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The situdy 0§ efementary functions, that is, of those
functions buift up by using nationaf functions over £, Exponen-
tials, Loganithms and Algebraic operations, began somewhat ALs-
tematically with the divense wonks that Joseph Liouvillfe did in
the 1830%s. Although his capital aim was to obtain some result
aboui the intfegration by means of elementary functions, afong -
his way he had to study aspects more cincunscaibed Lo the stauc-
tune o4 these funcidions. About -the §inst podint we must say thai,
centainly, Liouville obtained a nesult that, even {mpnoved since
that time, has not changed essentially. Tt sufices, fon exemple,
to compare the work of Liouville given 4in [?] and Rosenlicht's -
in [6]. We can obseave then that the introduction of new Zangua-
ge and new theenique has only finealized the problem, making clear
which propenties of efementary funciions charactenrize them.

Using this new Language and new theenique {t is possi-
bee deal mone cleanlfy with some questions about efementary func-
tions. For exemple, thein innedundancy, that was afready establi-
shed by Licuvifle himseld <in [21 and Hardy <in [1). Now, the {rne-
dundancy £{s a consequence 0f an Sthauctune theorem (1.2) that we
can quikfy give by using Rosenlichi's thecniques. Alsco, the not
sdofvability by means of elementary functions of centain classi-
cal transcendental equations can be casify estabfished. We atu-
dy Lhds in Section 2. Ancthen treatment of the Staucture theoren
and Laredundance quedtions (but not using Resenficht's thecniques)
can be found in the Risch's papen [5]. '



1.~ AN STRUCTURE THEOREM,

First some definitions. All fields will be conmutative and of

characteristic zero.

1.4, Remember that if £ is a field, a map D:E ~* E is a derivation

of E if: (1) ¥x, yEE DOxty) = D(x) + D(y), (2)Vx,y€E Dlxy) = xD{y) + yD(x}.
It follows from (2) that D(1) = O, hence by (1) D(z) = 0 Yz€Z, The set

CD = {x€E/ D(x) = 0} is the set of constants of D. Given that VXEE

D(x™) = nD(x)xn_l, D(x_l) = -»D{x)x_1 we have that € is a subfield of E.

A field E with a family of derivations A is a differential field;

then, C = N CD i5 the field of constants of the differential field E.
DEA
Let ECF two differential fields. The extension ECF is differential if

‘dneap, D|Eea

B Although two different derivations of d; can coincide

over E, we won't distinguish betwen QE and ﬂF. Let CE‘.’ CF be the respec-
tive constant fields. We have CECCI-“ When the equality holds we say that
the extension is with the same field of constants.

EXEMPLES: {E(Xl, ey Kn) with a4 = (G;é‘xi)i-l is a differential field,

=l,..m

E(X) T¢Lx, ex) is a differential extension with the same field of comstants.

1.B. The elementary nature is then formulated in the next way: let E
be a differential field; x, yESE. Then

-y = Log{x) ** Dy = 1'.'.'lx;’x VDG& (y ias Logarithm of x)

- ¥ = Exp{x} = Dyfy = Dx ‘DE:‘.‘. (y is Exponential of x)
If ECF is a differential extension, yEF is Elementary over E if and on-
1y if

- either y is algebraic over E
- or ¥y = Log(x) being xEE
- or y = Exp{x) being xE€E,
The differentisl extension ECF is Elementary if F = E(Gl, caey Sn) with

91 elementary over E, and Gi elementary over E(Gl. veny ei—l) ‘192. Then,
Cardﬂ.E = Cardﬂl__.

1.C. The tool wich allow us to liearize the arguments is the Module
of Differentials. A fast construction of it (sufficient for us) is the

following:



let ECF be fields and consider the F-vector space generated
by the symbols {dX}xEEF‘ Let us impose them the following relations:

(1) ¥ x, yEF d(x+y) = dx + dy

{2) “ x, YEF d{xy) = xdy + ydx

{3) Ver dx = 0,

Then we get a F-vector space called the Module of the Differentials of

c .
ELF. Its symbol is anE'

Remember too that if {xi}i-i ¢ are elements of F, then they

are algebraically independent over E if and only if the family {dxi}i=l .

. So Tr.deg. F = dimF(Q?/E)- {see [6},

is F-lineary independent on QF/E

Prop.3 )
The next result, due to Resenlicht, is a fundamental one for

this work:

1.1,- THEOREM. Let ECF be a differential extension with the same
field of constants, Let C be this field and take ¥is svey ¥ _EF, 2z
1 *n
.. CF- ‘.
» Z, F-{0} and {clj}

e
oC € such that Ni=1,...,n, YDEa

i=1...
i=l...r
T
.Dz. + . € E.
{1) jgl ciJDzJIZj D)r1 E. Then

veny zr)2¥n

- either Tr.deg.EB(yl. wrer Yoo Zgs

= or the n elements of :
: Be /e
jgl cijllzdzj + dyi ,i=1, ..., n are C-lineary dependent,

Proof: see Theorem l, of [6],

1.D. Let F be a differential field. We say that the equality Y = Log X

has a soluticn in F if there are elements x, yEF verifying it. It is na-
tural, then, to ask haw many solutions of this equality there are in an
elementary extension ECF., The following theorem, from wich Risch gives
another version im [ 5], answers this question, Previously some notation:
let ECF be an elementary differential field extension with the

same field ¢f constants: ECF = E(GI, ey Bn). Let
YI = Log Ryp wees yr = Log x

the not algebraic cases among the Gi's; that is, r = Tr.deg.EF and for



each ei not algebraic ( over the preceeding subextension } there exists
xj or Yj such that ei = xj or yj depending on whether Gi is Exponential
or Logarithm, Suposse they are arranged according to their order of appa-

rance and that B is an algebraic closure of E.

1.2.- Theorem. {n the abovementioned hypothesis if the equality ¥ =

= Log X holds in F, for any solution x, v there exist ¢,, ..., cr‘EC, £,

1
g €EENF, and Nis eony B, n€Z such that

n n
it r
+ + e = cae = .
¥ clyl + Cryr £ + x xl Kr £

Proof: if the equality holds in P we can consider the system

1 - = c
‘ i Dyi DinXi O0<E

Dy - I/xDx = 0EE \i BEA ,

8y Theorem 1.1 we get

- either Tr.deg.EE(yl, cens Yoo ¥s Xy eees X x) S r+l

- or the elements of QFIE 3 (dyi - 1/xidxi), i=1, ..., 2,
{dy - Ifxdx) are C-lineary dependent.
Here it is clear that ounly the second condition is possible.

So there exist Cys cees c€C not all zero such that

r
(1) e(dy - 1/,dx) + izl oy (dy, ~ I{xidxi) = 0,

We can also take ¢ ¥ 0 since otherwise

(s ks |

L ci(dyi - llxidxi) = 0,
But if ¥ = ej for seme j, because of the elementarity of ECF, each dyi,
dxj except dyr is a linear ccmbipation of the preceeding r-1 d@s with coe-
fficients in F. But they are F~lineary independent beacuse of 1,C, So €, =0,
The same happens if x, = Oi for some i, Appliyng repeatdly this argument

we get ¢, T ... = cr = {, not possible.

1
Hence, dividing by ¢, we can assume

e = vew + .
{2y dy + ¢ dyl + + crdyr Ifxdx + clllx dx1 + crlfx dxr

1 T

Consider now a maximal Q-lineary independent system among the

L



{1, €.y enas cr} H {el, I ek} such that e = 1. Then

1
'{i HE ‘E q..e g.. €Q \11 3. Therefore
PO % S » 1
k
+ ...+ = .e, PP
lfxdx + cllfx dxl crlfx dxr ellfxdx + _Z qlJedeI + +
1 r j=1
k T r
+ _Z qrjejilx dx = el(l;’xdx + _E qillfxidxi) + ees + ek(_z Qg 1/, dx) =
j=1 r i=1 isl i
= e, 1/ df, =+ + e 1f_df bein £ = qull xqu
e T T e T A S g % 1 %
PRI VI
K 1 e X -
Then

(2*) d{y + ¢

dy; + ... * crdyr) =e 1/  df + ... % «zkllf df, .

1

L 1 K

By Prop 4. of 16] we have
-y + €Yy R R ey, " gEENF
- g eEnr Y1,
911 el
r

So e SENF . But if ‘x 94y = milfm » Mgy nEZ we get

XX, .. X = f€ENF, q.e.d.
i T

Sometimes it is possible to give a complete description for the
solution of Y = Log X. This happens when E is a classical differential
field :

i.3.— Theorem, . On the hypothesis of Theorem 1.2, supose moreover that
E = C{z}, C the field of constants of E and z¢&C such that ‘BEQ DzecC.

Then, any solution of the equality can be writtem in the form

= oot +
R b | C¥e T €
c e
X =K e X ¢' , being Cyr sees creQ, c, c'EC.

Proof: applying the same argument used in 1,2 and taking the system
Dz&C
¥ioy, - I>xi!xi = gec

Dy - I)x..’x = 0EC vDGQ .



we get there exist Qyr seor qrEQ such that

q

U
xx. t... x T€CNF,
1 r

But any derivation has only one extension for an algebraic extensicon of E
(8] cap. 2, 17, Cor. 2}. So CNF is a field of constants and given that

ECF is an extension with the same field of constants we have C = CNF,

Therefore q q
(1) x = xll... xrrc’ , ¢'€C. Deriving (1) yields
q q
. 1 v q q
€ = = =
{oea, ny Bx/ = Dlx s x_ ”(xll... X

qlnxllxl + ...+ qrnxr/xr. So

Y = a4y * e 9.y +¢, ¢c€C, q.e.d.

q q
Remark: it can happen that xll... xrr & F. However, it is an algebraic

point that doesn't disturb the elementarity of the process.

2,- SOME CONSEQUENCES.

2.A. The firstconclusion we draw from 1. is that we'll name The Irre-

dundance of E_lementary Functions. This means that building up elementary

extensions by means of algebraic elements, logarithm elements or exponen-
tial elements are completly independent processes: no one of them can be
obtained from the others.

In order to set the problem we'll use an adecuate lanpuage; we
aay that the differential extension ECF is Algebraic if the field exten~
sion ECF so is; it is Logarithmic if F = E(GI’ ey Gn) such that GI =
Log¥|, ¥, €E, 0, = Log¥,, ¥ €E(0,, ..., 6,_,) Yi>2. Changing Log by

Exp we have an Exponential extension.

2.1.- Leﬁma. Let ECF = E{9) be a differentialextension with the
same field of constants C and 9 € E.

(1) 1£ ¥nes BGEE, then 0 is transcendental over E.

(2) 1£ Yoes DO/, €E, then © is .algebraic over E if and only
if there exists n€N such that OnEE, and the irreducible polynomial of

9 over E is X© - e“, n being the least of these naturals.



Proof: assume & to be algebraic over E and let P(X) = O+ alxn-l + . *

+ an_lx + a ke the irreducible polynomial of ©. Then

(*) @ + alen'l +..%a 8+a =0,

(1) Deriving (*) we get ‘DEL\, (Dal + nne)e“'l + ... =0,
Given that P(X) is the irreducible polynomial of & over E we have that
YD€a pa, + abo = 0. So \JDE.{\ DG = D{-a /n} and &+ alfn is a constant.

1l
Due to ECF is with the same field of constants we get OEE, not possible,

{2) Now it suffices to prove that ¢" €E, Deriving {*) we get
VDEQ nDG/GGn + (Del1 + (n-1)DG;’G)G“_1 + ... I}.an = 0. But a 4 0, so
= o) (= = = = n = ]
Dan nDO!eanVD A. Hence ‘Dan)"an nDG/e Dan/an De fen D(an/en) 0

Y pea, so a /n€CCE, and o"€E, q.e.d.

2,2,~ Theorem. Let E be a differential field with field of constants
C. Let ECF = ’E(el, caay G::) be an elemental differential extension with
the same field of constants. Then:

{a) When F is Logarithmic, ECF is a purely transcendental ex~-
tension, If ECF is Exponential, ECF is purely transcendental unless the-
"y

nr .
8 ... B8 €E.
1 r

re exist o N anZ such that

1’
iet xEE.

(b) The equality Y = Log(x) never holds in F-E if ECF is Alge-
braic or Expecnential.

(¢) The equality Y = Exp(x) never holds in F-E if ECF is Loga-
rithmic, and if there is a solution when ECF is Algebraic then there e-
xists nEN such thar ¥ €E.

Moreover, if E = C{z), 2 € C, Dz EC \dhEA being C the field
of censtants of E, C algebraicdlly.-closed, then there are not exceptions
for the case {(c).
Proof: {a) The stament is an easy consequence of lemma 2,1 for the Lo-
garithmic case. Assume that ECPF is Exponential and not purely transcen-
dental extension. By Lemwa 2.1 there exists Bs, pEN such that eiGE(el,
caey ©

vees es-l)' Let 0, the first of them, that is, © are algebraic

k 1* k-1
independent over E and OEEE(GI, ey ek——lj' Then by Theorem 1.2 we get
the stament.



(b) Let ¥ be a aclution. Then, VDEA Dy = Dx/x. Since x €E we
can take the differential extension ECE(y). By 2.1 y is not algebraic o-
ver E, Suposse now ECF is Exponential. Then, by 1.2 we pet there exist

€. 4 --=y ¢ €C, n, 0, , 4., n,E Z such that
! " | 1y n, n,
= a_ *1 o
y + ey ‘Pi + ...+ e ‘l"i CENF, x 01‘. e ei €ENF,

171 k k 1 k

being ei y eauy ei a maximal algebraically independent system over E among
1 k

B, +vsy. @ like in 1.D.
1 r

But x€E: so D 5 .ea-y N, are 0, and looking in 1,2 for the
1 k

construction of these naturals we have €i T e =T ¢. Hence yEEnF,
not possible as we have proved above. 1 >

{c) The Lemma 2.1 assure us that if y is alpebraic over E then
there exist n €N such that ynEE. Suposse ECF is Logarithmic., By 1.2 we

have there exist n,, ..., n_, n€Z, ¢

eevsy & _E€C such that
1 Y

1’
n
x40+ ...+ CrereE F, y¥

Now, by Lemma 2.1, ©

1 Te o

... ¥ FEENF,
r

17 tree er i3 an algebraicdly independent

system over E, s0 € ™ eer =g = 0, and m === 0 { look for the

construction of Dyy sees B in 1.2 ). Hence yEENF = E, not possible.

On the assumtion that E = C{(z) ..... , the stament is consequen-

ce of aplying Thecrem 1.3 to ynEE = 0{z).
Remark: an example that give us an exception for (a} is:

E = ¢(z) (EXP(2Z+222)), F = E{Expz, Expzz). Then, Exp(z-i-z.z) EF-E

and is algebraic over E,

Z.B. The question of whether some transcendental equations can be

solved by means of elementary functions sometimes can be answered using

the Structure thecrem 1.2, Let us see two classical examples:

assume ECF is a diffrential extension with the same field of
constants. Let C be this field and E = C(z) such that ﬂ DEA DzEC, z £ C.
Suposse C is algebraically closed and ECF Elementary.

Consider the equation af = Log(BY) a, BEE.

12



Suposse there is a solutieon in F, y. Using the same notation of 1.3 we get

‘1 “a -
1...x , y=c+cly1+...+cnyn,

= CX
¥ n

¢, cEC, Cys ees CHGQ. Passing to the Module of differentials, RF,‘E’ we

have
cl “n ©1 cn
t P
o ((x1 ves X )Cluxidxl + ...+ (x1 P xnl)cnlfxndxn)
- ' =
cldyl + ... + cndyn , o ac/B .

But taking the Module of differentials respect on the penultima-
te subexrension not algebraic and taking into account 1.C we have that

[ T
r ]. n = 1 = =
a (xl SRR )cnll!xndxn cndyn , where dxn 0 or dyn 0 becau
se of the elementaricy of ECF, being one of them not zero. Therefore e, =
= {; repeating this argument we have e; = 0 Hi. Consequently, any solu-
tion is trivial.
As a particular case and taking E = £(z) we have that the equa-

tion Log(Y) = Y!z has not solution by means of elementary funcrions.

With the same hypotesis consider now the equation

(*) Y + a = BExp(yY}.+ B'Exp(-yY¥), &, B, B', YEE.

Let y be a solution, YEF. We can suposse also that Exp{yy)€F. Then by

1.3 and with the same notation we have
() yy = et ey sty o, c€C, Clr rens anQ.
Substuing for yy in (*) we get that

C [+ -C -

y+a-= Bxll... X “.+.Sixl l... X " (where we have operated
n

adequatly 8, B').

Passing now to the Module of differentials ﬂF/E we get

c c -c -c
ay = T80 een x Mo il axg + By Tee x eV dxg
1 1 1 1
But taking into acccount (**} we have that
©1 n “ “a
I.J'Y(clr:ly1 + ... + cndyn) = z S(:u:IL eer X )cillxidxi + ; B!(xl ces X h)

(—ci) le _clx‘_.L .
1



If as above we take now the Module of differentials respect on
the penultimate subexetension not algebraic we get only
€1 “n b _cn
1/ dy = vesw - B .
c /Y Y B(xl X, )cnlfxndxn B (x1 x }cn”xndxn
It follows from the elementarity of ECF that either dxn or dyn = 0, one
of them being net zero. Then
-dxnﬂo =cn=0.
2¢ 2c
1 n

eee X = B'!BEE.

-dy =0 = either ¢ =0 or x
n - n 1 n

The last equality can hold in F, but if we assum that B, B', yEC then

ch 2c

Xy e x feg = Yy €C * y€C. Repeating this argument we conclude that

if B, B', y€C any solution of (%) is constant, that is, trivial.
Taking E = €(z), « = -z, B" = - = =h/2i, vy = i we getr that the
equation Y = z + hsin(¥), hE€¢ (Kepler's equation) has not a solution by

means of elementary functions.

2.C As a final aplication of 1.1 we give a result of Ostrowski pro-
ved in [4]; this is an example of how the methods purpesed by Rosenlicht
simplifie the arguments. The result permet, under certain ¢onditions, to

transform algebraic relations into linear relations.

2.3,-Proposition, Let ECF be a differential extension with the same

field of constants, C. Let Yys seen ¥y be elements of F such that VDE&
DyiEE Vi. Then, if Yys ---2 ¥, are algebraically dependent over E there
are ¢

viay ¢_EC such that ¢ + ... +cy EE,
n TN

1 1”1
Proof: given that Yp» +ee» ¥ are algebraically dependent over E, by 1.1

we get that dyl, trey dyn €q are C-lineary dependent. 3¢ there exist

F/E
1S3 . = (.
Cps eees € C such that cldyl + ..+ cndyn 0. So d(t:l).r1 + + cnyn)

= EEC €

0 and by 1.C ¢ ¥, ¥ eeo +cy EECF. But D(e,y, + +cy )EE (hyp),
so by Lemma 2.1 we get that eyt # cnynEE q.e.d..
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