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Microscopic Entropy of the Black Ring
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A surprising new seven-parameter supersymmetric black ring solution of five-dimensional supergravity
has recently been discovered. In this paper, M theory is used to give an exact microscopic accounting of its
entropy.
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A major success of string theory is the statistical-
mechanical explanation of the Bekenstein-Hawking en-
tropy of certain supersymmetric spherical black holes
[1]. A crucial implicit assumption is that a black hole is
uniquely determined by its conserved asymptotic charges,
because the macroscopic entropy is reproduced micro-
scopically by counting Bogomol’nyi-Prasad-Sommerfield
(BPS) states subject to the only constraint that they carry
the same charges as the black hole.

Recently, a supersymmetric black ring has been discov-
ered [2]. This is an asymptotically flat black hole solution
of five-dimensional supergravity whose event horizon has
topology S1 � S2. A more general seven-parameter super-
symmetric black ring solution was found in [3–5].
Previous studies of non-BPS or singular black rings in-
clude [6]. Concentric black ring solutions have been found
in [5,7].

In M theory the solutions of [2,3] correspond to super-
tubes [8], namely, to configurations with M5-branes
wrapped around four-cycles of a six-torus and the fifth
brane dimension forming a circle, or ring, stabilized by
angular momentum in five-dimensional space-time. There
is also M2-brane charge density distributed around the
ring. The brane wrappings around the different cycles are
summarized by the array

q1 M2: 1 2 � � � � � � � � � � � � � � �

q2 M2: � � � � � � 3 4 � � � � � � � � �

q3 M2: � � � � � � � � � � � � 5 6 � � �

p1 M5: � � � � � � 3 4 5 6  
p2 M5: 1 2 � � � � � � 5 6  
p3 M5: 1 2 3 4 � � � � � �  

where qA and pA, A � f1; 2; 3g, are the numbers of M2-
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branes and M5-branes, respectively, wrapping each cycle,
and  is the five-dimensional angular coordinate around
the ring. The solution of the five-dimensional effective
supergravity theory is reproduced in the appendix of this
paper. It is characterized by seven independent parameters,
which we choose to be the set of six brane numbers listed
above, together with the angular momentum J around the
ring. However, the solution only carries five independent
conserved charges, namely, the three M2 charges qA and
the two angular momenta J and J�, where J� is the
angular momentum in the plane orthogonal to the ring.
The M5-branes do not give rise to conserved charges
because they wrap a contractible cycle in space-time.
Although the mass of the black ring is a conserved charge,
it is not independent because saturation of the BPS bound
implies M �

P
qA.

It follows that, in addition to providing an example of a
black hole with nonspherical topology, the black ring
violates the uniqueness assumption above by two continu-
ous parameters. It is therefore important to understand
whether its entropy can still be exactly accounted for
microscopically. In this Letter, M theory is used to provide
such an accounting. A somewhat related approach to black
ring entropy can be found in [9].

The Bekenstein-Hawking entropy, S � Ahorizon=�4G�,
of the black ring solution is given in [3] in the form

SBR � 2�
�����������������������������������������������������������������������������
q1q2q3 � k1k2k3 � J2� �D�J � J��

q
; (1)

where k1 	 q1 � p2p3 (and similarly for permutations of
1, 2, and 3) and D 	 p1p2p3. Replacing J� by its expres-
sion (A5) in terms of qA, pA, we get
SBR � 2�

����������������������������������������������������������������������������������������������������������������������������������������������������������
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�DJ �

1
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��p1q1�2 
 �p2q2�2 
 �p3q3�2�


1

2
D
�
q1q2
p3 


q2q3
p1 


q1q3
p2

�s
; (2)

where we have written everything in terms of the seven independent integers qA, pA, J . We wish to compare this
expression with the formula we get from the microscopic computation.

Our starting point is Ref. [10], where a derivation of the entropy of a four-dimensional black hole in a Calabi-Yau � S1

compactification of M theory was given [11]. The construction involves an M5-brane wrapped about
P
Ap

A�A, where �A
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is an integral basis of four-cycles in Calabi-Yau space. The
resulting string in five dimensions is a chiral (0,4) confor-
mal field theory (CFT), whose left-moving central charge
is given to leading order by cL � 6D, where

D � DABCp
ApBpC (3)

andDABC are the triple intersection numbers of the �A. For
the case of a six-torus, relevant to the solutions of [2,3],
DABC is equal to 1=6 if �ABC� form a permutation of �123�
and zero otherwise. Therefore we can write

cL � 6D � 6p1p2p3: (4)

Membrane charge arises as the momentum zero modes qA
of a Narain lattice of scalars in the CFT. The left-moving
oscillator number, denoted q̂0 in [10], was shown to be
related to the left-moving momentum q0 by [12]

q̂ 0 � q0 

1

12
DABqAqB 


cL
24
; (5)

where DAB is the inverse of the matrix DAB, defined as

DAB � DABCpC �
1

6

0 p3 p2

p3 0 p1

p2 p1 0

0
B@

1
CA: (6)

The second term in q̂0 comes from the momentum carried
by the Narain scalar zero modes, while the last term is the
usual oscillator zero-point contribution to the momentum.
These two terms are of the same order for a generic black
ring because requiring the solution to be free of pathologies
(e.g., closed timelike curves) imposes the condition q1 �
p2p3 (and similarly for permutations of 1, 2, and 3) [2,3].
To respect this inequality,

���
q

p
=p should be kept fixed in the

large-charge limit, in which case the two terms above are
of order q3=2.

The entropy of excited states with left oscillator number
q̂0 is given by the Cardy formula

S � 2�
���������������
cLq̂0=6

q
; (7)

where q̂0 is the left-moving momentum available to be
distributed among the oscillators [13].

In [10], a further S1 compactification from five to four
dimensions was performed, and four-dimensional black
holes were made by wrapping the string around this S1.
The resulting macroscopic entropy agreed with the micro-
scopic result following from Eq. (7). In the present context
we do not wish to compactify to four dimensions.
However, the intrinsic geometry of the M5-brane is iden-
tical: It still consists of a holomorphic surface times a
circle. In [10], the M5 circle is topologically stable,
whereas in the present case it is dynamically stabilized
by the angular momentum. Since the effective 1
 1 CFT
19160
is obtained by Kaluza-Klein reduction of the M5-brane
theory on the holomorphic surface, the result is the same
(0,4) theory as above.

Of course, the two M5 circles differ in their extrinsic
geometry, namely, in the way they are embedded in space-
time, and this is reflected in the supergravity solution
generated by the branes. The M5 circle in [10] is non-
contractible, and hence the number of M5-branes can be
determined by computing their net conserved charges at
infinity. In the case of interest here, the M5 circle is
contractible, and hence the net M5 charges at infinity
vanish. The crucial point is, however, that the number of
M5-branes that constitute the ring can still be determined
completely unambiguously from the appropriate flux
through any two-sphere that links the ring [2,3,14].

In summary, we are proposing that the microscopic
description of the black ring of [2,3] is that of a ring of
the same Calabi-Yau–wrapped M5-brane (0,4) CFT en-
countered in [10]. Note that this is exactly in the spirit of
[1], in that the microscopic theory is simply that living on
the world volume of the branes that constitute the black
hole in question. We emphasize that our proposal does not
rely in any sense on a near-ring limit. The number of M2-
branes and the angular momenta are computed at infinity,
as usual for conserved charges, and the flux that determines
the number of M5-branes is computed through a sphere
that may be taken to be arbitrarily large, the only constraint
on it being a topological one, namely, that it has linking
number one with the black ring horizon.

A highly nontrivial test of our proposal is the fact that
the microscopic entropy exactly reproduces the
Bekenstein-Hawking entropy. The left-moving momentum
q0 should equal J up to a sign, since this is the momentum
around the ring, and both are integrally quantized. Taking
the sign such that q0 � �J we find

q̂ 0 � �J 

D
4



1

2

�
q1q2
p3 


q2q3
p1 


q1q3
p2

�

�
1

4D
��p1q1�

2 
 �p2q2�
2 
 �p3q3�

2�: (8)

Substituting this expression into the Cardy formula (7) for
the entropy and comparing with the supergravity result (2)
we find perfect agreement.

We conclude with an observation about the infinite-
radius limit of the ring, in which it becomes [2,3] the black
string of [15]. In order to keep the resulting M2 charge
densities per unit length finite, one must keep qA=R fixed.
One must also keep pA fixed, since the M5-branes are
extended along the circle direction. Finally, the angular
momentum J conjugate to  must become a finite linear
momentum density conjugate to R , so J =R2 must be
kept fixed too. Thus, in the limit R! 1 the entropy
density per unit length, S=R, remains finite, but the zero-
point contribution to q̂0, of order R0, becomes subleading
1-2
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as compared to the two other terms in (5), of order R2. This
is consistent with the fact that the zero-point contribution
could be neglected in [10], as reducing the resulting 5D
string to four dimensions one obtains a black hole of the
type considered in that reference.
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Appendix.—The five-dimensional metric has the form

ds2 ��f2�dt
!�2 
 f�1 R2

�x� y�2

�



dy2

y2 � 1

�y2 � 1�d 2 


dx2

1� x2

�1� x2�d�2

�

(A1)

where f�1 � �H1H2H3�
1=3,

H1 � 1

�
4G
�

�
2=3 q1 � p2p3

2R2 �x� y�

�

�
4G
�

�
2=3 p2p3

4R2 �x2 � y2� (A2)

and H2 and H3 are given by obvious permutations.
The coordinates have ranges x 2 ��1; 1�; y 2

��1;�1�; �;  2 �0; 2�� and asymptotic infinity lies at
x! y! �1. Further, for the black ring solution we have
! � !�d�
! d , where

!� � �
G

2�R2 �1� x2�

� �p1q1 
 p2q2 
 p3q3 �D�3
 x
 y��;

! �
1

2

�
4G
�

�
1=3

�1
 y� �
G

2�R2 �y
2 � 1��p1q1 
 p2q2


 p3q3 �D�3
 x
 y��; (A3)

with D � p1p2p3. The solution possesses two angular
momenta as measured at infinity. In terms of the brane
numbers and the radius R they are given by
19160
J� �
1

2
�p1q1 
 p2q2 
 p3q3 �D�; (A4)

J �

�
�
4G

�
2=3
R2�p1 
 p2 
 p3� 


1

2
�p1q1 
 p2q2


 p3q3 �D�: (A5)

Note that in terms of the charges used in [3] we have

qi �
�
�
4G

�
2=3
QEEMR
i ; pi �

�
�
4G

�
1=3
qEEMRi : (A6)
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