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We study the 2D crystalline phases of paramagnetic colloidal particles with dipolar interactions and
constrained on a periodic substrate. Combining theory, simulation, and experiments, we demonstrate a new
scenario of first-order phase transitions that occurs via a complete inversion of the energy landscape, featuring
nonconventional properties that allow for (i) tuning of crystal symmetry, (ii) control of dynamical properties of
different crystalline orders via tuning of their relative stability with an external magnetic field, (iii) an
equivalent but independent control of the same dynamic properties via temporal modulations of that field, and
(iv) nonstandard phase-ordering kinetics involving spontaneous formation of transient metastable domains.
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Understanding the structural order of interacting particles
above patterned substrates is relevant formanyphenomena in
condensed matter physics, from atomic adsorption on
periodic substrates [1] to pinning of vortices on arrays of
magnetic dots [2]. It is also of great potential interest for
technological applications related to the development of
photonic band gap materials [3], chemical sensors [4] or
antireflection coatings [5], among others. The main advan-
tages in using colloids as model systems for studies on phase
transitions rely on their direct experimental accessibility [6]
and the possibility of inducing tunable interactions [7].
Because of this tunability, several complex structures can
be assembled via the application of electric and/or magnetic
fields, either static [8] or oscillating [9].
On a periodic substrate, the equilibrium organization of

the particles results from the interplay between pinning,
thermal noise, and interparticle interactions. Competition
between the inherent symmetries of the substrate and the
interactions can produce either intermediate phases [10] or
exotic patterns [11] with exciting perspectives towards the
development of new materials. Until now, the study of the
ordering of colloidal particles on periodic potentials has
focused mainly on systems with isotropic interactions,
either from electrostatic [12], magnetic [13], or entropic
[14] origin. Anisotropic interactions have been addressed
for nonspherical particle aggregates, namely, colloidal
molecular crystals [15].
Here we study a system of spherical dipolar particles

featuring anisotropic interactions and confined on top of a
two-dimensional striped pattern substrate. We show the
existence of two first-order phase transitions between
different crystalline orderings as the density of particles
is changed and as an external magnetic field is applied. The
latter phase transition proceeds via a new mechanism based
on a global inversion of the energy landscape, where fixed
equilibrium states exchange their local stable or unstable
character, in contrast to the exchange of the global stability

and metastability characteristic of the usual first-order
transitions. We term this phenomenon the “landscape-
inversion phase transition” (hereinafter LIPT). In addition,
we show that it is possible to induce a shift of this transition
by driving the system via a time modulation of the magnetic
field. This effect is due to the nonlinear contribution of the
magnetic field to the energy and enables an unstable
equilibrium crystalline phase to be dynamically stabilized
by a zero-average driving. Periodic forcings have been
recently used to drive colloidal systems towards equilib-
rium crystals avoiding kinetically arrested phases [16]. In
contrast, here we employ these drivings to stabilize an
unstable equilibrium ordering.
In our system, the one-dimensional periodic potential of

the substrate is generated by a uniaxial ferrite garnet film
(FGF) grown by liquid phase epitaxy [17]. The FGF features
a series of parallel striped domains with periodicity λ ¼
2.6 μm and opposite magnetization between consecutive
domains, separated by Bloch walls (BWs), i.e., narrow
transition regions with maximum stray magnetic field
Hstray ¼ 1.3 × 104 A=m. An aqueous suspension of para-
magnetic colloids with diameter 2a ¼ 1 μm (Dynabeads
Myone) is deposited on top of the FGF, and, after sedimen-
tation, particles locate above the BWs, acquiring a magnetic
moment ~m ¼ Vχ ~Hstray [Fig. 1(a)],withV the particlevolume
and χ ∼ 1 the magnetic volume susceptibility. Above the
BWs, particles display a small lateral diffusion, with Dx ¼
ð7.0� 0.4Þ × 10−3 μm2=s, while motion in the direction
transversal to the BWs is suppressed. As shown in Fig. 1(a),
the magnetic landscape of the substrate arranges the induced
dipoles in an antiferromagnetic order between lines, with
moments oriented parallel (antiparallel) for particles located
along the sameBW(consecutive BWs). Videomicroscopy is
used to track particles recorded for∼5 min at a rate of 60 Hz
on an observation area of 140 × 105 μm2.
As an order parameter for the crystalline phases, we use

the spatial average hαi of the positional orientation angle α
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between nearest neighbor particles located on adjacent
stripes [Fig. 1(a1)], with the equilibrium value denoted by
hαi�. The fact that the pattern periodicity λ is fixed in our
system imposes a geometrical constraint that allows a
description of the crystalline structure in terms only of
the angle hαi. For homogeneous states, an explicit form of
the energy landscape of the system can be derived directly
from the dipolar interactions between nearest neighbors
[18] as a function of the stray field of the substrate, Hstray,
the average distance between particles in a line hdi (the
inverse of the longitudinal linear density ρ ¼ 1=hdi), and
hαi (see details in Ref. [19]). Note that the linear density
along the direction transversal to the lines is fixed by the
constraint of the substrate pattern, and only the linear
density of particles along each line, ρ, is changed. The
equilibrium configuration given by energy minimization is
independent of Hstray but depends on ρ, i.e., on hdi.
Figure 1(b) shows the theoretical prediction for the phase
diagram (black lines) and both the experimental and the
numerical verification, the latter including thermal fluctua-
tions explicitly. The slight systematic deviation of data

from the theory can be attributed to the neglected fluctua-
tions in the mean-field theoretical approach (see the
discussion in Ref. [19]). The theoretical model also predicts
the metastable and unstable states, as shown in Fig. 1(b).
An important feature of the phase diagram in Fig. 1(b) is

the presence of a discontinuous phase transition from a
rectangular ordering at high densities to a rhomboidal one
at low densities. The transition is predicted to occur at
hdit ¼ 0.893ð8Þλ=2. The hysteresis region is also repro-
duced in simulations [19]. This phase transition results
from the anisotropy of the dipolar magnetic interactions.
These interactions between dipoles in consecutive BWs can
be either repulsive or attractive depending on the positional
angle α. For high (low) densities, the geometrical con-
straints favor the attractive (repulsive) interaction across
stripes, and the particles arrange in a rectangular (rhom-
boidal) order. The role of the density in colloids on periodic
substrates was experimentally studied with regard to the
melting transition [20]. Also, a density-induced phase
transition between crystalline orderings has been recently
predicted in a system with isotropic interactions [10]. Here,
we predict and experimentally demonstrate a similar phase
transition but arising from the anisotropy of the inter-
actions. In addition, the crystal symmetry of the rhomboidal
phase can be continuously tuned by changing the density.
Our system displays another phase transition when an

external magnetic field is applied in the plane of the
substrate, perpendicular to the BWs [Fig. 1(a)]: ~H ¼ Hŷ.
Such an in-plane magnetic field enforces (weakens) the
dipoles with moments parallel (antiparallel) to it. For
H > Hstray, the field flips the antiparallel moments, forcing
the system to transit to a ferromagnetic phase, as opposed to
the original antiferromagneticlike phase.
The external magnetic field can be incorporated into the

model, rendering an average energy per particle

hui ∼ ðH2
stray −H2Þfðhdi; hαiÞ ð1Þ

plus other isotropic terms, where fðhdi; hαiÞ is the same
function that gives rise to the phase diagram of Fig. 1(b)
[19]. The total energy hui is plotted in Fig. 2(a) as a
function of the order parameter hαi, for a given density and
for values of the external field below and above the
substrate field. The effect of the factor (H2

stray −H2) is to
completely flip the anisotropic (angular-dependent) part of
the energy for H > Hstray, while the angular function
fðhdi; hαiÞ remains unaffected. The value H ¼ Hstray
defines the LIPT, where equilibrium stable states become
unstable and vice versa, but remaining at the same values of
the order parameter. Therefore, the phase diagram under
these conditions, as shown in Fig. 2(b), has the same shape
as the one in Fig. 1(b), having exchanged the stability of the
equilibrium states corresponding to the cases H > Hstray
and H < Hstray. Even when not crossing Hstray, variations
of the external field modify the relative stability of the

FIG. 1 (color online). (a) Schematics of the system showing the
striped substrate and the paramagnetic colloidswith induced dipolar
moments from top (a1) and side (a2) views. (b) Structural phase
diagram, showing the equilibrium positional angle hαi� as a
function of the inverse linear density hdi along the lines. Theoretical
prediction (black line), experimental (blue circles), and simulation
(orange squares) results are shown for the equilibrium stable state.
A discontinuous phase transition (dashed black line) from a
rectangular to a rhomboidal phase occurs when the density
ρ ¼ 1=hdi is decreased. Predictions for the metastable (green line)
and unstable (red line) states are also plotted. The insets display
small overviews (64 × 48 μm2) of the experimental system.
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different phases while preserving the equilibrium value of
the order parameter. Therefore, dynamical properties of
these crystalline states, such as fluctuations or relaxation
rates, can be externally tuned.
Next, we explore the LIPTwhen the system is driven by

temporal oscillations of the external magnetic field, so that
a given configuration alternates between stable and unsta-
ble dynamics. Note that the only role of the density is to set
the two equilibrium configurations between which the
system will transit. In particular, we fix an inverse density
hdi ¼ λ=

ffiffiffi

3
p

corresponding to the triangular phase hαi� ¼
30° for low magnetic fields [H < Hstray, Fig. 1(b)] and to a
rhomboidal phase hαi� ¼ 2.7° for high magnetic fields
[H > Hstray, Fig. 2(b)]. We take a square-wave modulation

of frequency ν and peak-to-peak amplitude ΔH on the
external field, HðtÞ ¼ H0 þ ðΔH=2Þsgn½sin ð2πνtÞ�, with
an offset H0 corresponding to the temporal average
HðtÞ ¼ H0. We find that, for a certain range of ΔH and
sufficiently high ν, the system can be dynamically stabi-
lized at the high-field phase even though this phase is
unstable for the average field, HðtÞ < Hstray. Similarly, the
energetically stable phase will be dynamically destabilized
[21]. We confirm this phenomenon via both numerical
simulations [Fig. 3(a)] and experiments [Fig. 3(b)]; see the
video in Ref. [19].
The phenomenon can be understood by considering the

case of fast driving, for which the system responds to the
temporal average of the energy landscape. Figure 4(a) shows
examples of the flipping energy landscapes. Because of the
nonlinear coupling of the magnetic field in the
energy function, the average energy landscape is not given

by HðtÞ but by ½H2ðtÞ�1=2, which is always larger and may
eventually cross the transition boundary. In this case, the

FIG. 2 (color online). Landscape-inversion phase transition
(LIPT). (a) Mean-field energy as a function of the order parameter
hαi for an inverse density ρ ¼ 1=hdi ¼ λ=2 and external mag-
netic field below (red line) and above (blue line) the substrate
field Hstray. The anisotropic part of the energy landscape
completely flips for H > Hstray, thus inducing the LIPT. The
insets display the corresponding equilibrium orderings. (b) Phase
diagram for H > Hstray, complementary in terms of stability to
that of Fig. 1(b). Theoretical predictions (black line) are shown
along with experimental (blue circles) and simulation
(orange squares) results obtained for H ¼ 2 × 104 A=m
and H ¼ 5 × 104 A=m, respectively. Predicted unstable states
(red line) are also indicated.

FIG. 3 (color online). Dynamical stabilization of the unstable
crystalline ordering. (a) Simulated temporal evolution of the order
parameter hαi from the low-field phase (red line) to the high-field
phase (blue line) even if the average field corresponds to the
low-field phase. The right axis shows the external field
driving HðtÞ¼ 0.8Hstray, ΔH¼ 1.7Hstray, and T¼ 1=ν¼ 0.05 s
(dashed gray line), with an average (dashed green line) below the
transition threshold in static conditions (dashed black line). A
nonlinearity makes the system respond to an effective static value
(dashed orange line) above the threshold. (b) Experimental
demonstration of the dynamical stabilization taking place when
the temporal modulation is applied (orange shading). Quantita-
tive discrepancies stem from more pronounced spatial inhomo-
geneities in the experiment.
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high-field phase is stabilized, even though the value HðtÞ
would correspond to the low-field phase. Hence, the con-

dition for this to occur reads ½H2ðtÞ�1=2 > Hstray > HðtÞ, as
illustrated in Fig. 4(a). In parallel to the static case, this
corresponds to a flip in the anisotropic part of the temporal
average of the energy landscape. For a square signal, the
condition can be rewritten as ðΔHÞ2 > 4½H2

stray −HðtÞ2�,
which is plotted in Fig. 4(b) together with simulation and
experimental data verifying it. Remarkably, this is a con-
dition only over the external field and does not involve the
density. Therefore, this provides an alternative way to tune
the relative stability and dynamics of the crystalline phases.
For low frequencies, the system follows the external field
and oscillates between the two states rather than becoming
dynamically stabilized. The role of the driving frequency is
further discussed in Ref. [19].

The shift of the onset of instability via temporal drivings
has been theoretically studied for both specific systems
[22,23] and general models [24] and also observed in some
experiments on binary fluid mixtures [25], Rayleigh-
Bénard convection [26], and water vortex patterns [27].
In contrast, here we demonstrate that an equilibrium-
unstable crystalline phase can be stabilized by a temporal
modulation. Moreover, while shifts of instability thresholds
can usually be traced down to a nonlinear or multiplicative
coupling of the time-modulated parameters, in the case of a
LIPT a fully dynamical picture can be constructed. Within
the mean-field approach, this allows for the determination
of the actual relaxation time towards the newly stabilized
phase, as well as the escape time from the destabilized one.
As discussed in Ref. [19], the exponential escape (relax-
ation) rate from (to) the destabilized (stabilized) phase takes
the form gðhdi; hαi�Þ½H2ðtÞ −H2

stray�, where the function g
can be determined from the expression of the energy [19].
Finally, we discuss the new features introduced by the

LIPT scenario in phase-ordering kinetics. A quench
inverting the energy landscape naturally leaves the system
at an unstable state [see Fig. 2(a)]. Its early relaxation will
then form interfaces separating domains of two locally
stable phases. In contrast to standard phase-ordering
kinetics [28], the two coexisting phases will generically
have different relative stability. Half of the system will thus
evolve towards a metastable phase that was not present in
the initial condition. The dynamical generation of meta-
stable domains was theoretically predicted via a more
complex mechanism [29], while it arises naturally within
the LIPT scenario. Metastable domains will subsequently
be invaded by the stable phase at a finite speed (slightly
corrected by curvature) [30]. Hence, the phase-ordering
kinetics is not curvature driven but governed by a front
propagation mechanism, which will break the usual self-
similar coarsening. Note that varying the magnetic field
changes the relative stability of the coexisting phases, and
hence the corresponding front speed, so that the phase-
ordering kinetics can also be externally tuned. Furthermore,
from the discussion above one can expect an equivalent
control of the phase-ordering kinetics with fast modulations
of the magnetic field.
In summary, we have shown that magnetic colloids on a

periodic substrate can display novel structural phase
transitions due to the anisotropy of their interactions.
Specifically, a new phase transition scenario involving a
full reversal of the energy landscape has been demon-
strated. It exhibits remarkable versatility to external control
by a magnetic field that can tune and invert the relative
stability of the different phases, and hence modify their
dynamics (relaxation properties, front propagation, fluctu-
ations, etc.), without modifying their crystalline order. In
turn, the latter can be tuned continuously with the density
variable. Moreover, a nonlinear coupling of the external
field allows one to use fast temporal modulations of this

FIG. 4 (color online). Conditions for the dynamically induced
LIPT. (a) Energy landscapes for the low-field (red line) and high-
field (blue line) semiperiods. When rapidly switched between
both states, a linear response system would respond to the energy
corresponding to the average field (green line), as opposed to the
actual temporal average energy profile (orange line) in our
nonlinear system. The plotted curves correspond to HðtÞ ¼
0.8Hstray and ΔH ¼ 1.7Hstray, a case for which the system is
dynamically stabilized in the equilibrium unstable state. (b) Sta-
tionary state diagram showing the presence (blue symbols) or
absence (red symbols) of the dynamically induced transition, as a
function of the external field only. The theoretical border (black
line) is verified in experiments (circles) and simulations (open
squares). HðtÞ þ ΔH=2 ¼ Hstray (dashed line) is a singular case,
because the moments of the particles in one of every two rows
exactly vanish due to the external field.
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field to achieve the same degree of control of statics
and dynamics of the different phases, regardless of the
behavior corresponding to the average value of the field.
These phenomena are theoretically understood, thus open-
ing the possibility to engineer or to look for other physical
systems exhibiting similar behavior and explore possible
practical applications. From a fundamental point of view,
the nonstandard phase-ordering kinetics is a particularly
appealing open problem.
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