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We show that real multiplex networks are unexpectedly robust against targeted attacks on high-degree
nodes and that hidden interlayer geometric correlations predict this robustness. Without geometric
correlations, multiplexes exhibit an abrupt breakdown of mutual connectivity, even with interlayer degree
correlations. With geometric correlations, we instead observe a multistep cascading process leading into a
continuous transition, which apparently becomes fully continuous in the thermodynamic limit. Our results are
important for the design of efficient protection strategies and of robust interacting networks inmany domains.
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Networks are ubiquitous in many domains of science and
engineering, ranging from ecology to economics, and often
form critical infrastructures, like the Internet and financial
systems. Nowadays, these systems are increasingly inter-
dependent [1] and form so-called multiplex or multilayer
networks [2,3]. This interdependency implies that, if a node
fails in one network layer, its counterparts in the other layers
also fail simultaneously. This process can continue back and
forth between the layers, which makes them especially
vulnerable to failures. In particular, an abrupt transition can
arise in mutual percolation when nodes are removed at
random [3–5]. Interestingly, interlayer degree correlations
[6–9] mitigate this vulnerability to random node removals,
and the transition becomes continuous [10,11].
In real systems, failures may not always be random

but, instead, the result of targeted attacks. Multiplexes are
extremely vulnerable to them on high-degree nodes [12–14]
and exhibit a discontinuous phase transition even in the
presence of interlayer degree correlations [13]. Although
it is highly important for many real systems, it is not well
understood how this vulnerability can bemitigated. Previous
results point to negative interlayer degree correlations as a
mitigation factor [13], but real systems tend to show positive
instead of negative interlayer degree correlations [6]. Are
there other structural features that render multiplex networks
robust against targeted attacks? And, most importantly, are
these properties present in real multiplexes?
Here, we show that interlayer hidden geometric corre-

lations [15] mitigate the vulnerability of multiplexes to
targeted attacks. The removal of the highest-degree nodes
triggers multiple cascades which do not destroy the
system completely but eventually lead into a continuous
percolation transition. Strikingly, we show that the strength

of these geometric correlations in real systems is a good
predictor of their robustness.
More specifically, we consider targeted attacks in two-

layer multiplexes, where nodes are removed in decreasing
order of their degrees among both layers. We rank all nodes
i according to Ki ¼ maxðkð1Þi ; kð2Þi Þ, where kðjÞi denotes the
degree of node i in layer j ¼ 1, 2. We remove nodes with
higher Ki first (we undo ties at random) and reevaluate all
Ki’s after each removal. To measure the percolation state of
the multiplex, we compute its mutually connected compo-
nent (MCC) as the largest fraction of nodes that are
connected by a path in every layer using only nodes in
the component [4].
Figure 1 shows results for the real arXiv collaboration

[16], C. Elegans [17], Drosophila [18], and Sacc Pomb
[18] (see Table I, Supplemental Material [19], Sec. I, and
Supplemental Videos I–IV) as well as for their reshuffled
counterparts [an illustration of a targeted attack sequence is
shown in Figs. 2(a)–2(d)]. To create the reshuffled counter-
part, we randomly reshuffled the translayer node-to-node
mappings by selecting one of the layers and randomly
interchanging the internal IDs of the nodes in that layer.
This process destroys all correlations between the layers
without altering the layers’ topologies (see Supplemental
Material [19], Sec. I, for further details). We quantify the
vulnerability of the real and reshuffled multiplexes by
calculating the critical number of nodes, ΔN. The removal
of this critical number reduces the size of the MCC from
more than aM to less thanMβ, whereM is the initial size of
the MCC before any nodes are removed, a ≤ 1 is a
threshold parameter, and β < 1 [26]. We set a ¼ 0.4 and
β ¼ 0.5. The larger the ΔN, the more robust (less vulner-
able) the system is. For the real arXiv multiplex we find that
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ΔN ≈ 25, while for its reshuffled counterpart ΔNrs ¼ 1. In
fact, in the reshuffled system, the removal of a single node
reduces the relative size of the MCC from 73% to only
0.25%. This is far more pronounced than the limits of a ¼
40% and

ffiffiffiffiffi

M
p

=M ¼ 3.6% and is enough to virtually
disconnect this system. We have considered other layer
pairs of the arXiv, as well as a large number of other real
multiplexes from different domains (technological, social,
and biological). We found that, in the vast majority of cases,
the real system is significantly more robust against targeted
attacks than its reshuffled counterpart (see Table I and
Supplemental Material [19], Secs. I and II).
Below, we show that this increased robustness of real

multiplexes to targeted attacks is due to hidden geometric
correlations interwoven in their layers [15], which do not
exist in their reshuffled counterparts. Specifically, each
single network layer can be mapped (or embedded) into a
separate hyperbolic space [27–29], where each node i is
represented by its radial (popularity) and angular (similar-
ity) coordinates ri, θi, which are both significantly corre-
lated in different layers, while hyperbolically closer nodes
in each layer are connected with a higher probability (see
Supplemental Material [19], Sec. I, for further details).
Radial correlations are equivalent to interlayer degree

correlations [30]. Angular correlations, instead, lead to sets
of nodes that are similar—close in the angular similarity
space—in each layer of the multiplex [15]. The reshuffling
process explained earlier destroys both radial and angular

correlations between the layers. The extreme vulnerability
of the reshuffled counterparts in comparison to the real
systems raises fundamental questions: Are the radial (i.e.,
interlayer degree) correlations, or angular (i.e., geometric)
correlations, or both, responsible for the robustness of real
systems, and which of these correlations can help to avoid a
catastrophic cascading failure when multiplexes are under
targeted attack?
To investigate these questions, we use the geometric

multiplex model (GMM) (see Supplemental Material [19],
Sec. III) to generate synthetic two-layer multiplexes, which
resemble the real equivalents. The model produces multi-
plexes with layers embedded into hyperbolic planes,
whereby the strength of interlayer correlations between
the radial and angular coordinates of nodes that simulta-
neously exist in both layers can be tuned by varying the
model parameters ν ∈ ½0; 1� and g ∈ ½0; 1�. Radial correla-
tions increase with parameter ν (ν ¼ 0 for no radial
correlations, whereas ν ¼ 1 for maximal radial correla-
tions). Similarly, angular correlations increase with param-
eter g (g ¼ 0 for no angular correlations, while g ¼ 1 for
maximal angular correlations).
We find that synthetic multiplexes without angular

correlations exhibit an extreme vulnerability to targeted
attacks [see Fig. 2(e), Supplemental Material [19], Sec. III,
and Supplemental Video V], similarly to the reshuffled
counterparts of real systems (cf. Fig. 1 and Supplemental
Material [19], Sec. II). In particular, if the multiplex is
sufficiently large, then the removal of only a single node
can reduce the size of the MCC from 40% to the square root
of its initial size, thus destroying the connectivity of the
system; see Fig. 2(f). The abrupt character of the transition
is also reflected in the distribution of mutually connected
component sizes. In the fragmented phase, the entire
network is always split into very small components, even

(a) (b)

(c) (d)

FIG. 1. (a) Relative size of the MCC against the fraction p of
nodes remaining in the system for the arXiv (layers 1 and 2)
collaboration multiplex (green lines) and for its reshuffled
counterpart (red dashed lines). Different lines correspond to
different realizations of the targeted attacks process. (b) shows
the same for the C. Elegans multiplex (layers 2 and 3), (c) for
Drosophila (layers 1 and 2), and (d) for Sacc Pomb (layers 3
and 4).

TABLE I. Analyzed data sets for selected layer pairs (see
Supplemental Material [19], Sec. I, for all layer pairs). MCC
denotes the initial size of the MCC, ΔN denotes the critical
number of nodes whose removal reduces the MCC from 40% to
ffiffiffiffiffi

M
p

=M (in relative size), and ΔNrs is the same for the reshuffled
system. Values are averages over 100 realizations of the removal
process. NMI denotes the normalized mutual information (see
Supplemental Material [19], Sec. IX) and gives a measure of the
strength of angular correlations between the layers of the
considered real systems.

Data set MCC ΔN ΔNrs NMI

arXiv layers 1, 2 790 25.2 1.0 0.58
Physician layers 1, 2 104 6.0 1.0 0.41
Internet layers 1, 2 4710 81.4 14.1 0.34
C. Elegans layers 2, 3 257 14.0 1.1 0.34
Sacc Pomb layers 3, 4 426 4.2 1.5 0.17
Drosophila layers 1, 2 449 8.4 2.0 0.26
Brain layers 1, 2 74 7.0 1.0 0.19
Rattus layers 1, 2 158 4.0 1.0 0.18
Air/train layers 1, 2 67 3.0 3.0 0.10
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when the system is very close to the transition [see Fig. 3(a)
and Supplemental Material [19], Sec. IV]. In the percolated
phase, only nodes that do not belong to the MCC remain
fragmented into small components [see Fig. 3(b) and
Supplemental Material [19], Sec. IV]. This behavior is
not affected by the strength of the radial (i.e., interlayer
degree) correlations in the system. Thus, in contrast to the
mitigation effect for random failures, interlayer degree
correlations do not avoid an abrupt transition in the case
of targeted attacks and essentially do not affect the robust-
ness of the system.
On the other hand, this extreme vulnerability is mitigated

if angular correlations are present. In Figs. 2(a)–2(e), we
show the MCC percolation transition for maximal angular
correlations (see also Supplemental Material [19], Secs. II
and III, and Supplemental Video V). We observe that the
transition does indeed start with a multistep cascading
process for relatively small system sizes. However, as
shown in Figs. 2(f) and 2(g), the critical number of nodes,
ΔN, scales with the system size in the presence of angular
correlations (see also Supplemental Material [19], Sec. V),
while it always converges to one for large system sizes if
angular correlations are absent. Moreover, as shown in
Fig. 2(h), the relative size of the largest jump after a single

node removal decreases with the system size, in stark
contrast to the case without angular correlations, where this
quantity becomes size independent. This suggests that, in
the thermodynamic limit, the system undergoes a continu-
ous transition [see the inset in Fig. 2(e)]. Furthermore, the
size of the second-largest component scales with the system
size like Nσ , with σ ≈ 0.84 [see Figs. 3(d) and 3(e) and
Supplemental Material [19], Sec. VI]. Finally, at the
transition, the distribution of component sizes follows a
power law [see Fig. 3(c) and Supplemental Material [19],
Sec. IV]. Thus, we conjecture that angular correlations can
lead to a multistep cascading process for relatively small
system sizes and can give rise to a continuous transition in
the thermodynamic limit (happening in a range of param-
eters of the model—including those used in Fig. 2—such
that the multiplex layers have a strong metric structure but
do not lose the small-world property in the targeted attack
process; see Supplemental Material [19], Sec. VII). This
behavior is not affected by the strength of radial (i.e.,
interlayer degree) correlations and cannot be explained by
the link overlap induced by geometric correlations (see
Supplemental Material [19], Sec. VIII). Taken together, our
results suggest that angular (similarity) correlations can
mitigate the extreme vulnerability of real multiplexes
against targeted attacks.

(a)

(e) (f) (g) (h)

(b) (c) (d)

FIG. 2. Targeted attacks on synthetic multiplex networks generated by theGMMmodel (see the text). Each layer has a power law degree
distribution with exponent γ ¼ 2.6, average node degree hki ≈ 6, and clustering c̄ ¼ 0.35. (a)–(d) Here, each layer has N ¼ 500 nodes,
and we have set g ¼ 1 and ν ¼ 0. (a) The relative size of theMCC as a function of the fraction of nodes remaining in the system p. (b) The
MCC after the removal of four nodes [corresponding to the dashed blue line in (a)]. (c) The same as in (b) after the removal of 23 nodes
[dashed red line in (a)]. (d) The MCC after the removal of 42 nodes [dashed yellow line in (a)]. (e) Evolution of the MCC in a two-layer
synthetic multiplex with layers of sizeN ¼ 2 × 103 nodes. The inset shows the same for 106 nodes. (f) The critical number of nodes,ΔN,
as a function of the system size N when there are no angular correlations, g ¼ 0, and for different radial correlation strengths. The results
are averages over 60 realizations (for N < 10 000, we performed 1000 realizations). (g) The same as in (f) but for different values of the
angular correlation strength g and for fixed ν ¼ 1. (h) shows the largest and second-largest cascade sizes (relative to the system size).
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We can validate this conclusion in real systems. To this
end, we compare the vulnerability of each of the considered
real multiplexes (see Table I and Supplemental Material
[19], Sec. I) with that of its reshuffled counterpart. We
define the relative mitigation of vulnerability as

Ω ¼ ΔN − ΔNrs

ΔN þ ΔNrs
; ð1Þ

whereΔN andΔNrs are the number of nodes needed for the
critical reduction of the size of the MCC of the real and
reshuffled systems, respectively; see Table I and
Supplemental Material [19], Sec. I. Ω is a measure of
how much more resilient the real networks are compared to
their reshuffled counterparts. Next, we study how Ω
behaves as a function of the strength of angular correlations
in the considered real systems. We quantify the strength of
interlayer angular correlations by calculating the normal-
ized mutual information (NMI) between the inferred
angular coordinates of nodes in different layers (see

Supplemental Material [19], Sec. IX). A larger NMI means
higher angular correlations. We find a strong positive
correlation (ρ ≈ 0.6) between the strength of angular
correlations in the real systems and their relative mitigation
of vulnerability; see Fig. 4. This finding validates our
previous arguments with real data and highlights the
importance of angular correlations in making real multi-
plexes robust against targeted attacks.
The gain of robustness due to angular correlations can be

understood intuitively by the formation of macroscopic
mutually connected structures on the periphery of the
hyperbolic disk in each layer. After enough nodes are
removed, the remaining multiplex resembles a “double
ring” [Fig. 2(c)], because the higher-degree nodes which
have been removed had lower radial coordinates and hence
were closer to the center of the disk. If angular correlations
are present, the remaining lower-degree nodes that are close
in one layer tend to also be close in the other layer. As a
consequence, the double ring contains macroscopic mutu-
ally connected structures [Fig. 2(d)] that sustain connec-
tivity in the system. Notice that the mitigation of the
extreme vulnerability of multiplexes by the effect of
angular correlations is directly related to their geometric
nature and cannot be explained by any topological feature.
To support this point, we checked whether interlayer
clustering correlations (clustering being the topological
feature which is more directly related to the metric proper-
ties of networks [31]) or edge overlap induced by geometric
correlations are sufficient to produce the mitigation effect.
The results (see Supplemental Material [19], Secs. VIII and
X) indicate that, in the absence of angular correlations,
neither clustering correlations nor overlap can explain the
observed mitigation effect. We take this to be a new
validation of the geometric nature of complex networks
and of the role of geometric correlations in multiplexes.
In conclusion, we have shown that the strength of geo-

metric (similarity) correlations in real multiplex networks is
a good predictor for their robustness against targeted attacks,
providing, for the first time, strong empirical evidence for
the relevance of this mechanism in real systems. Using a
geometric multiplex network model, we have shown that

FIG. 4. Relative mitigation of vulnerability Ω [Eq. (1)] as a
function of the NMI, which is a measure of the strength of angular
correlations between the layers of the considered real systems
(see Supplemental Material [19], Sec. IX, for details).

(a)

(d) (e)

(b) (c)

FIG. 3. (a)–(c) show the distribution of component sizes
(probability density function) during the evolution of the MCC
for two-layer synthetic multiplexes constructed with the GMM
model. Each layer has a power law degree distribution with
exponent γ ¼ 2.6, average node degree hki ¼ 6, and clustering
c̄ ¼ 0.35. In (a)–(c), each layer has N ¼ 5 × 104 nodes. The
distribution of component sizes (a) directly before the transition
(p ¼ 0.945 39) and (b) directly after (p ¼ 0.945 40), when there
are no radial or angular correlations, ν ¼ 0, and g ¼ 0. (c) The
distribution of component sizes at p ¼ 0.9078 when there are
maximal angular correlations, g ¼ 1, and no radial correlations,
ν ¼ 0. (d) The absolute size of the second-largest MCC as a
function of p for different layer sizes N as indicated in the legend
(×103); for each size, the results are averages over 60 realizations
of the multiplex [as in (e)]. (e) The scaling of the maximum of the
second-largest MCC. The black dashed line shows a fit ∝ N0.84,
while the inset shows the value of p ¼ pc where the maximum is
realized.
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multiplex networks are extremely vulnerable against tar-
geted attacks, exhibiting a discontinuous phase transition if
geometric (similarity) correlations are absent. Contrarily, the
presence of such correlations mitigates this vulnerability
significantly, inducing a multistep cascading process in
relatively small systems which does not destroy the system
completely but leads into an eventually smooth percolation
transition, with results suggesting that it can be fully
continuous in the thermodynamic limit. In particular, the
critical number of nodes that have to be removed to
disconnect the system scales with the system size only if
geometric correlations are present. Our results can help
when designing efficient protection strategies and more
robust and controllable interdependent systems. In addition,
the results highlight that dependent networks without
similarity correlations are extremely vulnerable to targeted
attacks. Finally, our findings pave the way for an exact
analysis of the percolation properties of such systems via
their hidden geometric spaces.
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