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ON A CERTAIN TYPE OF PRIMITIVE REPRESENTATIONS

OF RATIONAL INTEGERS AS§ SUM OF SQUARES
Angela Arenas

Introduction.

It is well known that a positive integer not of the form
4a(Bm+7) can be expressed as a sum of three integer squares.
Dirichlet {cf. [1]} proved that a positive integer admits a primiti-
ve representation as a sum of three squares if and only if it is not

of the form 8m+7 or 4m.

An interesting problem is to consider .integers n which admit a
representation as a sum of three squares with one summand prime to n.
Of course, such a representation is primitive. This type of represen-
tations appears in the resolution of some Galois embedding problems

fef. [3]).

Obviously if n admits a primitive representation as a sum of
two squares, (i.e. if 44n and no p2 3 (med. 4) divides n), .then each
summand is prime to n. Hence, the problem makes only sense for the
integers which admit a primitive representation as a sum of three
posttive squares. These intepers were characterized by A. Séhinzel

({23

We have checked with a computer that for every GSchinzel

integer _(_10000, there exists at least one representation as a sum of
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three positive squares with a summand prime to n.

In the present paper, we show that for some Schinzel integers,
each primitive representation as a sum of three pgsitive squares

has at least one summand prime to n {(Th. 1).

Morecver, we show {Th. 2} that given a prime number p> 2, 1its
powers always have a representation as a sum of p squares prime to p.

This statement for p=3 was first made by E. Catalan (cf. [1]).

We recall that a representation of a positive integer n as a sum
2 2 2 . ) e s
of three squares n = x +y +z ; x,¥,2€%Z, is said to be primitive

if (x,y,z} = 1.
Definition. We say that an integer n is a Schinzel integer if it ad-
. . s : . 2 2 2 .
mits a primitive represéntation n = x“+y“+2° with xyz £0,
As it is preved in {2], an integer n is a Schinzel integer if
and only if it satisfies the following two conditions:
1} nt 0,4,7 {(mod.B)
2] n has a prime factor p=3 (mod. 4) or n is not a "numerous ido-

neus" in the sense of Euler.

Theorem 1. If n ig g Schinzel integer, and n has, at most, two dis-
tinet prime factors congruent to I or 2 (mod. 4), then every primiti-
ve prepresentation of nas a swit of thrse positive squares has, at

least, one swmmand prime to n.
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The proof of the above theorem follows immediately from the

Lemma 1. If n = x2+y2+z2 18 a primitive representation of n as a sum
of three positive squares and p I8 a prime factor of n which divides

one of the swmmands, then p=1 or 2 (mod. 4).

Progf. Under these conditions -1 is a square {(mod. p!l.

Ancther consequence of this lemma is the following:
2.2 2 . .- -
Corollary 1. If n = x“+y"+2" 18 a primitive representation of n as &
sum of three positive squares and every prime p which dividesn is

congruent to 3 (mod. 4), then (x,n} = (y,n} = {z,n} = 1.

Remark.
Thecrem 1 is not true for an arbitrary n, for example, 870 =
= 2.3.5.29 is a Schinzel inteper which admits the primitive represen-

taticn: 870 - 22+52+292.

Let us now consider the problem of representations of the powers

of an odd prime p as a sum of p squares.
Theorem 2. Every power of a prime pf2 can be represented as o sum of
P squares prime to p.

Proof. Let p be an odd prime and A=p-1. Since the norm N in

Q(Y<A) is multiplicative, we obtain in z [ ¥“A ] the identity:

2 2 2 2 2 _ 2
()& +Ay J(>§+Ay2) = (x1x2 iAylye} + A(x1y2+-x2yl)



E)n

So we have, (xf+ayl =.Xi+AY§. From this we get the following re-

cursive formulae:

n = R ¥ Yn—lxl

' n 2 2
Clearly, p = N(x1 + VoA yl) for x,=y,=1, hence p = XT+AY ,

where Xn and Yn are given by the above formulae.

Thus, every power of p> 2 can be written as a sum of p sguares,
being p-1 of them equal. One can easily see by induction that if xn 1

and Yn—l are prime to p, then‘}(n and Yn can be chosen to be so.

The values of Xn and Yn can be explicitly given, in fact:

. (x 4y /=AY & (x -y, /=AY . (xy vy /R =l -y 780"

n ] o 2/-a

with X ,¥ € &, nez'.
n mn

We give now another proof of thesrem 2. This new proof yields
various representations of ps as sum of sguares prime to p. In
particular, we can pget different representations from the one ob-

tained in the first proof. Let us consider the bilinear form:
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n 2

with a:(al....,ak). b o= (bl,...,bk)- Let gfal= a-a = io1 340

be the associated quadratic form; then the equation qi{Xa+¥b)

= q(a)e-q(b) has at least two integer solutions given by (xl.yl} =

= (0,g(a)) and (x2.y2) = (—2ab,q{a}).
Propesition 1. If an integer is a swm of % sguares, then so are 1iis
powers .

Proof. Let

We show by induction, that nt is a sum of k squares, for every tez'.

We now distinguish two cases:

i} Let t be even, t=2s, s€Z'. From the identity:

I .+212)2 + (2a

a k

g
M
1l
—
&
fag N}
+
Y

2 2 .
ag) + ... + (2a ak) , {1}

1 1

t 2
we deduce that nt is a sum of K squares, because n = (nS) and, by

induction, ns is of this type.

ii) Let t be odd, t=2s+1, s&Z’. It follows that

? 2 g S
a? b? = cz.
1 1 1

i=1 1= 1=

with ¢, = q(a)bi - (2ab)ai, i=1,2,...,%. From this identity we get

t t 2
that n  is sum of k squares, because n =(ns) .
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Second proef of theorem 2. If p is an odd prime, then p admits
the obvious representation as a sum of p squares p = bi+...+bi given
by b1=...=bp=1. Then from proposition 1 we obtain that every power

of p is a sum of p squares. Let us see that they can be chosen to be

prime to p. As before, we distinguish two cases:

i} Let t=2s, sex’. If by induction al,...,ap are neonzero in ¥ _, so
are 2alaj for j=2,...,p. Since p >2, the rest follows immediately
from {(1).

ii) Let t=2s+l, seZ'. We have pt=(ps)2p, where psza%+...+a
{a;,p) =1, 1=1,2,...,p (by induction), and p = b21+...+b§. b= ..
...=bp:1. By proposition 1 we have

t i 2 R _ L .

P o= 2 e ¢, = cl(a)toi (2ab}a;, i=1,...,p
Az —2ab = —2[al+...+ap), we can always suppose that -2abi 0 (mod p}.

Since pSE 0 (mod p), we pet c; s (—2-’3‘1::)3:,L {mod p}, hence, the inte-

gers Ci' {i=l,...,p}, are also prime to p.
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