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We develop a theoretical approach to percolation in random clustered networks. We find that, although
clustering in scale-free networks can strongly affect some percolation properties, such as the size and the
resilience of the giant connected component, it cannot restore a finite percolation threshold. In turn, this
implies the absence of an epidemic threshold in this class of networks, thus extending this result to a wide
variety of real scale-free networks which shows a high level of transitivity. Our findings are in good
agreement with numerical simulations.
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Perhaps one of the main reasons for the growing interest
in complex networks is that many systems in the real
world, either naturally evolved or artificially designed,
are indeed organized in a networked fashion [1,2]. This
makes any theoretical approach potentially applicable to
many different fields in the short term. As a germane
example, percolation on networks has been one of these
theoretical advances which has helped us to understand, for
instance, the high resilience of scale-free (SF) networks in
front of the removal of a fraction of their constituents, with
important implications for communication systems like the
Internet and other Peer-To-Peer networks [3].

In addition to its high theoretical interest, percolation
theory serves as a conceptual framework to treat more
factual problems on networks, such as the dynamics of
epidemic spreading [4]. Indeed, the susceptible-infected-
removed (SIR) model of epidemic spreading can be
mapped into a bond percolation problem [5–8]. This is
one of the simplest models in the literature [9,10], with
three different states for the elements of the population:
susceptible, infected, and removed. In its bare formulation,
it is characterized by the time that an individual remains
infected and the time that an infected individual takes to
infect a susceptible neighbor, both random variables fol-
lowing a Poisson process but with different constant rates.
Since the infection uses the network as a template to
spread, the process of propagation can be understood as a
percolation problem over the original network where each
edge is removed with probability qinf � 1� pinf , with pinf

being the likelihood that an infected individual infects a
susceptible neighbor before becoming removed. This map-
ping stands as an example of the importance of percolation
theory beyond theoretical concerns.

Percolation properties of random directed and undir-
ected networks with given degree distributions and two-
point correlations have been extensively studied [11–15].
One of the most striking results, due to its important
implications, is the absence of a percolation threshold in
uncorrelated random SF networks [11,16]. In other words,
in this type of network, one has to remove virtually the
totality of their constituents before the network fragments

into disconnected components. Translated into the epi-
demic context, this means that an epidemic threshold
below which the epidemics cannot propagate does not
exist. This result is particularly important due to the fact
that a large number of real networks have a SF degree
distribution. This result has also been generalized to the
case of random SF networks with two-point correlations,
both for the SIR model and for the susceptible-infected-
susceptible (SIS) model of epidemic spreading [14,17].

Nevertheless, almost all the analytical results obtained
up to date implicitly refer to networks without clustering,
and little is known about its effects on the percolation
properties of such networks, with the exception of
Ref. [18], where an analytical solution for the percolation
properties of the one-mode projection of random bipartite
graphs was developed. See also [19]. This is due to the fact
that those analyses are based on the idea of a branching
process. This approach works well when the network is
locally treelike and thus the clustering coefficient is very
small. Real networks, however, are shown to have a sig-
nificant level of clustering that may change the percolation
properties significantly. In this Letter, we present analytical
and simulation results for percolation in clustered net-
works. The analytical approximation becomes exact in
the limit of weak clustering and simulations are also pro-
vided in the case of strong clustering. We find that cluster-
ing makes networks more fragmented as compared to the
unclustered counterparts but with giant components which
have tighter interconnected cores of high-degree vertices.
We also find that clustering cannot restore the percolation
and epidemic thresholds in SF networks.

To begin, we follow Ref. [20] and define the multiplicity
of an edge, mij, as the number of triangles in which the
edge connecting vertices i and j participates. This quantity
is the analog to the number of triangles attached to a node i,
Ti, which is used to define the local clustering coefficient.
In the coarse-grained level of degree classes, one can
define the multiplicity matrix mkk0 as the average multi-
plicity of the edges connecting the classes k and k0. Then,
the degree-dependent clustering coefficient �c�k�—a prop-
erty of vertices—and the multiplicity matrix mkk0 —a
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property of edges—are related through the following iden-
tity valid for any network:

 

X
k0
mkk0P�k; k

0� � k�k� 1� �c�k�
P�k�
hki

; (1)

where P�k� is the degree distribution and P�k; k0� is the
probability that one edge connects two vertices of degrees
k and k0. The multiplicity matrix mkk0 , which varies in the
range �0; mc

kk0 � with mc
kk0 � min�k; k0� � 1, gives a more

detailed description on how triangles are shared among
vertices of different degrees and, as we shall see, it contains
the relevant information to analyze the percolation prop-
erties of clustered networks.

An alternative way to quantify clustering is by using the
edge clustering coefficient as defined in [21]:

 �c�k; k0� �
mkk0

min�k; k0� � 1
: (2)

As in the case of the local clustering coefficient, �c�k; k0�
also has a probabilistic interpretation. It quantifies the
likelihood that a pair of connected vertices have a common
neighbor. If the network is random, we can assume that the
probability that an edge connecting two vertices of degrees
k and k0 has multiplicity m is

 ��mjkk0� �
mc
kk0

m

� �
� �c�k; k0��m�1� �c�k; k0��m

c
kk0
�m: (3)

This probability along with the multiplicity matrix are
crucial to compute correctly the percolation properties of
clustered random networks due to the fact that, although
we start from a given vertex and we follow all its edges as
in the nonclustered case, once we are placed in one of the
neighbors, we follow only those edges not pointing to the
neighborhood of the source vertex so that we avoid edges
responsible for clustering. It is worth noticing that, even in
this scheme, we are neglecting the fact that higher order
loops may be present.

Let us start the analytical computations by defining the
probability that a given vertex has s reachable vertices
(including itself ), G�s�. For very heterogeneous networks
it is more convenient to define this probability conditioned
to the degree of the source vertex, G�sjk�, and then G�s� �P
kP�k�G�sjk�. Finally, we need to introduce an extra

function, g�sjk�, which measures the probability that a
vertex can reach s other vertices given that it is connected
to a vertex v, of degree k, and that it cannot visit neither v
nor its neighborhood (this idea was used in [22] to compute
the number of second neighbors of a given vertex). This
last condition guaranties that we do not overcount contri-
butions due to triangles. The functions G�sjk� and g�sjk�
are related through

 G�sjk� �
X

s1;...;sk

g�s1jk� � � � g�skjk��s;1�s1�����sk : (4)

We can find a recursion relation for g�sjk� taking into
account that now the branching process has the constraint

that at each generation point we can use only the free edges
to continue the exploration. In this case
 

g�sjk� �
X
k0

X
m

P�k0jk���mjk; k0�

	
X
s1;...

g�s1jk0� � � � g�sk0br jk
0��s;1�s1�����sk0

br

; (5)

where k0br � k0 �m� 1. To simplify this equation we
make use of the so-called generating function formalism
and transform g�sjk� to the discrete Laplace space,
ĝ�zjk� 


P
sz
sg�sjk�, where Eq. (5) becomes a closed

equation for the function ĝ�zjk�,

 ĝ�zjk� � z
X
k0

X
m

P�k0jk���mjk; k0��ĝ�zjk0��k
0
br : (6)

The percolation transition takes place when Eq. (6), eval-
uated at z � 1, admits as a stable solution ĝ�z � 1jk� �
��k� � 1; that is, there is a finite probability [1� ��k�] that
the branching process extends up to infinity. To analyze the
stability of Eq. (6) near the fixed point ĝ�z � 1jk� � 1 we
study a perturbative solution ĝ�z � 1jk� � 1� ��k�� in
the limit �! 0. From Eq. (6),

 ��k� �
X
k0
�k0 � 1�mkk0 �P�k

0jk���k0�; (7)

using that mkk0 �
P
mm��mjk; k

0�. The transition between
the percolated and the fragmented phases is given by the
properties of the matrix �k0 � 1�mkk0 �P�k0jk�, and, in
particular, by its maximum eigenvalue �m. When �m >
1 the network is in the percolated phase in which a macro-
scopic fraction of the system becomes globally connected.
In the opposite situation, the network is a set of small
disconnected clusters.

The simplest case of clustered network corresponds to
mkk0 � m0, withm0 2 �0; 1�. In this situation, from Eq. (1)
one obtains �c�k� � c0�k� 1��1, where c0 is a function of
m0 to be determined. Hence, small degree nodes are highly
clustered, whereas high-degree ones are less clustered.
This specific form of �c�k� is particularly important since
it represents the maximum level of clustering one can
impose in a network without introducing at the same
time degree-degree correlations. This will allow us to
analyze the effect of triangles without any interference
from two-point correlations. Hereafter, we will refer to
levels of clustering below this threshold as weak transitiv-
ity. In fact, two-point correlations can be totally avoided
except for vertices of degree k � 1—that do not partici-
pate in triangles—and must necessarily follow a different
connection pattern. The clustering factor c0�m0� takes in
this case the form

 c0�m0� � m0

1–2 P�1�
hki � P�1; 1�

�1� P�1�
hki �

: (8)

The probability P�1; 1� 
 x is the smallest solution of the
following quadratic equation (the derivation will be given
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in a forthcoming publication):

 x2 �

�
h�i0

1� h�i0
�

2P�1�
hki

�
x�

P2�1�

hki2�1� h�i0�
� 0; (9)

where h�i0 is the average of ��0jkk0� over the set of
vertices of degrees larger than 1. Then, the maximum
eigenvalue of the matrix �k0 � 1�mkk0 �P�k0jk� can be
analytically computed, and so the percolation condition

 

hk�k� 1�i

hki
> �1� c0�m0��

m0

c0�m0�

�
1�

P�1�
hki

�
: (10)

For very low clustering, we recover the well-known result
for percolation in random networks. The immediate con-
clusion seems to be that clustering changes the position of
the critical point. However, in the case of SF networks, the
left-hand side of Eq. (10) diverges in the thermodynamic
limit, and therefore, in SF networks weak transitivity is not
able to restore a finite percolation threshold, and hence, a
finite epidemic threshold.

To check the accuracy of the present formalism, we
generated clustered random networks using the algorithm
introduced in Ref. [20]. We simulated networks of 105

nodes with an exponential degree distribution and a clus-
tering coefficient �c�k� � c0�k� 1��1. In Fig. 1, we com-
pare the relative size of the giant connected component,
gcc, as a function of c0 with the numerical solution of the
Eq. (6). As it can be seen, the effect of clustering is to
reduce the size of the giant connected component (in
agreement with [18,19]). The effect is so strong that, in
networks with a moderate average degree, it can fragment
completely the network when c0 exceeds a critical value.
In other cases, the reduction of the size can be more than
50%. For values of c0 2 �0; 0:5�, the agreement between
our formalism and the numerical simulations is excellent.
Beyond this point, our approximation slightly overesti-
mates the gcc’s size. This is mainly due to the fact that
in this regime, links of multiplicity larger than 1 appear,
which in turn induces the presence of some loops of order
4.

We now turn our attention to the case of strong transi-
tivity, which corresponds to functions �c�k� decaying slower

than k�1. In this case, clustering and two-point degree
correlations are intimately coupled [20]. An heuristic argu-
ment is as follows: If a vertex with a high degree has also a
high clustering coefficient, many of its neighbors will be
connected among them, which induces an assortative be-
havior. In other words, to generate random networks with
strong transitivity we need to introduce some mechanism
generating assortativity. However, it is not possible to
obtain a perfect assortative pattern in SF networks for
arbitrary large degrees (see Ref. [23] for a detailed dis-
cussion), and as a consequence, the maximum level of
clustering is limited. The algorithm of Ref. [20] has a
free parameter which allows one to control the assortativity
of the resulting network so that SF networks with high
clustering can be generated. We quantify the level of
clustering as C � �1� P�1���1P

kP�k� �c�k�, so that C is
defined in the interval �0; 1�. In Fig. 2, we show the relative
size of the giant component as a function of C. As in the
case of weak transitivity, clustering reduces the size of the
giant component. However, after a certain value, the size of
the giant component stabilizes to a constant value which is
independent of C. Therefore, SF networks with high levels
of clustering have giant components which are smaller than
their counterparts in networks without clustering. But
which are the resilience properties of those giant compo-
nents in front of random removal of edges? To answer this
question, we have generated two SF networks with � �
2:5, one with the maximum level of clustering (C � 0:71)
and the other without clustering, and applied a random
removal of edges on the corresponding giant components.
The results are shown in Fig. 3 (top graph). The giant
component of the clustered network turns out to be more
resilient than the giant component of the unclustered one.
Since SF networks without clustering do not have a perco-
lation threshold, we conclude that clustering, even high,
cannot restore the percolation and epidemic thresholds in
random SF networks.

However, the degree distributions of the giant connected
components can be different, a fact that could explain the
observed differences in the resilience properties. To check
this point, we have randomized the gcc of the clustered
network while keeping fixed its degree distribution (see the
curve labeled ‘‘randomized’’ in the top panel of Fig. 3).
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FIG. 1 (color online). Relative size of the giant component as a
function of c0, �c�k� � c0=�k� 1�, for different average degrees
and an exponential degree distribution for networks generated
with the algorithm of Ref. [20] (network size is N � 105). Solid
lines correspond to the numerical solution of Eq. (6). In the case
c0 � 0, we recover the results of the configuration model.
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FIG. 2 (color online). Relative size of the giant component as a
function of the global clustering C for SF networks with � � 3
and � � 2:5 and strong transitivity. The giant components
converge to a constant value independent of the level of cluster-
ing. Each point corresponds to a network of size N � 105.
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This network is more resilient than the clustered one for all
levels of damage except for very high values, for which the
gcc of the randomized network goes to zero faster due to
finite size effects. This is illustrated in the inset of Fig. 3.
The first arrow indicates the threshold computed with the
formula qc � 1� hki=hk�k� 1�i � 0:986, whereas the
second arrow indicates the threshold due to finite size
effects for the clustered net, which is placed closer to 1.
Therefore, clustered networks are less sensitive to finite
size effects than random equivalent ones. This can be
understood analyzing the k-core decomposition of the net-
works (see [24] and references therein). The k core is the
maximal subgraph such that all its nodes have k or more
connections within the subgraph. In the bottom plot of
Fig. 3, we show the relative size of the giant k core for
both networks. For small k, the randomized network has k
cores which are bigger than the ones of the clustered net,
which explains why it is more resilient. However, for very
large degrees, the clustered network has bigger k cores;
that is, a small but finite core of vertices with very large
degrees highly interconnected among them exists, which
makes the network less prone to finite size effects. We also
show the cumulative degree distribution Pc�k� since it
bounds the sizes of the k cores, which, for the clustered
net, decays as a function of k with the same exponent.

Summarizing, we have introduced a theoretical frame-
work to analyze percolation properties of clustered net-
works. We have shown that, although clustering strongly
affects the percolation properties and the sizes of the giant
components, it cannot restore the percolation and epidemic

thresholds in random SF networks, thus extending this
important result to a wider class of networks, closer to
the real ones. It is also worth mentioning that these results
can also be applied to other epidemiological models like
the SIS model.
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FIG. 3 (color online). Top panel: Relative size of the giant
component in relation to the original size (Ngcc � 601 353 for
the unclustered network, and Ngcc � 125 353 for the clustered
one) as a function of the fraction of removed edges, q. SF nets
with � � 2:5 and N � 106 are simulated for (i) a clustered
network, C � 0:71 (circles), (ii) an unclustered one (squares),
and (iii) the randomized gcc of the clustered net. The inset
shows a zoom of the area close to q � 1. Bottom panel: Relative
sizes of the giant k cores for (ii) and (iii) and the cumulative
degree distribution.
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