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A general formalism is introduced to allow the steady state of non-Markovian processes on networks to
be reduced to equivalent Markovian processes on the same substrates. The example of an epidemic
spreading process is considered in detail, where all the non-Markovian aspects are shown to be captured
within a single parameter, the effective infection rate. Remarkably, this result is independent of the topology
of the underlying network, as demonstrated by numerical simulations on two-dimensional lattices and
various types of random networks. Furthermore, an analytic approximation for the effective infection rate is
introduced, which enables the calculation of the critical point and of the critical exponents for the
non-Markovian dynamics.

DOI: 10.1103/PhysRevLett.118.128301

Modeling the stochastic dynamics that occur in many
natural and technological systems has long depended on the
Markovian assumption. In a Markov process, the proba-
bilities of the occurrence of future events depend only on
the present state of the system, being independent of the
prior history. This memoryless property implies that such
dynamics can be described by Poisson processes with fixed
rates, which are characterized by an exponential distribu-
tion of the interevent time between consecutive events [1].
The mathematical tractability of Markov processes enables
great simplifications in problem formulation, leading to
important successes in the description of many dynamical
processes unfolding on networks [2] and in other complex
systems.
The dominance of the Markovian modeling framework

has recently been challenged by the increasing availability
of time-resolved data on different kinds of interactions,
ranging from human activity patterns, including commu-
nication and mobility [3–5], to natural phenomena [6,7],
biological processes [8], and biochemical reactions [9].
These empirical observations have revealed correlated
sequences of events with heavy tailed interevent time
distributions [10], which is a clear signature that the
homogeneous temporal process description is inadequate
and that non-Markovian (NM) dynamics lie at the core of
such interactions.
Meanwhile, the interest in non-Markovian dynamical

processes within the complex systems community has
blossomed, from the points of view of both mathematical
modeling [11–16] and numerical simulation [17,18].
Particular attention has been devoted to epidemic spreading
on complex networks, representing the diffusion of infor-
mation or disease in a population [19]. Recently, it has
been shown that a non-Markovian infection dynamics

dramatically alters the susceptible-infected-susceptible
(SIS) spreading process [17,20,21]. Non-Markovian
effects are now known to give qualitatively new behavior
in information spreading, e.g., on social networks, as
revealed by measurements of interevent times for email
responses [22,23] and retweets on Twitter [24]. In the
context of epidemiology, the non-Markovian assumption is
particularly relevant, as empirical measurements of real
diseases—smallpox, measles, and ebola—indicate that the
distribution of infectious periods is far from being expo-
nential [25–28].
In this Letter, we consider a SIS epidemic model

controlled by a non-Markovian infection process and show
that its steady state is equivalent to a Markovian one with an
effective infection rate λeff , thus encoding all the non-
Markovian effects into a single parameter. Interestingly,
such equivalence is independent of the underlying network
topology. Our mathematical formalism demonstrates the
existence of the effective rate λeff , allowing us to compute it
by means of numerical simulations, and enables us to
derive an approximate analytic expression λapp, in very
good agreement with λeff . Moreover, the approximate value
λapp is expected to exactly converge to λeff in the limit of
low prevalence, thus close to the epidemic threshold.
Therefore, the critical point and the set of critical exponents
of the non-Markovian SIS dynamics, when expressed in
terms of λapp, are the same of those of the Markovian case,
as we show by means of a finite size scaling analysis.
Let us consider an undirected and unweighted network

topology defined by an adjacency matrix aij, with i; j ¼
1;…; N, and a general, non-Markovian SIS dynamics
running on top. In this model, nodes exist in either of
two states, susceptible or infected. Infected nodes decay
spontaneously to the susceptible state after a random time t
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distributed as ψRðtÞ, that is, recovery from the illness does
not confer any long lasting immunity, a characteristic
present in some sexually transmitted diseases [29].
Susceptible nodes may become infected upon contact with
infected neighbors. We assume that each infectious (or
active) link, connecting an infected node with a susceptible
one, hosts statistically independent stochastic infection
processes, each one controlled by the same interevent
distribution ψ IðtÞ. In an active link isolated from the rest
of the system, the susceptible node becomes infected after a
random time t has elapsed since the infection was initiated,
with t distributed as ψ IðtÞ. If a susceptible node is
connected to more than one infected neighbor, infection
processes take place independently along each infectious
link.
Distributions ψRðtÞ and ψ IðtÞ allow us to evaluate the

(time-dependent) hazard rates, defined as the probability
per unit of time that, given that the event did not take place
by a time t since the process was initiated, it takes place in
the time interval between t and tþ dt [30]. The recovery
and infection hazard rates are defined as δðtÞ ¼
ψRðtÞ=ΨRðtÞ and λðtÞ ¼ ψ IðtÞ=ΨIðtÞ, where ΨRðtÞ and
ΨIðtÞ are the corresponding survival probabilities, that is,
the probability that a given event takes a time longer than t.
When temporal processes follow Poisson (Markovian)
statistics, both distributions are exponential and the corre-
sponding hazard rates are constants.
The SIS dynamics can be fully described by a set of

binary stochastic processes fniðtÞg, i ¼ 1;…; N, defined
as niðtÞ ¼ 1 if node i is infected at time t and 0 if it is
susceptible. The exact stochastic evolution of these proc-
esses can be written as

niðtþ dtÞ ¼ niðtÞξiðt; dtÞ þ ½1 − niðtÞ�ηiðt; dtÞ: ð1Þ

In this equation, the first term in the sum of the right-hand
side is different from 0 only when node i is infected and
accounts for its recovery during the time interval ðt; tþ dtÞ.
To achieve this, the stochastic process ξiðt; dtÞ is defined to
be equal to 0 with probability dtδ½tiðtÞ� and one otherwise,
where tiðtÞ is the time elapsed, at time t, since node i
became infected. Similarly, the second term in the sum of
the right-hand side of Eq. (1) accounts for the infection of
susceptible node i by one of its infected neighbors during
the time interval ðt; tþ dtÞ. The stochastic process
ηiðt; dtÞ is defined to be equal to 1 with probability
dt
P

jaijnjðtÞλ½τjiðtÞ� and 0 otherwise, where τjiðtÞ is the
time elapsed since the infection process of node j to node i
started. Note that we implicitly assume that each infected
neighbor defines a statistically independent random process
so that the total infection hazard rate is simply the sum of
the infection hazard rates of each individual process. Note
also that in this formulation tiðtÞ and τjiðtÞ are themselves
stochastic processes.

The average of Eq. (1), first conditioned to the knowl-
edge of the stochastic processes fni; ti; τjig at time t, and
then over the unconditional values, allows us to write the
following differential equation for the probability of node i
to be infected at time t, ρiðtÞ≡ hniðtÞi,

_ρiðtÞ ¼ −hniðtÞδ½tiðtÞ�i

þ
XN

j¼1

aijh½1 − niðtÞ�njðtÞλ½τjiðtÞ�i: ð2Þ

Note that with this definition, the prevalence of the disease
at time t is simply given by ρðtÞ ¼ N−1PN

i¼1 ρiðtÞ. The first
term in Eq. (2) can be rewritten as (see Supplemental
Material [31])

hniðtÞδ(tiðtÞ)i ¼ ρiðtÞhδ½tiðtÞ�jni ¼ 1i: ð3Þ

In the limit t → ∞, the only information we have about ti,
given that node i is infected, is that the recovery time of
node i after infection is longer than ti. This implies that the
probability density of ti is given byΨRðtiÞ=htRi, where htRi
is the average recovery time [30]. By combining this result
with the form of the recovery hazard rate, we can write

lim
t→∞

hniðtÞδ(tiðtÞ)i ¼ ρsti

Z
∞

0

ΨRðtiÞ
htRi

δðtiÞdti ¼
ρsti
htRi

; ð4Þ

where we have defined ρsti ¼ limt→∞ρiðtÞ. Similarly, the
terms on the right-hand side of Eq. (2) can be written as

h½1 − niðtÞ�njðtÞλ½τjiðtÞ�i
¼ h½1 − niðtÞ�njðtÞihλ½τjiðtÞ�jni ¼ 0; nj ¼ 1i: ð5Þ

From this equation, we observe that the evolution of the
density ρiðtÞ depends on the evolution of two-point
correlation functions, ρijðtÞ ¼ hniðtÞnjðtÞi, that appear in
the second term of Eq. (2). Using similar arguments to
those used to derive Eq. (2), we can write an exact
differential equation for the n-point correlation function
ρi1���in (see Supplemental Material [31]),

_ρi1���in ¼
X

i∈I

��

−δðtiÞniþð1−niÞ
XN

j¼1

aijnjλðτjiÞ
�Y

k∈I i

nk

�

;

ð6Þ

where we omit the dependence on t for brevity and we
define the sets of nodes I ≡ fi1; i2; � � � ing and I i ≡ Ini.
Eq. (6) can be written as

_ρi1���in ¼ −ρi1���in
X

i∈I

~δi þ
X

i∈I

XN

j¼1

aij ~λji½ρi1���j���in − ρi1���inj�

ð7Þ
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where ρi1���j���in and ρi1���inj are the n and (nþ 1)-point
correlation functions of the sets I i ∪ fjg and I ∪ fjg,
respectively, and where we have also defined

~δiðtÞ≡ hδ½tiðtÞ�jfnj ¼ 1; j ∈ Igi ð8Þ

and

~λjiðtÞ≡ hλ½τjiðtÞ�jni ¼ 0; nj ¼ 1; fnk ¼ 1; k ∈ I igi: ð9Þ

Equations (7)–(9) are the central result of our paper as they
fully describe the dynamics of the epidemic. What makes
our formulation interesting is the fact that all non-
Markovian effects of the dynamics are encoded in the
terms ~δi and ~λji. As we show later, under certain conditions
these parameters take constant values independent of the
nodes, that is, ~δi ¼ ~δ and ~λji ¼ ~λ. In this case, the
dynamics, even if strongly non-Markovian, can be
described by a Markovian one on the same network, using
effective parameters ~δ and ~λ. In this way, the considerable
complexity of non-Markovian effects is reduced to the
evaluation of such effective parameters.
To proceed further, we need to define the details of the

pairwise interaction that rules the infection process. We
assume that the infection process between an infected node
j and a susceptible node i depends on the state of node j
alone; i.e., when a node j becomes infected, it starts an
infection process independently to each of his neighbors,
regardless of their state, according to a renewal process
with interevent time distribution ψ IðtÞ. One can think of
this process as a series of firing events, separated by
random times tI , starting when node j becomes infected,
so that when one such event takes place at a time that
neighbor node i is susceptible, node i becomes infected
(see Fig. 1). We also assume that the recovery process of an
infected node depends on its state alone; i.e., when a node
becomes infected, it starts a recovery process with random
time tR, distributed as ψRðtÞ.
Within this framework, the average of λ½τjiðtÞ�

conditioned to the state of the system can be derived by
noting that, if τji is the time elapsed since the infection
process of node j to node i started and τRi is the time elapsed
since node i has recovered, then it may hold that τji > τRi .
Therefore, τji depends on the state of i but not on the state
of any other neighbor and, consequently, Probðτji; tjni ¼ 0;
nj ¼ 1;fnk ¼ 1; k ∈ I igÞ ¼ Probðτji; tjni ¼ 0; nj ¼ 1Þ (see
Supplemental Material [31] for a detailed proof). This
implies that we can then define an effective infection rate
λeff as

λeff ≡ lim
t→∞

hλ½τjiðtÞ�jni ¼ 0; nj ¼ 1i

¼
Z

∞

0

ϕðτjiÞλðτjiÞdτji; ð10Þ

where ϕðτjiÞ≡ limt→∞Probðτji; tjnj ¼ 1; ni ¼ 0Þ is the
probability density of τji, where τji is the time elapsed
since the start of the infection process from node j to node
i, given that node i is susceptible and node j is infected and
λ½τjiðtÞ� is averaged over all active links i − j in the
network.
Concerning the average of δ½tiðtÞ�, we note that in

general, in the long time limit, Eq. (8) does not reduce to
Eq. (4), since Probðti;tjfnk¼1;k∈IgÞ≠Probðti;tjni¼1Þ.
This is due to the fact that, especially for low-degree nodes,
the time tiðtÞ may depend on the status of node i’s
neighbors: if at time t node j is infected and connected
only to node i (kj ¼ 1), node j must have been infected by
node i; therefore ti has to be larger than the time elapsed
since the infection process of node j started. Thus, if the
recovery process follows a non-Markovian dynamics it is
not possible to define an effective parameter δeff. Therefore,
hereafter we consider only the case of Markovian recovery,
which implies ~δi ¼ ~δ ¼ htRi−1, so that the non-Markovian
SIS dynamics can be reduced to a Markovian one with
parameters ~δ and λeff .
Although the probability density ϕðτjiÞ can be easily

measured in numerical simulation, it is too cumbersome to
be computed analytically, even in the simplest case of
Markovian recovery (see Supplemental Material [31]).
Therefore, we also evaluate an approximate effective
infection rate λapp. To do so, we first notice that λeff can
also be written as

λeff ¼ N −1
Z

∞

0

ψðτjiÞλðτjiÞdτji; ð11Þ

where ψðτjiÞ≡ limt→∞Probðτji; ni ¼ 0; tjnj ¼ 1Þ is the
joint probability that node i is susceptible and the time
elapsed since the last infection attempt from j to i is equal
to τji, given that node j is infected at a given observation
time t → ∞, and where N is the normalization factor

FIG. 1. Sketch of the infection mechanism from node j to node
i. Infection events triggered by node j (represented by stars in the
figure) are ineffective if node i is already infected.
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N ¼ R
∞
0 ψðτjiÞdτji. In Supplemental Material [31], we

derive an approximate analytic expression for ψðτjiÞ that,
combined with Eq. (11), allows us to derive the following
expression for the approximate effective rate,

λapp ¼
ψ̂ Ið2~δÞ þ hkiψ̂ Ið~δÞ½1 − ψ̂ Ið2~δÞ�½ψ̂ Ið~δÞ − 1�−1

½hki − 1�Ψ̂Ið~δÞ
ð12Þ

where ψ̂ IðuÞ≡ Lfψ IðtÞg and Ψ̂IðuÞ≡ LfΨIðtÞg are the
Laplace transforms of ψ IðtÞ andΨIðtÞ, respectively, and hki
is the average degree of the network substrate.
We check the validity of the effective infection rates, λeff

and λapp, by means of extensive numerical simulations of
the non-Markovian SIS dynamics; see Supplemental
Material [31]. We consider a Poissonian (Markovian)
recovery process with rate ~δ and an infection process with
a Weibull interevent time distribution, that is,

ψ IðtÞ ¼
αI
b

�
t
b

�
αI−1

e−ðt=bÞαI ; ψRðtÞ ¼ ~δe−~δt ð13Þ

with parameter αI controlling the power-law start and tail of
the infection interevent time distribution. We choose b ¼
htIi½(Γð1þ 1=αIÞ)�−1, so that htIi is the average infection

time. Hereafter, and without loss of generality, we set the
time scale to ~δ ¼ 1. Once the system has reached its steady
state, we evaluate λeff by selecting random time instants
along the process. For each time instant, we select all active
links, measure the corresponding values of τji, and calcu-
late λeff as the average of the hazard rates λðτjiÞ ¼
ðαI=bÞðτji=bÞαI−1. The approximate infection rate λapp is
calculated from Eq. (12) by integrating numerically the
Laplace transforms ψ̂ Ið~δÞ and Ψ̂Ið~δÞ with ~δ ¼ 1.
Figure 2 shows the prevalence ρst at the steady state,

averaged over all nodes and measured in numerical
simulations, as a function of λeff and λapp, for different
values of αI and different network substrates: a two-
dimensional lattice (LATT) with periodic boundary con-
ditions and linear size L ¼ 50 (so N ¼ 2500), an Erdős
Rényi (ER) graph with hki ¼ 8 and size N ¼ 103, a RDR
network with hki ¼ 8 and size N ¼ 103, and a scale-free
(SF) network with exponent γ ¼ 2.5 and size N ¼ 103.
One can see that different curves of the prevalence,
corresponding to different forms of the infection interevent
time distribution, collapse onto one another when plotted as
a function of λeff . This result is particularly noteworthy
since two infection processes with the same average
infection time htIi but different forms of ψ IðtÞ are known
to behave very differently [17], showing huge differences in
the prevalence ρst for the same average infection time. This
is particularly true in the case of highly heterogeneous
processes, such as the one controlled by αI ¼ 0.25, with a
very skewed form of the interevent time distribution ψ IðtÞ,

and by αI ¼ 10, which corresponds to an almost-periodic
process.
The curves plotted as functions of the approximate

infection rate λapp are also almost indistinguishable from
the others, showing that λapp is a very accurate approxi-
mation of the exact effective rate, for every underlying
network topology. In Supplemental Material [31] we also
show that λapp is considerably different from the mean-field
approximation proposed in [17], and far more accurate in
describing extreme cases such as αI ¼ 0.25 and αI ¼ 10;
see Supplemental Material [31] Fig. 2. Interestingly, as we
show in Supplemental Material [31], Eq. (12) is expected to
converge to λeff in the limit of low prevalence ρst ≪ 1 and,
thus, close to the epidemic threshold, λc. This implies that
the exact critical point λc of the non-Markovian SIS
dynamics can be evaluated by means of Eq. (12). Using
the same argument, we also conclude that the set of critical
exponents of the non-Markovian dynamics is the same as
those of the Markovian one.
We check our hypothesis and evaluate the behavior of the

non-Markovian SIS dynamics and its critical properties by
performing a finite size scaling analysis. We obtain the
epidemic threshold λc, evaluated by means of Eq. (12), and
the set of critical exponents β, ν⊥, and δ for a non-
Markovian SIS dynamics with αI ¼ 0.5 and αI ¼ 2, on
top of two-dimensional lattice and degree regular networks,
by means of the lifespan method proposed in Ref. [32]; see
Supplemental Material [31]and Supplemental Material
Fig. 3. Table I shows that the critical point and exponents
for these cases are in very good agreement with corre-
sponding ones known in the literature for Markovian SIS
dynamics.
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FIG. 2. Steady-state prevalence ρst as a function of the effective
infection rate, for different values of the exponent αI controlling
the interevent time infection distribution and different network
substrates. Symbols represent the effective infection rate λeff ,
extracted by numerical simulations; continuous lines represent
the approximate rate λapp.
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In conclusion, we have demonstrated that the steady state
of non-Markovian SIS dynamics on arbitrary network
topologies can be understood in terms of equivalent
Markovian dynamics on the same substrates. The possibil-
ity of extending our steady-state analysis to transient
dynamics remains an open problem. The simplification
of the temporal nature of discrete-state processes promises
to find application in the wide variety of areas where non-
Markovian aspects are recognized as increasingly influen-
tial. It is worth remarking that our formalism is not
restricted to the SIS model and can be easily extended
to any non-Markovian dynamics with a finite set of discrete
states. This allows the determination of the extent to which
such dynamics can be reduced to a Markovian equivalent
(with redefined parameters) or whether the non-Markovian
dynamics are fundamentally different.
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