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Quantum-to-Classical Crossover in Full Counting Statistics
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The reduction of quantum scattering leads to the suppression of shot noise. In this Letter, we analyze the
crossover from the quantum transport regime with universal shot noise to the classical regime where noise
vanishes. By making use of the stochastic path integral approach, we find the statistics of transport and the
transmission properties of a chaotic cavity as a function of a system parameter controlling the crossover.
We identify three different scenarios of the crossover.
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Random transfer of charge in electrical conductors leads
to time-dependent fluctuations of the current, a phenome-
non called shot noise. In recent years, the shot noise has
been extensively studied in mesoscopic conductors [1],
small degenerate electron systems of a size comparable
to the coherence length of electrons. In contrast to the
classical shot noise in vacuum tubes, which was explained
by Schottky already in 1918 [2], the shot noise in meso-
scopic conductors originates from the quantum-
mechanical scattering of electrons. Consequently, in a non-
interacting mesoscopic conductor biased by the chemical
potential difference ��, the average current hIi �
��

P
nTn [3] (setting electron charge and the Planck con-

stant e � h � 1), the noise power S � hhI2ii �
��

P
nTn�1� Tn� at zero temperature [1], and, in general,

the higher cumulants of current hhImii [4] are determined
by the transmission matrix t̂, namely, by the eigenvalues
Tn, n � 1; . . . ; N, of t̂y t̂. The current cumulants hhImii �
��NCm can be expressed via the cumulant generating
function (CGF) Cm � @mH ��=@mj�0. In the semiclas-
sical limit, N 
 1, the CGF is given by [5]

H �� �
Z 1

0
dT��T� ln�1� T�e � 1�; (1)

where ��T� � N�1P
n��T � Tn� is the transmission eigen-

value distribution. Equation (1) generalizes the binomial
statistics, and together with the inverse formula (12), pro-
vides a connection between the full counting statistics
(FCS) and the scattering properties of a mesoscopic system
to leading order in 1=N.

The quantum origin of shot noise in mesoscopic con-
ductors implies that, regardless of the character of disorder,
current can flow without noise if quantum scattering is
suppressed [6]. Therefore, in the classical limit the noise
should vanish even in a chaotic system, such as a meso-
scopic cavity, where the transport in the quantum regime is
universally described by random matrix theory (RMT) [7].
It has been predicted [8] that in a mesoscopic cavity with a
long-range disorder the noise power shows an exponential
crossover S � SRMT exp���E=�D� as a function of the
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ratio of the Ehrenfest (diffraction) time �E to the average
dwell time of electrons �D. Reference [9] suggested that
this crossover results from a sharp cutoff introduced by the
Ehrenfest time in the exponential distribution P �t� �
��1
D exp��t=�D� of the dwell times of classical trajectories.

Recent numerical analysis [10] has demonstrated that the
cutoff leads to a complete separation of the cavity’s phase
space into the quantum universal part of relative volume
v � exp���E=�D� and the classical noiseless part of the
volume 1� v. As a result, the eigenvalue distribution
splits into two terms, � � v�RMT � �1� v��cl, where

�RMT�T� �
1

�
�������������������
T�1� T�

p (2)

is the universal RMT result, and �cl�T� � ���T� � ��1�
T�=2 is the classical distribution. The onset of the
quantum-to-classical crossover has been observed in the
experiment on the shot noise of a mesoscopic cavity [11].
Since then interest in the physics of the crossover has
grown dramatically and brought new results in the context
of the shot noise suppression [9,12], the proximity effect in
Andreev billiards [13], mesoscopic conductance fluctua-
tions [10,14], and many other phenomena.

In this Letter, we demonstrate that the presence of the
homogeneous short-range disorder in a chaotic cavity dra-
matically changes the quantum-to-classical crossover. It
leads to the large-angle quantum scattering of electrons
and results in the relaxation of the deterministic occupation
function fp, which takes values 0 and 1, to its fully quan-
tum isotropic value fC < 1. The relaxation with the con-
stant rate ��1

Q , where �Q is the quantum scattering time,
does not introduce a sharp cut-off in the dwell time distri-
bution. As a result, all cumulants have a power-law depen-
dence on the crossover parameter � � �Q=�D. In
particular, in contrast to the case of the long-range disorder
discussed above, the noise power shows the power-law
crossover [15]

S � SRMT=�1� ��; � � �Q=�D: (3)

The distribution ��T� gradually evolves as a function of the
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parameter � from its RMT limit (2) in the quantum regime
to the classical limit �cl with two � peaks [16].

The model.—The mesoscopic chaotic cavity is a metal-
lic island connected to the leads L and R through ballistic
point contacts. This system has several characteristic time
scales. The time of the ballistic flight of electrons across
the cavity �F is much shorter than the average dwell time
�D � nF=N, where nF is the density of states in the cavity
at Fermi level, and N is the number of modes in each point
contact (symmetric cavity). We consider the quasiballistic
regime, �Q � �F, where �Q is the time of quantum scat-
tering off a short-range disorder, and neglect inelastic
processes. The temperature is smaller than the bias and
set here to zero.

In the semiclassical limit considered here, N 
 1 and
��nF 
 1, the transport to leading order in number of
modes N can be described classically. We use the classical
approach of Refs. [17,18] based on the principle of mini-
mal correlations [19]. According to this principle, the
currents through the left and right point contacts IL;R are
considered to be noise sources which are correlated solely
via the conservation of the charge ��nFfC in the cavity.
Here fC � hfpi is the isotropic part of the occupation
function fp, and h� � �i denotes the averaging over the
momentum on the Fermi surface. The statistics of sources
can be obtained by taking into account the fermionic
statistics of electrons, which leads to binomial fluctuations
of the occupation function in each semiclassical state with
the cumulant generator ln�1� fp�e � 1�. Multiplying
this function by the electron velocity v, summing over p,
and integrating over the area of the contacts, we obtain the
generators ��NH L;R of the left and right currents

H l�l;fC� � hln�1� fp�e
l � 1�i� fll; l� L;R;

(4)

where fL � 1 and fR � 0 are the occupations in the left
and right leads. This expression is the semiclassical limit of
the result of Ref. [4]. The charge conservation can be taken
into account nonperturbatively in fluctuations �fC using
the stochastic path integral [17,18]. In the stationary limit
t 
 �D, the saddle-point evaluation amounts to the mini-
mization of the function

H � H L�C � =2; fC� �H R�C � =2; fC� (5)

with respect to the occupation fC and variable C, a
Lagrange multiplier conserving charge. The result of this
procedure gives the CGF (1).

Counting statistics.—The crossover from the classical to
the quantum transport regime may be viewed as being
caused by the relaxation of the classical occupation fp �

0; 1 to the quantum isotropic value fC as a result of
scattering off the short-range disorder. This process can
be described by the Boltzmann equation

vrfp � ��1
Q �fp � fC� � 0; (6)
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where the classical chaotic dynamics of electrons is taken
into account by the ‘‘gradient’’ term and the quantum
scattering is described by the second, the collision integral
in the scattering time approximation. In the classical limit
� � �Q=�D 
 1 the second term can be neglected, and the
solution of Eq. (6) takes one of the boundary values fL;R �
0; 1 giving H l � �fC � fl�l. Then the minimization of
the function (5) leads to H � =2 giving the average
current hIi � ��N=2 and no noise. In the quantum limit
�Q=�D � 1 the second term in Eq. (6) dominates; there-
fore, in Eq. (4) fp may be replaced with fC. Minimizing
H given by (5), we obtain the result [17]

H � 2 ln�1� e=2� � 2 ln2; � � 0; (7)

which agrees with the RMT result [20].
In order to obtain the coarse-grained value of the loga-

rithm in Eq. (4) we multiply Eq. (6) by �fp � fC�k�1 and
integrate the resulting equation

r�v�fp � fC�
k � �k=�Q��fp � fC�

k � 0; (8)

over the phase space �p; r� of the cavity. Using the identityR
drr�v�. . .� �

R
dsv�. . .�, we reduce the volume integral

in the first term to the surface integral over the cavity
openings and arrive at the following expression:

h�fp � fC�ki �
�

k� 2�
��1� fC�k � ��fC�k: (9)

Expanding the logarithm in Eq. (4) in powers of fp � fC,
using the result (9) and resumming the logarithm, we
obtain the integral representation

H l�l� � �fll��
Z 1

0
duu2��1�lnf1��u��1� u�fC

��el � 1�g� lnf1���1�u�fC�e
l � 1�g�:

(10)

This expression has to be substituted into the variation
function (5). Surprisingly, the stationary point is given by
C � 0 and fC � 1=2 independent of �, implying the
absence of cascade corrections [21] to the FCS.
Evaluating Eq. (10) at the stationary point, we obtain the
current generator for a symmetric cavity as a function of
the crossover parameter �:

H �; �� � =2� 2
Z 1

0
du

u2��1

coth2�=4� � u2
: (11)

This equation is one of our main results. It correctly
reproduces the quantum limit (7) at � ! 0 and has an
asymptotic form H � =2� ��1sinh2�=4� �O���2�
in the classical limit � ! 1 [valid for  & ln���]. Thus
the crossover has a power-law character in contrast to the
case of a long-range disorder: High cumulants are sup-
pressed as ���1 in the classical limit.

Normalized current cumulants Cm � hhImii=���N�
may be obtained by differentiating the CGF (11) with
respect to . Odd cumulants vanish Cm � 0 for m � 3 as
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a consequence of the zero temperature limit and of the fact
that the cavity is symmetric. The first three nonvanishing
cumulants are C1 � 1=2, which determines the mean cur-
rent, C2 � 1=�8��� 1�, which determines the noise
power and agrees with the result (3), and C4 �
��� 1�=�32��� 1���� 2�.

The logarithm of the distribution of transmitted charge
in the stationary phase approximation is given by
lnP�Q� � Q0minfH �� �Qg [18], where Q �
Q=Q0 is the transmitted charge normalized to its maximum
value Q0 � ��Nt. The result of the evaluation using
Eq. (11) is shown in Fig. 1 for different values of �. In
the quantum limit, we use Eq. (7) to obtain lnP�Q�=Q0 �
�2 ln2� 2�Q lnQ� �1�Q� ln�1�Q�, which van-
ishes at the average value of charge Q � 1=2, giving the
correct normalization of P�Q�. In the classical limit � 
 1
the noise is Gaussian, lnP�Q�=Q0 � �4��Q� 1=2�2, for
jQ� 1=2j & ��1. Surprisingly, the extreme value distri-
bution in the range ��1 & jQ� 1=2j & 1=2 shows a weak
� dependence: lnP�Q�=Q0 � �2jQ� 1=2jfln�8�jQ�
1=2j� � 1g; see Fig. 1. This remarkable behavior may be
attributed to the formation of almost open (closed) quan-
tum channels, the situation specific to the short-range
disorder considered here. The number of such channels is
nearly independent of � and close to the total number of
modes N (see the discussion below).

Distribution of transmission eigenvalues.—Having
found the CGF, we now invert Eq. (1) in order to obtain
the distribution of transmission eigenvalues ��T�. We note
that H as a function of the variable � � e � 1 has a
branch cut in the complex plane at �1<�<�1.
Analytically continuing from �> 1 to the branch cut
[22], we obtain

��T� �
1

�T2 Im�@H =@�j�!�1=T�i0�: (12)
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FIG. 1 (color online). The logarithm of the distribution of
transmitted charge Q plotted versus charge normalized to its
maximum value Q0 � ��Nt. It is symmetric around the aver-
age value Q=Q0 � 0:5. Note a relatively weak dependence of the
extreme value statistics on the crossover parameter � � �Q=�D.
The dashed line is the Gaussian distribution shown for a com-
parison.
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Using this relation together with Eq. (11), we arrive at the
following result for ��T� in the crossover regime:

��T� �
�

�
�������������������
T�1� T�

p Z 1

�1
du

�1� u2�juj2��1

�1� u�2 � 4Tu
: (13)

The distribution is symmetric with respect to T ! 1� T
and properly normalized: one can verify that

R
1
0 dT��T� �

1. In the quantum limit � ! 0, Eq. (13) leads to the RMT
result (2). In the classical limit we obtain the asymptotic
formula

��T�j�!1 �
1

8���T�1� T�3=2
�O���2�; (14)

which is valid away from the points T � 0 and T � 1
where ��T� in (14) is divergent. This divergence, being
cut at T; 1� T � ��2 in Eq. (13), gives the main contri-
bution to the normalization of ��T�, as well as to the
average current, and determines the extreme value statis-
tics discussed above. However, it is integrable for high
cumulants of current.

The distribution ��T� for several values of � is illus-
trated in Fig. 2. The quantum-to-classical crossover ap-
pears as a gradual transition from the RMT distribution at
� � 0 to two � functions at T � 0 and T � 1. Following
Ref. [10] we plot the integrated distribution I�T� �R
T
0 ��T

0�dT0, which turns out to be a smooth function of
T. This is in contrast to the case of a long-range disorder,
where I�T� shows an offset at T � 0 [10], indicating the
separation of phase space into a classical and a quantum
part. Our result implies that such a separation does not
occur in the case of a homogeneous short-range disorder.

Inhomogeneous disorder.—So far we have considered a
relatively weak homogeneous disorder with the strength
characterized by the scattering time �Q. Another experi-
mentally relevant situation is the case of a strong inhomo-
geneous short-range disorder. For instance, a few strong
impurities, sharp openings to the leads or irregularities at
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FIG. 2 (color online). The crossover of the distribution of
transmission eigenvalues ��T� between the quantum (� � 0)
and classical (� ! 1) regimes. ��T� is symmetric around T �
0:5. Inset: Integrated probability distribution I�T� �R
T
0 ��T

0�dT0 for the same set of parameters.
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the boundary of the cavity belong to this class of disorder.
The inhomogeneity implies that some trajectories do not
enter the disordered region and remain classical with fp �

0; 1. The fact that the disorder is strong means that all
trajectories entering the disordered region acquire the iso-
tropic occupation fC. For the coarse-grained occupation
function hfpi this leads to the relaxation with the collision
rate �imp. This process is described by Eq. (6) with �Q
replaced by �imp. In the present case the solution of this
equation determines the relative volume of the quantum
phase space v � 1=�1� ��, where � � �imp=�D is the
new crossover parameter. Therefore we conclude that in-
homogeneous strong disorder leads to the complete sepa-
ration of the phase space on the classical and quantum parts
with the consequence that � � v�Q � �1� v��cl, where
�Q is a quantum (nonuniversal) distribution. However, in
contrast to the case of long-range disorder, the FCS is a
power-law function of the crossover parameter: Cn � 1=�.

Asymmetric cavity.—From the above analysis it follows
that the noise power has the same dependence (3) on the
crossover parameter � for both types of a short-range
disorder. Moreover, since the odd cumulants of current
for the symmetric cavity vanish at zero temperature, the
difference in noise appears starting from the fourth cumu-
lant. The recent progress in the measurement of a third-
order cumulant [23] motivates us to analyze the counting
statistics for asymmetric cavities with a nonequal number
of modes NL and NR in the point contacts, for which odd
cumulants are expected to be finite [24].

To obtain the third cumulant for the case of a homoge-
neous disorder, we utilize the operator approach of
Ref. [18], which in the case of a single variable represents
a convenient alternative to the cascade diagrammatics
[18,21]. Omitting lengthy calculations we present the re-
sult

C 3��� �
3C3�0�

�1� ���3� 2��
; (15)

where C3�0� � �2�NLNR�NL � NR�=�NL � NR�
32 is the

RMT value of the third cumulant. We note that the third
cumulant (15) vanishes as ��2 in the classical limit, i.e.,
faster than the one for the inhomogeneous disorder.
Therefore the measurement of the third cumulant may
help to distinguish the character of disorder.

In conclusion, we have analyzed the FCS and trans-
mission properties of a mesoscopic cavity at the crossover
from the universal quantum to the classical transport re-
gimes. We have found new different scenarios of the cross-
over in a cavity with short-range disorder. In case of
homogeneous disorder, the crossover occurs via the for-
mation of almost open (closed) quantum channels, which
determine the extreme value statistics. In the case of an
11680
inhomogeneous strong disorder, the phase space of the
cavity splits into two parts: classical noiseless channels
and quantum channels. In both cases the FCS has a power-
law dependence on the crossover parameter.
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