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In natural inflation, the inflaton is a pseudo-Nambu-Goldstone boson which acquires a mass by explicit

breaking of a global shift symmetry at scale f. In this case, for small field values, the potential is flat and

stable under radiative corrections. Nevertheless, slow roll conditions enforce f � Mp, making the validity

of the whole scenario questionable. In this Letter, we show that a coupling of the inflaton kinetic term to

the Einstein tensor allows f � Mp by enhancing the gravitational friction acting on the inflaton during

inflation. This new unique interaction (a) keeps the theory perturbative in the whole inflationary trajectory,

(b) preserves the tree-level shift invariance of the pseudo-Nambu-Goldstone boson, and (c) avoids the

introduction of any new degrees of freedom with respect to standard natural inflation.
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Introduction.—Inflation, a rapid expansion of the early
Universe, is a beautiful solution of the homogeneity, iso-
tropy, and flatness puzzles [1]. Although an isotropic ex-
pansion of the Universe might be obtained by considering
general nonminimally coupled p forms [2], the minimally
coupled zero-form (a scalar field) is the most simple and
natural source for inflation [3–5]. In this case, the scalar
field during inflation generates an almost de Sitter (expo-
nential) expansion of the early Universe.

In a Friedmann-Robertson-Walker spacetime with met-
ric ds2 ¼ �dt2 þ aðtÞ2d~x � d~x, a minimally coupled scalar
field (�) to gravity, with a potential Vð�Þ> 0, produces an

acceleration €a��ð _�2 � VÞ, where ð _Þ ¼ d=dt. It is then
clear that to get an accelerated expansion ( €a > 0) for a long
time, the field� has to ‘‘slow roll’’ in its own potential, i.e.,
_�2 � V. Unfortunately, though, while solving the cosmo-
logical puzzles, this seemingly innocuous condition threat-
ens the whole inflationary paradigm, as we shall see.

During slow roll, the Hubble equation and field equa-
tions for the inflaton are

H2 ’ V

3M2
p

; _� ’ � V0

3H
; (1)

where H ¼ _a=a is the Hubble ‘‘constant,’’ ð0Þ ¼ d=d�,
and Mp is the Planck scale. Equations (1) are found by

considering the slow roll conditions

� � � _H

H2
� 1; � �

��������
€�

3H _�

��������� 1: (2)

By using (1) and plugging into (2), we find the two inde-
pendent conditions

� ’ M2
p

V 02

2V2
� 1; � ’

��������M2
p

V00

3V

��������� 1:

A common problem of standard inflationary scenarios is
the ‘‘eta’’ problem. Gravity is not a renormalizable theory

as its perturbative expansion breaks down at the Planck
scaleMp. Therefore, operators suppressed by the scaleMp,

although not known, are generically expected to complete
the theory at UV. In particular, one would expect the
inflaton potential to be generically ‘‘corrected’’ by
higher-dimensional operators. Consider, for example,
the following dimension six correction ~V ¼ V�
ð1þ c �2

M2
p
þ � � �Þ, where c is an unknown coefficient ex-

pected to be ofOð1Þ. With this correction, we have that the
� parameter is modified as ~� ’ �þ c 2

3 þ � � � ; therefore,
if � � 1, in order to keep ~� � 1 we need c � 1.
However, this coefficient cannot be calculated unless the
full UV completed theory of gravity is known. Note that for
small field scenarios this is the leading correction to �. In
the large field scenario the problem is clearly far more
severe as an infinite amount of nonrenormalizable opera-
tors has to be set exactly to zero.
The eta problem might be nevertheless naturally solved

in small field scenarios by introducing new symmetries in
the inflaton Lagrangian. These symmetries might in fact
force the potential to be flat even under radiative correc-
tions. There are two possible symmetries to achieve this
goal: global and local.
Local symmetries (such as local supersymmetry) might

stabilize the inflaton potential in supergravity. Still, in this
framework, supersymmetry is explicitly broken by the
gravitational background, making the inflaton potential
generically too steep to produce inflation [6]. Additional
local symmetries related to the matter content of the full
theory in which the inflaton is embedded might neverthe-
less change this no-go result, as proposed in Ref. [7].
However, to date, this direction is still under development.
The other possibility for a radiative stability of the

inflaton potential is the existence of global symmetries.
The use of global symmetries in inflation is encoded in the
so-called natural inflation [8]. In natural inflation, the
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inflaton is a pseudo-Nambu-Goldstone boson acquiring a
mass by explicit breaking of a global shift symmetry at
scale f. This happens by instanton effects, as in the Peccei-
Quinn mechanism [9]. In this case, for small field values,
the potential is flat and stable under radiative corrections.
Nevertheless, the slow roll condition � � 1 implies
f � Mp, making the whole scenario unreliable.

In the following, we will show that the scale f might be
safely taken to be much smaller than the Planck scale by
introducing a nonminimal coupling of the inflaton kinetic
term to the Einstein tensor. In particular, we will show that
this new theory is in the weak coupling regime during the
whole inflationary evolution and does not propagate any
more degrees of freedom than the ones already existing in
natural inflation.

Constructing the action.—We now consider the most
generic theory such that (i) it is diffeomorphism-invariant,
(ii) it propagates only a (nonghost) massless spin 2 and a
spin 0 particle on any background, and (iii) it is tree-level
shift symmetric in the field � (i.e., is symmetric under
� ! �þ c).

Such an action has been found in Ref. [10], and it is

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½M2

pR����@��@���: (3)

In (3) we used the notation

��� ¼ g�� � 1

M2
G��; (4)

where G�� � R�� � 1
2Rg

�� and M are, respectively, the

Einstein tensor and a new mass scale, not necessarily
related to the Planck mass. Note that the minus sign in
the definition (4) is crucial to avoid ghosts, whenever weak
energy conditions are satisfied [11]. One may wonder
whether an infinite series of curvatures nonminimally
coupled to the kinetic term of the scalar can be added to
(3). We claim that it is unlikely that a fine-tuning exists in
which both metric and scalar equation of motions are
second order in derivatives.

In natural inflation the massless field � is a pseudo-
Nambu-Goldstone field with decay constant f and period-
icity 2�. Let us consider the following tree-level
Lagrangian for �:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� f2

2
���@��@��

þmei� �c ð1þ 	5Þc þ �cDc � 1

2
TrF��F

��

�
; (5)

where c is a fermion charged under the (non-Abelian)
gauge field with field strength F��, D ¼ 	�D� is the

gauge-invariant derivative, and m is a mass scale.
The action (5) is invariant under the chiral (global)

symmetry c ! ei	5�=2c , where � is a constant. This
symmetry is related to the invariance under shift symmetry
of �, i.e., � ! �� �.

The chiral symmetry of the system is, however, broken
at the one-loop level [12], giving the effective inter-
action �F � ~F, where ~F
� ¼ ffiffiffiffiffiffiffi�g

p
���
�F�� and ���
�

is the Levi-Civita antisymmetric symbol. Instanton effects
related to the gauge theoryF introduce a potentialKðF � ~FÞ
[13]. In the zero momentum limit we can integrate out the
combination F � ~F and obtain a periodic potential for the
field � (note that this is independent upon the canonical
normalization of �) which has a stable minimum at � ¼ 0
[14]. If we expand the potential around its own maximum
at � ¼ �max, we get

Vð�Þ ’ �4

�
1� �2

2f2

�
; (6)

where � is the strong coupling scale of the gauge theory F
[15] and � ¼ fð�� �maxÞ. The approximation (6) is valid
as long as� � f, and it is precisely in this regime that the
Universe can naturally inflate, as is shown later on.
What is very important to note is that, since the non-

linearly realized symmetry is restored as � ! 0, the po-
tential (6) is natural and no UV corrections may spoil its
flatness.
Finally, the action we will use for the inflationary back-

ground is therefore

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

2
R� 1

2
���@��@��� Vð�Þ

�
: (7)

Strong coupling scale.—In order to find the validity
range of the effective action (7), we should find the energy
scale in which nonrenormalizable operators become
strong. Obviously, in a nonminimal coupled model, this
is a background-dependent question as already noted in
Refs. [10,16]. In a nontrivial background for the scalar field
configuration one might employ the gauge �� ¼ 0 (at all
orders), which is quite useful in cosmological perturbations

theory [17]. In this case the metric is perturbed as g�� ¼
	�� þ h��

Mp
, where 	�� and h�� are, respectively, the back-

ground and the perturbed metrics. We now use the
Arnowitt-Deser-Misner formalism, where the metric is
generically written as ds2 ¼ �N2dt2 þ hijðdxi � NidtÞ�
ðdxj � NjdtÞ. In this form the degrees of freedom of the
graviton are encoded into hij, and N and Ni are Lagrange

multipliers in the action (7) [10]. In this formalism, one

might define the extrinsic curvature Kij ¼ 1
N ð _hij �DðiNjÞÞ

and the three curvature R where the covariant derivatives
Di and R are both calculated with the three-metric hij

[11]. The perturbed action (7) is then [18]

S� ¼ 1

2

Z
d3xdt

ffiffiffi
h

p
N

�
M2

pR
�
1þ

_�2

2M2M2
p

�

þM2
pðKijK

ij �K2Þ
�
1�

_�2

2M2M2
p

�
þ

_�2

N2
� 2V

�
: (8)
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As we shall see, during slow roll inflation,
_�2

M2M2
p
� 1 and is

considered roughly constant. Therefore (8) is well approxi-
mated as

S� ’ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðM2

pRþ N�2 _�2 � 2VÞ; (9)

so that the strong coupling scale of (11) is manifestly Mp.

Note that, in the case of multifields coupled to (4), as in the
new Higgs inflation [10], the strong coupling scale is
lower [10].

Another source for a strong coupling scale is the opera-

tor Sint ¼
R
d4x

ffiffiffiffiffiffiffi�g
p �

f F � ~F, which was integrated out to

get the action (7) [19].
In the Arnowitt-Deser-Misner formalism, and during

slow roll, the scalar perturbations of the metric are codified
into the canonically normalized scalar perturbation �� in
hij ¼ aðtÞ3ð1þ 2M

_�
��Þ�ij [18]. After integrating by parts

Sint in the �� ¼ 0 gauge, we get the perturbed action

�Sint �
Z

d4x
ffiffiffiffiffiffiffiffi�	

p M

f
�Cijk�

0ijk

�
�� þ

_��

H

�
;

where �C��	 is the perturbed Chern-Simons three-form

relater to the gauge field F [13]. This interaction has a
renormalizable and a nonrenormalizable term. The renor-
malizable term is always in the weak regime as long as
f � M. The nonrenormalizable interaction, however, in-

troduces a new strong coupling scale Mnew ¼ H f
M . The

strong coupling scale of the theory will then be M	 ¼
minðMp;MnewÞ. Note that in the Minkowski limit the

canonical normalization of �� is different, and it boils
down to the replacement ofH instead ofM inMnew, so that
Mnew ! f, as expected. Moreover, because slow roll

conditions are violated in the Minkowski limit (MpH �
_� ! 0), the unitary violating scale related to the operator

��� smoothly converges to M	 � ðMpM
2Þ1=3. What is

important to note is that during the whole evolution, from
the inflationary to the Minkowski background, the curva-
ture is always below the scaleM	, so that our theory can be
perturbatively trusted.

UV-protected inflation.—The variation of the action (7)
with respect to the lapse N and the field � give rise to the
two Hubble and field equations [10]

H2 ¼ 1

6M2
p

�
_�2

�
1þ 9

H2

M2

�
þ 2V

�
;

@t

�
a3 _�

�
1þ 3

H2

M2

��
¼ �a3V0:

(10)

We will ask the solution to obey the following inequalities:

H2 � M2; � � � _H

H2
� 1; � �

��������
€�

3H _�

��������� 1;

(11)

where the last two are the usual slow roll conditions. In
particular, the second implies that during inflation the
Universe undergoes an exponential expansion.
With the help of Eqs. (11) we find the following inde-

pendent conditions extracted from (11):

� ’ M2

9H2

M2
p

f2
� 1; � ’ 1

6

M2

H2

�2

f2
M2

p

f2
� 1;

H2 � M2:

(12)

Note that both � and � are suppressed by the additional

gravitational friction term H2

M2 � 1, which is not present in

the standard natural inflation [8]. This enhanced gra-
vitational friction is the key physical mechanism allowing
f � M	.
Combining the weak coupling constraint (f � M) and

the � constraint in (12), we find Mnew � Mp. Therefore,

during slow roll,M	 ’ Mp. The quantum gravity constraint

such that the curvature should be smaller than the Planck
scale is easily satisfied for �4 � M4

p. The friction con-

straint H2 � M2 is satisfied for �4 � M2M2
p, which im-

plies M2 � M2
p as it should. Finally, we would like to

impose f � Mp.

Collecting all constraints, the natural inflationary setup
is UV-protected if the following hierarchies of scales are
satisfied:

M4
p � �4 � M2M2

p;
MMp

�2
� f

Mp

� 1: (13)

Quantum gravity corrections.—In this section, we will
address potential issues related to quantum (gravity) cor-
rections to our inflationary scenario.
For any theory of gravity which does not propagate

ghosts and approaches general relativity at large distances
or weak curvatures, the strong coupling scale M	 of the
theory might be only below the Planck scale Mp [20]. We

showed that, during inflation, the strong coupling scale of
our setup is indeed below Mp. In this respect, our theory

does not propagate any hidden ghost.
A second issue is related to the fact that, in any healthy

field theory, one expects that all scales playing any role in
the weak regime are smaller than the strong coupling scale
of the theory. This requirement is obviously fulfilled by
(13) as �; f;M � M	. In the absence of the gravitational
enhanced friction [or the operator (4)], one necessarily
needs f � M	 in order to produce inflation. In this respect
then, natural inflation [8] is problematic.
Another issue is related to the global symmetry of the

tree-level action (5). It is widely believed that quantum
gravity does not allow global symmetries. This is due to the
fact that black hole evaporation democratically emits any
particle coupled to gravity. The only constraint on this
emission is to conserve the total energy and/or fluxes at
infinity. Global charges do not carry any flux and therefore
cannot be conserved. In our scenario, however, the global
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(shift) symmetry is already broken by gauge instanton
effects. Therefore, the only way that gravity may partici-
pate in the quantum breaking of the global chiral symmetry
of (5) is through gravitational anomalies. The latter
can couple to the axion only via the interaction �R ~R ¼
�

ffiffiffiffiffiffiffi�g
p

���
�R	
���R

�
	
�, related to the gravitational Chern-

Simons three-form [13]. A potential KGðR ~RÞmight then be
generated by instanton effects if and only if the zero
momentum limit of the instanton correlator hR ~R; R ~Ri
does not vanish [13]. In any case, even if the potential
KGðR ~RÞ is generated, it is suppressed by the factor
e�S � 1, where S is the instanton action. Quantum gravity
effects can therefore produce a small correction to the mass
of the inflaton field only by redefining a new effective �.

Although the potential we introduced is stable under
radiative corrections, one might wonder about derivative
terms generated by loop corrections. During slow roll
inflation, all these corrections are negligible as propor-
tional to the slow roll parameters and suppressed by the
scale M	.

In conclusion, in our case in which f;�;M;H � M	,
there are no substantial quantum (gravity) corrections to
the inflationary evolution.

Conclusions.—A pseudo-Nambu-Goldstone scalar (the
axion), whose potential is obtained by a global symmetry
breaking at scale f via gauge field instanton effects, has a
naturally flat potential, as long as f � Mp. Unfortunately,

though, slow roll conditions for the axion require f � Mp.

This requirement might be softened by introducing a pleth-
ora of N � 1 axions as in Ref. [21], if large cross interac-
tion among the fields can be avoided. In this case, the
effective friction acting on the radial direction in the field
space is boosted by a factor N so that slow roll conditions

require only f � Mp=
ffiffiffiffi
N

p
. However, in this framework,

the strong coupling scale of the theory is lowered to M	 �
Mp=

ffiffiffiffi
N

p
[22]. This nullifies the attempt of Ref. [21] to

produce a natural inflationary scenario [23]. This problem
may, however, be solved if only two axions are considered.
In this case, by a fine adjustment of their coupling to the
anomalous currents, one can find f � M	 [24].

In this Letter, we showed an alternative way to increase
the friction in a natural inflationary scenario without in-
troducing any new degrees of freedom. In our model the
friction of the axion is gravitationally enhanced. In this
case, in order for the axion to slow roll down its own
potential, a natural value for the global symmetry breaking
scale f � Mp (or more precisely f � M	) can be easily

obtained. This feature is uniquely obtained by the interac-
tion of the Einstein tensor to the kinetic term of the axion
which keeps, nevertheless, the theory perturbative during
the whole inflationary evolution. This interaction is unique
in the sense that it does not propagate more degrees of

freedom than a massless spin 2 and a scalar while keeping
the tree-level shift invariance of the axion untouched.
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