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The ztudy o6 elementany 6unct.íon4, that .íz, o6 thoee
6unct.íon4 buílt up by u4 .íng xat.íonal 6unct.íonz oven Q, Exponen-
tíalz, Logan.íthmz and Algebna.íc opetat.íon4, begán zomewhat z .íz
tematt.cally w.íth the d.ívenze wohk4 that Jozeph L .íouv.ílle d.íd in
the 1830'4 . Although h.íz capital a,ím waz to obta.ín tome tezul.t
about the .íntegnat.íon by mean4 o6 elementany 6unet.íona, along -
h.íz way he had to 4tudy azpect4 morse c.ítcunzctibed to the ztnuc-
tune o6 these 6unet.íonz . About -the 6 .ínzt po .ínt we muzt zay tha.í,
cetta.ínly, L.íouv.ílle obta.íned a te4ult that, even .ímptoved z .ínce
that time, haz non changed e44entíally . It 4u6 .íce4, 6o~ ezemple,
to compare the wonk o6 Líouvílle g.íven in 121 and Rozenl.ícht'e -
in [6) . lde can obaenve then that the ínttoductíon o6 new langua-
ge and new thecníque haz only línealízed the ptoblem, makíng clean
whích pnopentíez o6 elementaty 6unetíon4 chatacteníze them .

U4íng thí4 new language and new thecníque .ít íz po4zí-
ble deal mote cleanly wíth 4ome queztíon4 about elementany 6unc-
tíonz . Fon exemple, theít ítnedundancy, that waz alneady eztabl.í
4hed by Líouvílle hímzel6 in [21 and Handy in [11 . Now, the ínne-
dundancy íz a conzequence o6 an Strcuctune theonem (1 .2) that we
can quíkly gíve by u4íng Ro4enlícht'z thecníquez . Alzo, the non
zolvabílíty by'meanz o6 elementany 6unctíonz o6 centaín clazeí-
cal tnanzcendental equatíon4 can be eazíly eztablízhed . (oe ztu-
dy thíz in Sectíon 2 . Anothen tteatment o6 the Stnuctune theoter,
and ínnedundance queztíonz (but non u4íng Rozenlícht'z thecníque4)
can be 6ound in the Rízch'4 papen [5) .



1 .- AN STRUCTURE THEOREM.

First some definitions . All fields will be conmutative and of
characteristic zero .

1 .A .

	

Remember that if E is a field, a map D :E -» E is a derivation
of E if :

	

(1) V x,

	

yE E D(x+y)

	

= D(x) + D(y),

	

(2) M x,y E E D(xy)

	

= xD(y) + yD(x) .
It follows from (2)

	

that D(1) = 0, hence by

	

(1) D(z) - 0

	

y zEz .

	

The set
CD = {x E E/ D(x)

	

= 0} is the set of constants of D. Given that

	

~ xE E
D(xn ) = nD(x)xn-1 , D(x-1 ) _ -D(x)x_ 1 we have that CD is a subfield of E .

A field E with a family of derivations A is a differential field ;
then, C = fl C is the field of constants of the dífferential field E .

DEA D

Let E C F two differential fields . The extension ECF is differential if
Y D E AF , DI E E AE . Although two different derivations of AF can coincide
over E, we won't distinguish betwen AE and AF . Let CE , CF be the respec-
tive constant fields . We have CE CCF. When the equality holds we say that
the extension is with the same field of constants . .
EXEMPLES : ¢(X 1 ,

	

. . ., Xn) with A = (ó/dx . )i=1 . . .n is a differential field .
1

C(X) C O(X, eX) is a differential extension with the same field of constants .

1 .B .

	

The elementary nature ís then formulated in the next way : let E
be a differential field ; x, y E E . Then

- y = Log(x)

	

-

	

Dy = Dx/x	D EA

	

(y is Logarithm of x)
- y = Exp(x)

	

b

	

Dy/y = Dx

	

DEA

	

(y is Exponential of x)
If E C F is a differential extension, y E F is Elementary over E if and on-
ly if

- either y is algebraic over E

- or y = Log(x) being xEE

- or y = Exp(x) being xEE .
The differential extension E CF is Elementary if F - E(O1 ,

	

. . ., On) with
01 elementary over E, and Oi elementary over E(O 1 ,

	

. . ., Oi-1 )

	

i>2 . Then,
CardáE = CardAF .

1 .C .

	

The tool wich allow us to liearize the arguments is the Module
of Differentials . A fast construction of it (sufficient for us) is the
following :



let E C F be fíelds and consider the F-vector space generated

by the symbols {dx}x E F . Let us impose them the following relations :

(1) d x,

	

y EF

	

d(x+y) = dx + dy

(2)

	

x,

	

yEF

	

d(xy)

	

= xdy + ydx

(3) ~xEE dx = 0.

Then we get a F-vector space called the Module of the Differentials of

E CF. Its symbol is S2F E'
Remember too that if {xi}i=1 . . .r are elements of F, then they

are algebraical ly independent over E if and only if the family {dxi}i=l . . .r
is F-lineary independent on 2F/E " So Tr .deg . EF = dimF(nF/E) " (see [6],

Prop.3 )

this work :

The next result, due to Rosenlicht, is a fundamental one for

1 .1 .- THEOREM .

	

Let E C F be a differential extension with the same

field of constants . Let C be this field and take y l , . . ., Yn E F,

	

z i s

	

. .
� ,

	

z r C,F-{0} and

	

{ciJ
" }i=l . . .nC C such that Y i = i,

	

. . ., .n,

	

Y D Ep

j=l . . .r

cijDzj/z . + Dyi E
J

E . Then

either Tr .deg . EE(y l , . . ., Yn, z l , . . ., z r ) >n

or the n elements of AF/E .

JLl
c ij 1/zdzj + dyi , i - 1, . . ., n are C-lineary

	

dependent.
r

Proof : see Theorem 1 . of [6j .

1 .D .

	

Let F be a differential field . We say that the equalíty Y - Log X

has a solution in F if there are elements x, y É F verífying ¡t . It is na-

tural, then, to ask haw many solutions of this equalíty there are in an

elementary extension E C F . The following theorem, from wich Risch gives

another version in [S], answers this question . Previously some notation :

let E C F be an elementary differential field extension with the

same field of constants :

	

ECF = E(O1 ,

	

. . ., en) .

	

Let

y l = Log xl , . . ., yr - Log xr

the not algebraic cases among the Oi 's ; that is, r = Tr .deg . EF and for



each Oi not algebraic ( over the preceeding subextension ) there exists
xj or yj such that Oi - xj or yj dependeng on whether 0i is Exponential
or Logarithm . Suposse they are arranged according to therr order of appe-
rance and that E is an algebraic closure of E.

1 .2 .- Theorem .

	

On the abovementioned hypothesis if the equality Y -

= Log X holds in F, for any solution x, y there exist c 1 ,

	

. . ., cr E C

	

f

gEE nF,

	

and n1 ,

	

. . . . nr ,

	

n EZ such that

Proof : if the equality holds in F we can consider the system

n n
y + c lyl + . . . + cryr = f , xnxl l . . . xrr =

Dyi - Dxi./x

	

= 0EE.1
Dy - 1/xDx = 0 E E

By Theorem 1 .1 we get

DEA

- either Tr .deg . EE(y1 , . . ., Yr , y, xl , . . .,

- or the elements of nF/E : (dy.i - 1/x .dxi), i - 1, . . ., r,
i

(dy - 1/xdx) are C-lineary dependent .

So there exist cl ,

	

. . ., cr , c E C not all zero such that

We can also take c ~ 0 since otherwise

But if yr = 0
J
. for some j, because of the elementarity of E CF, each dyi,

dx . except dyr is a linear combination of the preceeding r-1 dOs with coe-
J

fficients in F . But they are F-lineary independent beacuse of 1 .C . So cr =0 .

The same happens if xr = 0i. for some i . Appliyng repeatdly this argument

we get c 1 - . . . - cr = 0, not possible .

Here it is clear that only the second condition is possible .

r
(1) c(dy - 1/xdx) +

	

ci(dyi .- 1/x . dxi) = 0.

r
ei (dyi - 1/xidxi ) = 0 .

i=1

Hence, dividing by c, we can assume

g ,

(2) dy + c 1dy 1 + . . . + crdyr - 1/xdx + c1 1/xldx1 + . . . + cr1/xrdxr

Consider now a maximal Q-lineary independent system among the



{1,

	

c l ,

	

. . .,

	

cr }

	

:

	

{e l ,

	

. . .,

	

ek}

	

such that el -

	

1 .

	

Then

k
d i

	

:

	

ci -

	

L

	

qijej

	

, qij EQ Ji, j .

	

Therefore
j=1

k
1/xdx + c1 1/x dx1 + . . . + crl/x dxr - e1 1/xdx +

	

1 glj ej dx1 + . . . +
1

	

r

	

j=1
k

	

r

	

r
+ 1 grj ej l/x dxr - e l (1/xdx +

	

gill/xidxi) + . . . + ek ( z gikl/x dxi)
j=1 r

	

i=1

	

i=1 i

- el l/ f dfl + . . . + ekl/f dfk ,
1

	

k

Then
(2') d(y + c1dy1 + . . . + crdyr) - e1 1/f df 1 + . . . + ekl/ f dfk .

1

	

k
By Prop 4 . of 16] we have

- y + cly1 + . . . + cryr - g EE f1F

- fi CEf1F ~i .

So xxg11 . . . ., xgrl EE¡1F . But if ~i qij - mil/1 ' mil' mEZ we get
ml-l

	

m

	

_xmxl . . . xrrl = f EE f1F, q .e.d .

Sometímes it is possible to give a complete description for the
solution of Y = Log X . This happens when E is a classical differential
field

1 .3 .- Theorem .

	

. On the hypothesis of Theorem 1 .2, supose moreover that
E = C(z), C the field of constants of E and z iÉC such that ~ D r=,5

	

Dz E C.
Then, any solution of the equality can be writtcn in the form

y=clyl+ . . . +cryr+c

being f 1
q 11 qrlxx1 . ., xr

" qlk qrkfk - x1 . . . xr

x = x l l . . .

	

xrrc'

	

,

	

being c l ,

	

. . .,

	

cr E Q,

	

c,

	

c' EC.

Proof : applying the same argument used in 1 .2 and taking the system



we get there exist q l ,

	

. . ., qr E Q such that

xx l 1 . . .

	

xrrE

	

fl F.

But any derivátion has only one extension for an algebraic extension of E
([8] Cap . 2, 17, Cor . 2) . so Cf1F is a field of constants and given that
E C F is an extension with the same field of constants we have C = Cf1F.
Therefore

(1) x = x1 1 . . . xrrc'

	

,

	

c' E C. Deriving (1) yields
q l qrD E p

	

,

	

Dy = Dx/x ° D(x1

	

. . ., xr

	

)1(x11
' . .

	

xqr)1 r
g1Dx 1 /x + . . . + grDxr/x . So

1

	

r

y - gly l + " '

	

+ gryr + c

	

,

	

c E C,

	

q .e .d.

Remark : it can happen that x 1 1 . . . xrr 5E F . However, it is an algebraic
point that doesn't disturb the elementarity of the procesa .

2 .- SOME CowsEQUFNCEs .

2 .A .

	

The firstconclusion we draw from 1 . is that we'll name The Irre-
dundance of Elementary Functions . This means that building up elementary
extensions by means of algebraic elements, logarithm elements or exponen-
tial elements are completly independent processes : no one of them can be
obtained from the others .

In order to set the problem we'll use an adecuate language ; we
say that the differential extension E C F is Algebraic if the field exten-
sion E C F so is ;

	

it la Logarithmic if F = E(0 1 ,

	

. . .,

	

0n)

	

such that 0 1 =
LogT 1 , T 1 EE, 0 1 = Logf i , T i EE(0 11

	

. . ., 0i-1)

	

'Vi>2 . Changing Log by
Exp we have an Exponential extension .

2 .1 .- Lemma .

	

Let E C F = E(0) be a differentiaiextension with the
same field of constants C and 0 Y- E .

(1) If VD r=á

	

DO(-=E, then 0 is transcendental over E .
(2) If VD E p

	

DO/0 C=E, then 0 is .algebraic over E if and only
if there exists n C=N such that On E E, and the irreducible polynomial of
0 over E is Xn - On , n being the least of there naturals .



Proof : assume 0 to be algebraic over E and let P(X) - )In + a1Xn-1 + . . . +

+ an-1X + an be the irreducible polynomial of 0 . Then .

(*) On + a 1 0n-1 + . . . + an-1 0 + an = 0.

(1) Deriving (*) we get 1 D E p,

	

(Da 1 + nD0)On-1 + . . . - 0 .

Given that P(X) is the irreducible polynomial of 0 over E we have that

V D E p Da 1 + nDO = 0 .

	

So

	

V D C=¿ DO = D(-a 1/n) and o + al/n is a constant .
Due to E C F ís with the same fíeld of constants we get O E E, not possible .

(2) Now it suffices to prove that 0n C=E . Deriving (*) we get

Y D E A nDO/ OOn + (Da1 + (n-1)D0/0)On-1 + . . . + Dan = 0 .'But an ¢ 0,

	

so

Dan = nDO/0aJ D E A . Hence Dan/an - nDO/0
.* Dan/an = DOn/ On - D(an /On) - 0

YDEA. So an/OnECCE, and On EE, q .e.d .

2 .2 .- Theorem .

	

Let E be a differential field with field of constants

C . Let E C F = t(01 ,

	

. . ., 0r) be an elemental differential extension with

the same field of constants . Then :

(a) W hen F is Logaríthmic, E C F is a purely transcendental ex-

tension . If E C F is Exponential, E CF is purely transcendental unless the-

re exist ni ,

	

. . ., nr E=- Z such that

	

0n 1

	

. .

	

OnrE E.1 '

	

r
Let x E E .

(b) The equality Y = Log(x) never holds in F-E if E C F is Alge-

braic or Exponential .

(c) The equality Y e Exp(x) never holds in F-E if E C F is Loga-

rithmic, and if there is a solution when E C F is Algebraic then there e-

xists n E N such that yn E E .

Moreover, if E = C(z), z 9E C, Dz E C tE A being C the field

of constants of E, C algebraicafly,closed, then there are not exceptions

for the case (c) .

Proof :

	

(a) The stament is an easy consequence of Lemma 2 .1 for the Lo-

garithmic case . Assume that E C F is Exponential and not purely transcen-

dental extension . By Lemma 2 .1 there exists Os , p EN such that OS E E(O1,

. . ., 0s-1 ) .

	

Let Ok the first of them, that is,

	

0 1 ,

	

. . ., Ok-1 are algebraic

independent over E and Ok E E(O 1 , . . ., 0k-l) . Then by Theorem 1 .2 we get

the stament .



(b) Let y be a solution . Then,

	

Y D E p Dy - Dx/x . Since x E E we

can Cake Che differential extension E CE(y) . By 2 .1 y is not algebraic o-

ver E . Suposse now E C F is Exponential . Then, by 1 .2 we get there exist

. . ., c :

	

C, n, n , . . ., n E.

	

Z such that
cl1	lk

	

i
E

	

1

	

lk

	

n .

	

n .
_

	

i 1

y + c . f . + . . . + c . f . EEnF, xn0 . 1 . . . 0 . k EEnF,il i1

	

lk lk

	

il

	

lk
being 0 . , . . ., 0 . a maximal algebraically independent system over E among

il lk
0 1 9

	

. . ., .Or líke in

	

1 .D .

But x E E:

	

so n

	

, . . . ., n .

	

are 0,

	

and looking in 1 .2

	

for Chei 1

	

lk

constructíon of there naturals we have c . _ . . . = c . =
11

	

lk
0 . Hence y E E nF,

not possible as we have proved above .

(c) The Lemma 2 .1 assure us that if y is algebraic over E then

there exist n E N such that yn CE . Suposse E CF is Logarithmic . By 1 .2 we

have there exist n1 ,

	

. . .,

	

nr ,

	

n E Z,

	

cl ,

	

. . .,

	

cr E=- C such that

_

	

n n _
x + c10i + . . . + cr0r EEnF , yn f 1 1 . . . f rr EEnF .

Now, by Lemma 2 .1, 01 , . . ., Or is an algebraically independent

system over E, so c1 - . . . = c r - 0, and n1 - . . . = nr - 0 ( look for Che

construction of n 1 ,

	

. . ., nr in 1 .2 ) . Hence y EÉ n F = E, not possible .

On Che assumtíon that E = C(z) . . . . .

ce of aplying Theorem 1.3 to yn E=- E = CM .

Remark : an example that give us an exception for (a) is :

E = Q(z)(Exp(2z+2z2 )), F - E(Expz, Expz2) . Then, Exp(z+z2 ) E F-E

and is algebraic over E .

2 .B .

	

The question of whether some transcendental equations can be

solved by means of elementary functions sometimes can be answered using

Che Structure theorem 1 .2 . Let us see two classical examples :

assume E C F is a diffrential extension with Che same field of

constants . Let C be this field and E - C(z) such that 1 D E á Dz E C, z §E C .

Suposse C is algebraically closed and E C F Elementary .

Consider Che equation

	

aY = Log(BY)

	

a, BC- E .

Che stament is consequen-



Suposse there ís a solution in F, y . Using the same notation of 1 .3 ve get

c, c E C, c1 ,

	

. . ., cn
E Q . Passing to the Module of differentials, f2F,/E, we

have

(-e í)1/x . dx í .
1

1y = cx 1 . . . xnn ,

	

y - c + ely1 + . . . + cnyn ,

'((x1 1 . . xncn)e1 1/x1dx 1

	

+

	

. . .

	

+

	

(x 1c1

	

. .

	

xn .cna

	

)cn1/xn
dxn )° a

=
e1dy1

+ . . . + cndyn , a' - ac/B .

But taking the Module of differentials respect on the penultima-

te subextension not algebraic and taking into account 1 .C ve have that

a' (x1 1 . . . xnn)cn 1/x dxn = cndyn , whére dxn
n

se of the elementarity of E C F, being one of them not zero . Therefore cn =

= 0 ; repeating this argument we have c í = 0

	

i . Consequently, any solu-

tíon is trivial .

As a particular case and taking E _ ¢(z) ve have that the equa-

tion

	

Log(Y) = Y/z

	

has not solution by means of elementary functions .

With the same hypotesis consider now the equation

(*)

	

Y + a = BExp(yY),+ VExp(-YY),

	

a,

	

0,0', Y E E .

Let y be a solution, y E F . We can suposse also that

	

Exp(yy) E F. Then by

1 .3 and with the same notation we have

(**)

	

Yy = c + cly1 +

	

. . .

	

+ cnyn	,

	

c E C,

	

c1 ,

	

. . .,

	

enEQ.

Substuíng for yy in (*) we get that

y + a = Bx 1 1 . . . xnn .+.B'x 1c1 . . . xn
cn (where ve have operated

adequatly B, B') .

Passing now to the Module of differentials RF/E ve get

0 or dyn = 0 becau-

dy =

	

B(xc1 . . . xnn)cí1/x
idx i +

	

B'(x 1c1 . . . xncn)(-ci)1/x .dxi .
i

	

i

	

i

But taking ínto account (**) we have that

1/Y (c1dy1 + . . . + cndyn) _

	

B(xe1 . . . xen)ci1/
xi

dxí +

	

B~(x 1c1 . . . xncn)

1 3



If as above we take now the Module of differentials respect on
the penultimate subexetension not algebraic we get only

cn 1/ dy = B(xc1 . . xcn)c 1/ dx - 0'(x c1 . . . x cn)c 1/ dxy n

	

1 '

	

n n xn n

	

1

	

n

	

n xn n

It follows from the elementarity of E CF that either dxn or dy

	

= 0, onen
of them being not zero . Then
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n
2c l 2c

- dyn = 0=* either cn = 0 or x 1 . . . x
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n
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B'/BEE.
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.B,
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2c 2c
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