction.

It is well known that a positive integer not of the form $4^a(8m+7)$ can be expressed as a sum of three integer squares. Dirichlet (cf. [1]) proved that a positive integer admits a *primiti*- v_e representation as a sum of three squares if and only if it is not of the form 8m+7 or 4m.

An interesting problem is to consider integers n which admit a representation as a sum of three squares with one summand prime to n. Of course, such a representation is *primitive*. This type of representations appears in the resolution of some Galois embedding problems (cf. [3]).

Obviously if n admits a primitive representation as a sum of two squares, (i.e. if $4 \nmid n$ and no $p \equiv 3 \pmod{4}$ divides n), then each summand is prime to n. Hence, the problem makes only sense for the integers which admit a primitive representation as a sum of three positive squares. These integers were characterized by A. Schinzel ($\{2\}$).

We have checked with a computer that for every Schinzel integer <10000, there exists at least one representation as a sum of

three positive squares with a summand prime to n.

In the present paper, we show that for some Schinzel integers, each *primitive* representation as a sum of three *positive* squares has at least one summand prime to n (Th. 1).

Moreover, we show (Th. 2) that given a prime number p > 2, its powers always have a representation as a sum of p squares prime to p. This statement for p=3 was first made by E. Catalan (cf. [1]).

We recall that a representation of a positive integer n as a sum of three squares $n = x^2 + y^2 + z^2$; $x,y,z \in \mathbb{Z}$, is said to be *primitive* if (x,y,z) = 1.

<u>Definition</u>. We say that an integer n is a Schinzel integer if it admits a primitive representation $n = x^2 + y^2 + z^2$ with $xyz \neq 0$.

As it is proved in [2], an integer n is a Schinzel integer if and only if it satisfies the following two conditions:

- 1) $n \neq 0,4,7 \pmod{.8}$
- 2) n has a prime factor $p \equiv 3 \pmod{4}$ or n is not a "numerous idoneus" in the sense of Euler.

Theorem 1. If n is a Schinzel integer, and n has, at most, two distinct prime factors congruent to 1 or 2 (mod. 4), then every primitive representation of n as a sum of three positive squares has, at least, one summand prime to n.

The proof of the above theorem follows immediately from the

Lemma 1. If $n = x^2+y^2+z^2$ is a primitive representation of n as a sum of three positive squares and p is a prime factor of n which divides one of the summands, then p=1 or 2 (mod. 4).

Proof. Under these conditions -1 is a square (mod. p).

Another consequence of this lemma is the following:

Corollary 1. If $n = x^2+y^2+z^2$ is a primitive representation of n as a sum of three positive squares and every prime p which divides n is congruent to 3 (mod. 4), then (x,n) = (y,n) = (z,n) = 1.

Remark.

Theorem 1 is not true for an arbitrary n, for example, 870 = 2.3.5.29 is a Schinzel integer which admits the primitive representation: $870 = 2^2 + 5^2 + 29^2$.

Let us now consider the problem of representations of the powers of an odd prime p as a sum of p squares.

Theorem 2. Every power of a prime p#2 can be represented as a sum of p squares prime to p.

Proof. Let p be an odd prime and A=p-1. Since the norm N in $\mathbb{Q}(\sqrt{-A})$ is multiplicative, we obtain in $\mathbb{Z}[\sqrt{-A}]$ the identity:

$$(\,x_1^{\,2}+Ay_1^{\,2}\,)\,(\,x_2^{\,2}+Ay_2^{\,2}\,) \ = \ (\,x_1^{\,2}x_2^{\,}\pm Ay_1^{\,}y_2^{\,})^{\,2} \ + \ A\,(\,x_1^{\,}y_2^{\,}\mp x_2^{\,}y_1^{\,})^{\,2}\,.$$

So we have, $(x_1^2 + Ay_1^2)^n = X_n^2 + AY_n^2$. From this we get the following recursive formulae:

$$X_{n} = X_{n-1} x_{1} \pm AY_{n-1} y_{1},$$

$$Y_{n} = X_{n-1} y_{1} + Y_{n-1} x_{1}$$

Clearly, $p = N(x_1 + \sqrt{-A} y_1)$ for $x_1 = y_1 = 1$, hence $p^n = X_n^2 + AY_n^2$, where X_n and Y_n are given by the above formulae.

Thus, every power of p > 2 can be written as a sum of p squares, being p-1 of them equal. One can easily see by induction that if X_{n-1} and Y_{n-1} are prime to p, then X_n and Y_n can be chosen to be so.

The values of X_n and Y_n can be explicitly given, in fact:

$$X_{n} = \frac{(x_{1} + y_{1} \sqrt{-A})^{n} + (x_{1} - y_{1} \sqrt{-A})^{n}}{2}, \qquad Y_{n} = \frac{(x_{1} + y_{1} \sqrt{-A})^{n} - (x_{1} - y_{1} \sqrt{-A})^{n}}{2\sqrt{-A}}$$

with $X_n, Y_n \in \mathbb{Z}$, $n \in \mathbb{Z}^+$.

We give now another proof of theorem 2. This new proof yields various representations of p^S as sum of squares prime to p. In particular, we can get different representations from the one obtained in the first proof. Let us consider the bilinear form:

$$z^k \times z^k \longrightarrow z$$

(a,b) $\longmapsto a \cdot b = \sum_{i=1}^k a_i b_i$,

with $a=(a_1,\ldots,a_k)$, $b=(b_1,\ldots,b_k)$. Let $q(a)=a \cdot a=\sum_{i=1}^n a_i^2$, be the associated quadratic form; then the equation $q(Xa+Yb)=q(a)^2 \cdot q(b)$ has at least two integer solutions given by $(x_1,y_1)=(0,q(a))$ and $(x_2,y_2)=(-2ab,q(a))$.

Proposition 1. If an integer is a sum of k squares, then so are its powers.

Proof, Let

$$n = \sum_{i=1}^{k} a_i^2, \quad a_i \in \mathbb{Z}, \quad i=1,...,k.$$

We show by induction, that n^t is a sum of k squares, for every $t \in \mathbb{Z}^+$. We now distinguish two cases:

i) Let t be even, t=2s, $s \in \mathbb{Z}^+$. From the identity:

$$\left(\sum_{i=1}^{k} a_i^2\right)^2 = (-a_1^2 + a_2^2 + \dots + a_k^2)^2 + (2a_1 a_2)^2 + \dots + (2a_1 a_k)^2, \quad (1)$$

we deduce that n^t is a sum of k squares, because $n^t = (n^s)^2$ and, by induction, n^s is of this type.

ii) Let t be odd, t=2s+1, $s \in \mathbb{Z}^+$. It follows that

$$\left(\sum_{i=1}^{k} a_i^2\right)^2 \left(\sum_{i=1}^{k} b_i^2\right) = \sum_{i=1}^{k} c_i^2,$$

with $c_i = q(a)b_i - (2ab)a_i$, i=1,2,...,k. From this identity we get that n^t is sum of k squares, because $n^t = (n^s)^2 n$.

Second proof of theorem 2. If p is an odd prime, then p admits the obvious representation as a sum of p squares $p = b_1^2 + \ldots + b_p^2$ given by $b_1 = \ldots = b_p = 1$. Then from proposition 1 we obtain that every power of p is a sum of p squares. Let us see that they can be chosen to be prime to p. As before, we distinguish two cases:

- i) Let t=2s, $s \in \mathbb{Z}^+$. If by induction a_1, \dots, a_p are nonzero in \mathbb{F}_p , so are $2a_1a_j$ for j=2,...,p. Since p > 2, the rest follows immediately from (1).
- ii) Let t=2s+1, $s\in\mathbb{Z}^+$. We have $p^t=(p^s)^2p$, where $p^s=a_1^2+\ldots+a_p^2$, $(a_1,p)=1$, $i=1,2,\ldots,p$ (by induction), and $p=b_1^2+\ldots+b_p^2$, $b_1=\ldots$ $\ldots=b_p=1$. By proposition 1 we have

$$p^{t} = \sum_{i=1}^{p} c_{i}^{2}, c_{i} = q(a)b_{i}-(2ab)a_{i}, i=1,...,p.$$

As $-2ab = -2(a_1 + \ldots + a_p)$, we can always suppose that $-2ab \ddagger 0 \pmod p$. Since $p^S \equiv 0 \pmod p$, we get $c_i \equiv (-2ab)a_i \pmod p$, hence, the integers c_i , (i=1,...,p), are also prime to p.

REFERENCES

- L.E. Dickson, History of the Theory of Numbers. Vol. II, p. 267 (1919).
- [2] A. Schinzel, Sur les sommes de trois carrés. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7, pp. 307-310 (1959).
- [3] N. Vila, Sobre la realització de les extensions centrals del grup alternat com a grup de Galois sobre el cos dels racionals. Pub. Mat. UAB 27, núm. 3 (1983), 43-143.

Rebut el 19 de març del 1984

Departamento de Algebra y Fundamentos Facultad de Matemáticas Universidad de Barcelona. C/ Gran Via, 585 Barcelona 7.

SPAIN