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We investigate how braneworld gravity affects gravitational collapse and black hole formation by
studying Oppenheimer-Snyder–like collapse on a Randall-Sundrum–type brane. Without making any
assumptions about the bulk, we prove a no-go theorem: the exterior spacetime on the brane cannot be
static, which is in stark contrast with general relativity. We also consider the role of Kaluza-Klein energy
density in collapse, using a toy model.
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The study of gravitational collapse in general relativity
(GR) is fundamental to understanding the behavior of the
theory at high energies. The Oppenheimer-Snyder (OS)
model still provides a paradigmatic example that serves
as a good qualitative guide to the general collapse prob-
lem in GR. It can be solved analytically, as it simply as-
sumes a collapsing homogeneous dust cloud of finite mass
and radius, described by a Robertson-Walker metric and
surrounded by a vacuum exterior. In GR, this exterior is
necessarily static and given by the Schwarzschild solution
[1]. In other theories of gravity that differ from GR at
high energies, it is natural to look for similar examples.
Braneworld scenarios of the Randall-Sundrum type [2,3]
lead to modified Einstein equations as the effective 4D
field equations on the brane. In this Letter we analyze
an OS-like collapse in this setting, in order to shed light
on some fundamental differences between collapse in GR
and on the brane.

In string theory and M theory, which may provide a
route towards quantum gravity, gravity is a truly higher-
dimensional interaction, which becomes effectively 4D at
low enough energies. Simple braneworld models inspired
by these theories describe the observable universe as a
3-brane boundary of a 4D space (the bulk), with matter
fields confined on the brane. Gravity propagates in all four
spatial dimensions but must be localized near the brane at
low energies, in order to reproduce the successful predic-
tions of GR. This is most obviously achieved via a small
compact extra dimension, as in Kaluza-Klein (KK) theo-
ries, but the Randall-Sundrum model [2] localizes gravity
by the curvature of the bulk, even with a noncompact ex-
tra dimension. The bulk metric, which is anti–de Sitter
(AdS5), satisfies the five-dimensional Einstein equations
with negative cosmological constant. Their model, with
vacuum Minkowski brane, has been generalized to allow
for arbitrary energy-momentum tensor on the brane, and
the effective field equations on the brane are modified
Einstein equations [3].

Perturbative analysis of the gravitational field due to a
compact source on the brane has been performed [2,4,5].
In particular, in the weak-field limit there is a 5D correction
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to the Newtonian potential on the brane which to leading
order gives

F � �GM�r� �1 1 2�2�3r2� , (1)

where � is the curvature scale of AdS5. Brane solutions of
static black hole and stellar exteriors with five-dimensional
corrections to the Schwarzschild metric have been found
[6,7], but the bulk metric for these solutions has not been
found. The Schwarzschild black string bulk metric has a
Schwarzschild black hole on the brane but cannot describe
the end state of gravitational collapse [8]. Numerical in-
tegration into the bulk, starting from static black hole so-
lutions on the brane, is plagued with difficulties [9]. In
summary, very little is known about astrophysical black
holes and stars on the brane, even in the static case. Even
less is known about astrophysical gravitational collapse on
the brane to a black hole.

Braneworld gravitational collapse is complicated by a
number of factors. The confinement of matter to the brane,
while the gravitational field can access the extra dimension,
is at the root of the difficulties relative to Einstein’s theory,
and this is compounded by the gravitational interaction
between the brane and the bulk. Matching conditions on
the brane are more complicated to implement [7], and one
also has to impose regularity and asymptotic conditions on
the bulk, and it is not obvious what these should be.

In GR, the OS model of collapsing dust has a Robertson-
Walker interior matched to a Schwarzschild exterior. We
show that even this simplest case is much more compli-
cated on the brane. However, it does have a striking new
property, which may be part of the generic collapse prob-
lem on the brane. The exterior is not Schwarzschild, nor
could we expect it to be, as discussed above, but the exte-
rior is not even static, as shown by our no-go theorem. The
reason for this lies in the nature of the braneworld modifi-
cations to GR.

The field equations on a generalized Randall-Sundrum
brane are [3]

Gmn � 2Lgmn 1 8pGTmn 1 48pGSmn�l 2 Emn ,
(2)
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where l is the brane tension (l . 108 GeV4) and the
brane cosmological constant L has contributions from the
tension and the bulk cosmological constant. The tensor
Smn is quadratic in the energy-momentum tensor Tmn ,
and Emn is the projection of the bulk Weyl tensor. The
energy-momentum tensor satisfies the usual conservation
equations, and the Bianchi identities on the brane then im-
ply a “conservation” equation for the trace-free Emn:

=nTmn � 0, =nEmn � 48pG=nSmn�l, Em
m � 0 .

(3)

The general 1 1 3 form of these equations is given in [10].
Five-dimensional corrections to the field equations of GR
are of two types [3,10].

(1) High-energy corrections, given by Smn , arise from
the extrinsic curvature of the brane and increase the ef-
fective density and pressure of collapsing matter. In par-
ticular, this means that the effective pressure does not in
general vanish at the surface, changing the nature of the
matching conditions on the brane [7]. Gravitational col-
lapse inevitably produces energies high enough to make
these corrections significant.

(2) KK corrections, given by Emn , arise from 5D gravi-
ton stresses and are constrained by Eq. (3). In the lin-
earized regime they are known as massive KK modes of
the graviton [2]; in general, they are a signature of non-
linear KK modes in the bulk. For brane-bound observers,
these stresses are nonlocal: local density inhomogeneities
on the brane generate Weyl curvature in the bulk that
“backreacts” nonlocally on the brane [10]. Even in the
absence of matter, Emn may be nonzero (provided that
=nEmn � 0), since there may be 5D Weyl curvature in the
bulk, e.g., sourced by a bulk black hole, as in cosmologi-
cal braneworld models [11,12]. The KK stresses further
complicate the matching problem on the brane, since they
in general contribute to the effective radial pressure at the
surface.

Equations (2) and (3) are the complete set of equations
on the brane. They are not closed, since Emn contains 5D
degrees of freedom that cannot be determined on the brane.
A further set of 5D equations [3] makes up the full closed
system. However, using only the 4D projected equations,
we prove a no-go theorem valid for the full 5D problem:
given the standard matching conditions on the brane, the
exterior of a collapsing dust cloud cannot be static. We
are not able to determine the nonstatic exterior metric, but
we expect on general physical grounds that the nonstatic
behavior will be transient, so that the exterior tends to a
static form.

The collapsing region in general contains dust and also
energy density on the brane from KK stresses in the bulk
(this is called “dark radiation” in cosmology [11,12]). We
show that in the extreme case where there is no matter but
only collapsing homogeneous KK energy density, there is
a unique exterior which is static for physically reasonable
values of the parameters. Since there is no matter on the
231302-2
brane to generate KK stresses, the KK energy density on
the brane must arise from bulk Weyl curvature. In this
case, the bulk could be pathological. The collapsing KK
energy density can either bounce or form a black hole
with a 5D gravitational potential, and the exterior is of the
Weyl-charged de Sitter type (given in [6] for L � 0), but
with no mass.

The collapse region has a Robertson-Walker metric

ds2 � 2dt2 1 a�t�2�1 1
1
4 kr2�22�dr2 1 r2dV2� .

(4)

The modified Friedmann equation from Eq. (2) is [13]

�a2�a2 �
8
3pGr�1 1 r�2l� 1 C�la4 2 k�a2 1

1
3 L ,

(5)

where the KK constant C is fixed by the bulk Weyl cur-
vature (for a cosmological Friedmann brane, C is propor-
tional to the mass of a black hole in the bulk [11,12]). The
r2 term, which is significant for r * l, is the high-energy
correction term, following from Smn . Standard Friedmann
evolution is regained in the limit l21 ! 0. Equation (3)
implies r � r0�a0�a�3, where a0 is the epoch when the
cloud started to collapse. The proper radius from the center
of the cloud is R�t� � ra�t���1 1

1
4 kr2�. The collapsing

boundary surface S is given in the interior comoving coor-
dinates as a free-fall surface, i.e., r � r0 � const, so that
RS�t� � r0a�t���1 1

1
4kr2

0 �.
We can rewrite the modified Friedmann equation on the

interior side of S as

�R2 � 2GM�R 1 3GM2�4plR4 1 Q�lR2

1 E 1 L�3R2, (6)

where the “physical mass” M (total energy per proper star
volume) and the total “tidal charge” Q are

M �
4
3pa3

0r3
0 r0�1 1

1
4kr2

0 �23,

Q � Cr4
0 �1 1

1
4 kr2

0 �24,
(7)

and the “energy” per unit mass is given by

E � 2kr2
0 �1 1

1
4 kr2

0 �22 . 21 . (8)

Now we assume that the exterior is static and satisfies the
standard 4D junction conditions. Then we check whether
this exterior is physical by imposing the modified Einstein
equations (2) for vacuum, i.e., for Tmn � 0 � Smn. The
standard 4D Israel matching conditions, which we assume
hold on the brane, require that the metric and the extrinsic
curvature of S be continuous. The extrinsic curvature is
continuous if the metric is continuous and if �R is continu-
ous [1]. We therefore need to match the metrics and �R
across S.

The most general static spherical metric that could
match the interior metric on S is

ds2 � 2F�R�2A�R�dt2 1 dR2�A�R� 1 R2dV2,

A�R� � 1 2 2Gm�R��R .
(9)
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We need two conditions to determine the functions F�R�
and m�R�. Now S is a freely falling surface in both met-
rics, and the radial geodesic equation for the exterior met-
ric gives �R2 � 2A�R� 1 Ẽ�F�R�2, where Ẽ is a constant
and the dot denotes a proper time derivative, as above.
Comparing this with Eq. (6) gives one condition. The
second condition is easier to derive if we change to null
coordinates. The exterior static metric, with dy � dt 1

dR��F�1 2 2Gm�R��, becomes

ds2 � 2F2Ady2 1 2FdydR 1 R2dV2. (10)

The interior Robertson-Walker metric takes the form [14]

ds2 � 2t2
,y�1 2 �k 1 �a2�R2�a2�dy2��1 2 kR2�a2�

1 2t,ydydR�
p

1 2 kR2�a2 1 R2dV2, (11)

where dt � t,ydy 1 �1 1 1
4 kr2�dR��r �a 2 1 1 1

4 kr2�.
Comparing Eqs. (10) and (11) on S gives the second con-
dition. The two conditions together imply that F is a
constant, which we can take as F�R� � 1 without loss of
generality (choosing Ẽ � E 1 1), and that

m�R� � M 1 3M2�8plR3 1 Q�2GlR 1 LR3�6G .
(12)

In the limit l21 ! 0, we recover the 4D GR
Schwarzschild–de Sitter solution. However, we note that
the above form of m�R� violates the weak-field perturba-
tive limit in Eq. (1), and this is a symptom of the problem
with a static exterior. Equations (9) and (12) imply that
the brane Ricci scalar is

Rm
m � 4L 1 9GM2�2plR6. (13)

However, Eq. (2) for a vacuum exterior implies

Rmn � Lgmn 2 Emn, Rm
m � 4L . (14)

Comparing with Eq. (13), we see that a static exterior is
possible only if M�l � 0. This is obviously satisfied in
the GR limit, but in the braneworld, collapsing homoge-
neous and isotropic dust leads to a nonstatic exterior. We
emphasize that this no-go result does not require any as-
sumptions on the nature of the bulk spacetime.

The one case that escapes the no-go theorem is M � 0.
In GR, M � 0 would lead to vacuum throughout the space-
time, but in the braneworld, there is the tidal KK stress
on the brane, i.e., the Q term in Eq. (6). The possibility
of black holes forming from KK energy density was sug-
gested in [6]. The dynamics of a Friedmann universe (i.e.,
without exterior), containing no matter but only KK energy
density (“dark radiation”) has been considered in [12]. In
that case, there is a black hole in the Schwarzschild-AdS5
bulk, which sources the KK energy density. Growth in the
KK energy density corresponds to the black hole and brane
moving closer together; a singularity on the brane can arise
if the black hole meets the brane. Here we investigate the
collapse of a bound region of homogeneous KK energy
density within an inhomogeneous exterior. It is not clear
231302-3
whether the bulk black hole model may be modified to de-
scribe this case, and we do not know what the bulk metric
is. However, we know that there must be 5D Weyl cur-
vature in the bulk and that the bulk could be pathological,
with a more severe singularity than Schwarzschild-AdS5.
Even though such a bulk would be unphysical (as in the
case of the Schwarzschild black string), it is interesting
to explore the properties of a brane with collapsing KK
energy density, since this idealized toy model may lead
to important physical insights into more realistic collapse
with matter and KK energy density.

The exterior is static and unique, and given by the Weyl-
charged de Sitter metric

ds2 � 2Adt2 1 dR2�A 1 R2dV2, M � 0 , (15)

if A . 0. For Q � 0 it is de Sitter, with horizon H21 �p
3�L. For L � 0 it is the special case M � 0 of the so-

lutions given in [6], and the length scale H21
Q �

p
jQj�l

is a horizon when Q . 0; for Q , 0, there is no horizon.
As we show below, the interplay between these scales de-
termines the characteristics of collapse.

For L � 0, the exterior gravitational potential is

F � Q�2lR2, (16)

which has the form of a purely 5D potential when Q . 0.
When Q , 0, the gravitational force is repulsive. We
thus take Q . 0 as the physically more interesting case,
corresponding to positive KK energy density in the interior.
However, we note the remarkable feature that Q . 0 also
implies negative KK energy density in the exterior:

2Emnumun �

Ω
13Q��lR4

S�, R , RS ,
2Q��lR4�, R . RS .

(17)

Negativity of the exterior KK energy density in the general
case with matter has been previously noted [4,6].

The boundary surface between the KK “cloud” and the
exterior has equation of motion �R2 � E 2 V �R�, where
V � A 2 1. For L � 0, the cases are as follows:

Q . 0, L � 0: The cloud collapses for all E, with
horizon at Rh � H21

Q �
p

Q�l. For E , 0, given that
E . 21, the collapse can at most start from rest at Rmax �p

Q��ljEj� . Rh.
Q , 0, L � 0: It follows that E . 0, there is no hori-

zon, and the cloud bounces at Rmin �
p
jQj��lE�.

For L . 0, the potential is given by V�Vc �
2�R�Rc�2�1 1 e�Rc�R�4�, where Vc � H�HQ , Rc � 1�p

HHQ , and e � sgnQ (see Fig. 1). The horizons are
given by

�R6
h �2 � R2

c �1 6
p

1 2 4eV 2
c ��2Vc . (18)

If e . 0 there may be two horizons; then R2
h is the black

hole horizon and R1
h is a modified de Sitter horizon. When

they coincide the exterior is no longer static, but there is a
black hole horizon. If e , 0 there is always one de Sitter –
like horizon, R1

h .
Q . 0, L . 0: The potential has a maximum 22Vc

at Rc. If E . 22Vc the cloud collapses to a singularity.
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FIG. 1. The potential V �R� for L . 0, with R given in units
of Rc and V given in units of Vc.

For Vc .
1
2 , i.e., Q . 3l�4L, there is no horizon, and a

naked singularity forms. For Vc � 1
2 there is one black

hole horizon R2
h � R1

h � H21�
p

2. If E # 22Vc, then
Eq. (8) implies Vc , 1

2 , so there are always two horizons
in this case. Either the cloud collapses from infinity down
to Rmin and bounces, with Rmin , R1

h always, or it can
at most start from rest at Rmax�.R2

h �, and collapses to a
black hole, where (e � 1)

R2
min
max

� R2
c �2E 6

p
E2 2 4eV 2

c ��2Vc . (19)

Q , 0, L . 0: The potential is monotonically de-
creasing, and there is always a horizon, R1

h . For all E, the
cloud collapses to Rmin�,R1

h � and then bounces, where
Rmin is given by Eq. (19) with e � 21.

In summary, we have explored the consequences for
gravitational collapse of braneworld gravity effects, using
the simplest possible model, i.e., an OS-like collapse on
a generalized Randall-Sundrum– type brane. Even in this
simplest case, extra-dimensional gravity introduces new
features. Using only the projected 4D equations, we have
shown, independent of the nature of the bulk, that the
exterior vacuum on the brane is necessarily nonstatic. This
contrasts strongly with GR, where the exterior is a static
Schwarzschild spacetime. Although we have not found the
exterior metric, we know that its nonstatic nature arises
from (a) 5D bulk graviton stresses, which transmit effects
nonlocally from the interior to the exterior and (b) the
nonvanishing of the effective pressure at the boundary,
which means that dynamical information on the interior
side can be conveyed outside. Our results suggest that
gravitational collapse on the brane may leave a signature in
the exterior, dependent upon the dynamics of collapse, so
that astrophysical black holes on the brane may in principle
have KK hair.

We expect that the nonstatic exterior will be transient
and nonradiative, as follows from a perturbative study of
nonstatic compact objects, showing that the Weyl term
Emn in the far-field region falls off much more rapidly
231302-4
than a radiative term [4]. It is reasonable to assume that
the exterior metric will be static at late times and tend to
Schwarzschild, at least at large distances.

We have analyzed the idealized collapse of homoge-
neous KK energy density whose exterior is static and has
purely 5D gravitational potential. The collapse can either
come to a halt and bounce or form a black hole or a naked
singularity, depending on the parameter values. This may
be seen as a limiting idealization of a more general spheri-
cally symmetric but inhomogeneous case. The case that
includes matter may be relevant to the formation of pri-
mordial black holes in which nonlinear KK energy density
could play an important role.
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