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Abstract 
A unique resource for systems pharmacology and genomic studies is the NCI-60 

cancer cell line panel, which provides data for the largest publicly available library 

of compounds with cytotoxic activity (~21,000 compounds), including 108 FDA-

approved and 70 clinical trial drugs as well as genomic data, including whole-

exome sequencing, gene and microRNA transcripts, DNA copy number, and 

protein levels. Here we provide the first readily usable genome-wide DNA 

methylation database for the NCI-60, including 485,577 probes from the Infinium 

HumanMethylation450k BeadChip array, which yielded DNA methylation 

signatures for 17,559 genes integrated into our open access CellMiner version 

2.0 (https://discover.nci.nih.gov/cellminer). Among new insights, transcript versus 

DNA methylation correlations revealed the epithelial/mesenchymal gene 

functional category as being influenced most heavily by methylation. DNA 

methylation and copy number integration with transcript levels yielded an 

assessment of their relative influence for 15,798 genes, including tumor 

suppressor, mitochondrial, and mismatch repair genes. Four forms of molecular 

data were combined, providing rationale for microsatellite instability for 8 out of 

the 9 cell lines in which it occurred. Individual cell line analyses showed global 

methylome patterns with overall methylation levels ranging from 17 to 84%. A 

six-gene model including PARP1, EP300, KDM5C, SMARCB1 and UHRF1 

matched this pattern. Additionally, promoter methylation of two translationally 

relevant genes Schlafen 11 (SLFN11) and methylguanine methyltransferase 

(MGMT) served as indicators of therapeutic resistance or susceptibility, 

respectively. Overall, our database provides a resource of pharmacological data 

that can reinforce known therapeutic strategies and identify novel drugs and drug 

targets across multiple cancer types. 

 

Introduction 

DNA methylation is an heritable epigenetic event occurring at cytosines 5’ of 

guanosines (CpG’s) and catalyzed by DNA methyltransferases (DNMT), which 

transfer a methyl group from S-adenosyl methionine to the 5 position of the 
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cytosine ring (1). DNA methylation is involved in multiple epigenetic processes 

ranging from transcriptional down-regulation, X chromosome inactivation, 

embryonic development, and genomic imprinting (2,3). “CpG islands” in the 5’ 

regulatory regions of many genes (~56%), are involved in transcription down-

regulation and histone deacetylase recruitment (4,5). The pattern of methylation 

has both allele-specific and evolutionary conservation, as well as tissue-specific 

and cell-specific variations (6-8). 

 DNA methylation defects have been associated with multiple diseases 

including i) global methylation defects for diabetes, obesity, fetal alcohol 

syndrome and aging, ii) imprinting disorders for Angelman syndrome, Prader-Wili 

syndrome, Beckwith-Wiedemann syndrome and autism, iii) genetically-driven 

methylation defects for Fragile X syndrome, dyslexia, Rett syndrome, centromere 

instability, Sotos, Weaver, and Kleefstra syndomes, and iv) candidate gene 

methylation defects for obesity and Type 1 and 2 diabetes (9,10). 

 DNA methylation defects are also linked to cancers (9). Global loss of 

DNA methylation has been associated with genomic instability, loss of imprinting, 

and reactivation of transposable elements (11). Loss of genomic imprinting of 

IGF2 has been associated with increased risk of liver, lung, intestinal and colon 

cancers (3). Concurrent with global hypomethylation, specific hypermethylation of 

tumor suppressor genes, including CDKN2A, MLH1, VHL, and CDH1 occurs 

leading to their transcriptional repression (3,9). 

 The NCI-60 was the first cancer cell line database established and it 

remains the largest drug and most complete source of molecular data (12,13). In 

the current study we provide whole genome methylation levels from 485,577 

probes across the NCI-60 cancer cell line panel. We detail probes that are 

associated with genes, and provide easy access to them using our CellMiner  

\ Cell line signature web-based application (14). This allows direct comparison 

and integration with other molecular and activity data, examples of which are 

included. We also provide a novel form of visualization of the level of influence on 

gene transcript levels of DNA methylation and copy number, and examples of the 

relevance of DNA methylation for predicting the activity of DNA-targeted agents. 
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Materials and Methods 

Cell lines, growth, and DNA purification 

We combined data for the NCI-60 cell lines from both the National Cancer 

Institute (NCI) and the Cancer Epigenetics and Biology Program (CEBP) (15). 

Both the NCI and CEPB obtained the cell lines from the Developmental 

Therapeutics Program (DTP) (12,16,17). For the NCI dataset, cells were grown 

and DNA isolated as described previously (18,19). For the CEPB dataset,  cells 

were grown and DNA isolated as described previously (15). 

 
DNA methylation, comparison of CEBP and DTB datasets, and probe beta 
values 

NCI bisulfite conversion and DNA sample handling was done as described 

previously (20). The Infinium HumanMethylation450k BeadChip kit (Illumina, Inc, 

San Diego, CA, 92122, catalog #WG-314-1001) was used with standard protocol 

for both the CEBP and NCI studies (20,21). CEPB bisulfite conversion and DNA 

sample handling was done as described (15). 

 NCI samples used p-values of detection as filters for each probe. Probes 

with values of p>0.01 were treated as missing. For dataset comparison, we did 

average linkage hierarchical clustering of all cell line probe intensity profiles using 

1- Pearson correlation distance. This and all subsequent statistical analysis was 

done in the R statistical environment (22). We used the probe-wise average of 

the cell line replicates from the two datasets for all subsequent analysis. 

 Probe beta values by cell line are calculated as: 

(Intensity of the methylated probe) / [(Intensity of the methylated probe) + 

(Intensity of the unmethylated probe)] 

 
Selection of probes associated to genes for comparison to gene 
expression 
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Probes were assessed for location with respect to genes and proximal CpG 

islands defined by Illumina. Probes were designated as category-1 or 2 with 

category-1 considered to be most informative. For subsequent comparisons, 

category-1 probes were used if available, and if not then category-2. In either 

case, gene methylation values resulted from averages of those probes. For 

genes with multiple transcriptional start sites, the transcript with the most 

negative correlation to the methylation probes was identified and used.  

 

DNA methylation versus transcript expression, and gene group definition 

For comparisons between methylation levels and transcript expression z 

scores, we used the methylation and transcript “Cell line signatures” (16). 
Expression versus methylation correlations, heat-map and histogram were 

generated using The R Project for Statistical Computing (22). For the transcript 

versus methylation analyses by gene category, genes were divided based on 

correlation value of r < -0.5. Enrichment of Gene Ontology Consortium 

classifications were accessed using GoMiner with a false discovery rate cut-off 

off < 0.05 and a minimum ten identified genes per category (23,24). 

 
Gene DNA copy number determinations 

DNA copy number patterns were determined as described previously (25). Their 

gene “Cell line signatures” can be accessed at CellMiner by gene using  

“CellMiner \ NCI-60 Analysis Tools \ Cell line signature” (16).  

 

Linear regressions for testing the predictive power of DNA copy number 
and methylation on transcript expression 

For each of the 15,798 genes with all three forms of data available (transcript, 

methylation and copy number levels) a linear regression model was fit, with both 

copy number and methylation as independent variables, and transcript 

expression as the dependent variables. The model provided coefficients for the 

copy number and methylation that gave the lowest squared error between fitted 
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values and true expression. We separated individual contributions of these two 

factors for gene expression prediction using the method of relative importance 

(26), using the lmg method (27) from the R package relaimpo to compute 

individual R2 values. Total (or combined) R2 is the summation of these two. 

Square roots of the R2 values were multiplied by the sign of the coefficients of the 

factors in the combined model to get the value of R. 

 

Mutational status of genes 

Genetic variants were assessed using the “CellMiner\NCI-60 Analysis Tools 

\ Cell line signature \ Genetic variant summation” tool (12,13,16). The form of the 

data used for SMARCB1 in the linear regression analysis is the “Amino acid 

changing”. The form of the data used for MLH1, MSH2, and MSH6 is the “Protein 

function affecting”.  

 

Global methylation and PARP1 and EP300 protein expression levels 

The box and whisker plots and linear regression analysis were done using The R 

Project for Statistical Computing (22).  For the linear regression analysis, the 

form of KDM2B, CREBBP, and SMARCB1 “Genetic variant summation” data 

used is the “Amino acid changing”. Protein expression for PARP1 and EP300 

were accessed using  “CellMiner \ NCI-60 Analysis Tools \ Cell line signature 

\ Protein mean values” (14,16).  

 

Pattern comparisons and drug activity determinations  

Correlations between median methylation values and cytogenetic measurements 

of instability were determined using “Pattern comparison”, accessed at “CellMiner 

\ NCI-60 Analysis Tools \ Pattern comparison”, within “Miscellaneous phenotypic 

parameters”. Drug “Cell line signatures” can be accessed at CellMiner by 

National Service Center (NSC) number using “CellMiner \ NCI-60 Analysis Tools 

\ Cell line signature \ Drug activity z scores” (14,28). 
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Results 

Concordance and merging of two datasets for establishing the NCI-60 
methylome database 

A comparison of the two NCI-60 whole genome DNA methylation datasets 

independently prepared at both the NCI and the Cancer Epigenetics and Biology 

Program (CEBP, Barcelona, Spain) was done (15). Cross correlations of probes-

specific methylation levels for matched cell lines in the two datasets yielded very 

high correlations for all cell lines, with a range between 0.919 and 0.995, and an 

average of 0.978. Three representative cell lines probe set comparisons are 

shown in Figure 1A. Also, clustering analyses of all cell lines across the two 

datasets (NCI vs. CEBP) showed that in all cases, the nearest neighbor cell line 

was the duplicate cell line from the independent dataset (Figure 1B). Only two of 

the cell lines ME:MDA-N and RE:CAKI-1 did not have duplicates in the CEBP 

analysis. Together, these analyses demonstrated the consistency of the NCI-60 

methylome data. Because of their high concordance, the NCI and CEBP NCI-60 

whole genome DNA methylation datasets were merged by taking the matched 

cell line average methylation. This form of the data was used for the remaining 

analyses in this manuscript, as well as for uploading the data to CellMiner. 

 

Identification of methylation probes for individual genes 

In the NCI dataset analysis, independent from the CEBP team (15), methylation 

probes that were gene-specific were selected. To this end, the 485,577 

methylation probes on the Infinium HumanMethylation450k BeadChip array were 

assessed based on location with respect to CpG islands and genes 

(Supplemental Figure 1A, B, and C) and their relationship with gene expression 

(Supplemental Figure 1D). This resulted in a 2-tier probe categorization 

(Supplemental Figure 1C) yielding DNA methylation signatures for 17,552 genes. 

The complete gene-probe information is included in Supplemental Table 1. For 

the purpose of comparing gene transcript levels with methylation, category-1 
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probes were the most informative. Category-2 probes were found to be less 

informative (less well correlated), but still relevant for some genes. As a result, 

the NCI-60 methylation data for 17,552 genes may be directly retrieved from the 

CellMiner website (updated to version 2.0) in several forms as described 

previously (14,16,28). A link providing online instructions for generating DNA 

methylation Cell line signatures is available (29). The graphical output “Cell line 

signature’s” for 3 examples, VHL, SLFN11, and IRF6, are presented in Figure 2. 

 

Global methylation levels for the NCI-60 

The distribution of global methylation levels for 485,577 probes showed marked 

differences among individual cell lines (Figure 3A). Median values ranged from 

17% for melanoma MALME-3M to 84% for colon carcinoma HCT-116. To 

determine genes that are major contributors in such global differences, the global 

methylation pattern was compared to epigenetic, chromatin, and histone 

functional group’s (defined in Supplemental Table 2) for: i) amino acid changing 

genetic variants, ii) protein function affecting genetic variants, iii) gene transcript 

levels, and iv) protein levels, using the “Pattern comparison” web application 

(14,28).  

 Significant correlations (p<0.01) were found for 24 genes, including five 

with literature connection to DNA methylation: UHRF1, MTA1, HIST1H1A, 

PARP1, and EP300. However, none of the 24 significant correlations found could 

individually predict more than 21% of the median methylation pattern, implying 

multivariate causation. Using linear regression, it was found that all of these 

except HIST1H1A made significant contribution to modeling a relationship to the 

median methylation pattern. After removing HIST1H1A, four other genes 

(KDM5C, KDM2B, CREBBP, and SMARCB1) were added back, one at a time, 

based on their appearing in both the epigenetic and chromatin functional 

categories (Supplemental Table 2).  Of these, KDM5C and SMARCB1 were 

found to contribute to the model significantly (p=0.00046) by comparison to the 

four-gene model. The resulting scatter plot of true versus fitted values in Figure 

3B showed an r2 of 0.62. The six-gene model for prediction of global methylation 
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status included PARP1 (p value= 3.7 x 10-6, r= -0.062), MTA1 (p value= 5.9 x 10-

6, r= 0.066), EP300 (p value= 1.1 x 10-3, r= -0.030), KDM5C (p value= 1.2 x 10-3, 

r= -0.051), SMARCB1 (p value= 0.017, r= -0.0049), and UHRF1 (p value= 0.041, 

r= 0.021). 

 Pattern comparison using the median probe methylation values (Figure 

3A) identified significant negative correlation to six parameters of genomic 

instability from cytogenetics (30). These were modal chromosomal number, 

numerical complexity, structural heterogeneity, fraction of abnormal 

chromosomes that experience numerical heterogeneity, fraction of normal 

chromosomes that experience numerical heterogeneity, and numerical 

heterogeneity, with correlations of -0.341, -0.362, -0.362, -0.377, -0.389, and -

0.425 respectively. These correlations indicate that as the levels of DNA 

methylation decrease, the levels of genomic instability increase. 

 
Comparison of methylation levels to transcript expression for functional 
gene groups 

Comparison of gene methylation to transcript expression levels across the NCI-

60 identified 44 GO categories enriched for genes with significant methylation 

versus expression correlations (see rows in Figure 4A) (23,24). As these 44 

categories had overlapping genes, they were organized into the seven groups 

shown on the right of Figure 4A, including: metabolic processes, blood 

coagulation, cell migration and mobility, cell adhesion and assembly, white blood 

cell proliferation, activation of immune response, cell death and signaling. 

Curated gene lists generated from literature for different pathways related 

to cancer (including epithelial mesenchymal transition, tumor suppressors, 

oncogenes, apoptosis, DNA repair chromatin and mitochondria; see 

Supplemental Table 2) were also tested. For all the genes in each gene category, 

the correlation between transcript and methylation levels was computed. The 

data presented in Figure 4B show the median Pierson correlation for each 

curated gene category (vertical lines), as well as for the GO categories shown in 

panel A (red fonts). The histogram of correlation distribution for all the 17,144 
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transcripts with expression and DNA methylation data is shown as the shaded 

area (see Supplemental Table 2 for individual values).  

The epithelial and mesenchymal gene categories, consisting of 25 and 27 

genes respectively, were assembled previously (31). These categories showed 

the most significant correlation between DNA methylation and transcript levels, 

with medians of -0.639 and -0.525 for the epithelial and mesenchymal genes, 

respectively. A wide gap was found prior to the next groups of genes with 

significant correlation. Those included the genes found by GO analysis (see 

Figure 4A), and additional categories including tumor suppressor genes, which 

were tightly grouped as a cluster of 23 functional groups, within a range of -0.259 

to -0.148. By contrast, the microRNAs median value showed a lack of significant 

correlation to expression (r=0.010). Together, these analyses demonstrate that 

DNA methylation drives gene expression for selected pathways, such as the 

epithelial mesenchymal transition (EMT), and to a lesser extend for tumor 

suppressors in the NCI-60. 

  

Integration of the NCI-60 methylome with transcriptome profiles 

Supplemental Table 2 contains the Pearson’s correlations between DNA 

methylation and transcript expression for 17,144 transcripts, including 16,155 

genes, 494 open reading frames, 167 loci, 256 microRNAs, 67 long intergenic 

non-protein coding RNA, and five long non-coding RNA's that contain microRNAs 

in their introns. The ability to retrieve the methylation and transcript expression 

patterns for individual genes (through CellMiner) enables their comparison. 

Figure 5 shows representative transcript versus methylation scatter plots 

constructed from the CellMiner data, including their correlations, for genes from 

the functional categories listed in Figure 4B. 

The expression of the mesenchymal gene Vimentin (VIM) was significantly 

driven by promoter methylation, as were 4 epithelial genes (Claudins 7 and 4, the 

Epithelial Splicing Regulator Protein 2 gene ESRP2, and RAB25, a member of 

the RAS oncogene family). Among tumor suppressors, examples of highly 

significant correlations include APC (the Adenomatous Polyposis Coli gene), 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
Author Manuscript Published OnlineFirst on December 6, 2016; DOI: 10.1158/0008-5472.CAN-16-0655 



 11

VHL (the Von Hippel-Lindau gene, inactivated in RE:RXF-393), BRCA1 

(inactivated in 3 of the ovarian cell lines: OVCAR-4, OVCAR-8 and NCI/ADR-

RES), IRF6 (the Interferon Regulatory Factor 6) and CDKN2A (Cyclin-Dependent 

Kinase Inhibitor 2A). Both IRF6 and CDKN2A are inactivated by promoter 

methylation in multiple NCI-60 cell lines. For the apoptotic pathway, promoter 

methylation was found significant for some key genes such as BIM (BCL2L11), 

BID, the cell surface death receptor (FAS), Caspase 8 and Heat Shock 70kDa 

Protein 1B (HSPA1B). 

Notably, for the genes encoding epigenetic factors, only the expression of 

TET1, the gene encoding Ten-Eleven Translocation Methylcytosine Dioxygenase 

1, a key demethylating enzyme, was found driven by promoter methylation 

(Figure 5, 4th row, on left). Examples of DNA damage response genes driven by 

promoter methylation include MLH3 (MutL Homolog 3), HLTF (Helicase-Like 

Transcription Factor/SMARCA3), TDP1 (Tyrosyl-DNA phosphodiesterase 1), 

MGMT (O-6-Methylguanine-DNA Methyltransferase) and SLFN11 (Schlafen 11). 

MGMT and SLFN11 (Figure 5, 5th row, on right) will be discussed below in the 

context of their pharmacological relevance (32-34). 

 

Integration of DNA methylation and gene expression with gene copy 

number and mutations across the NCI-60 

The majority of the genes (15,798 genes) can be queried for concurrent analyses 

of DNA methylation, transcript expression, and DNA copy number in the NCI-60 

(14) (Supplemental Table 3). In Figure 6A, “Cell line signatures” obtained directly 

from CellMiner for DNA methylation, copy number (14,25), and transcript 

expression (28), are presented for three exemplary genes for which transcript 

levels are driven by DNA methylation, copy number of both.  

Expression of RAB25, a member of the RAS family involved in membrane 

trafficking and cell polarity and epithelial phenotype, showed high correlation with 

methylation (as do other EMT genes see Figure 4B and Figure 5, top row), but 

not DNA copy number (r = -0.978 and 0.069, respectively). By contrast, 

expression of POLG, a housekeeping gene encoding the mitochondrial 
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replicative DNA polymerase, showed no correlation with methylation but instead 

a high correlation with copy number (r = 0.042 and 0.758, respectively). The high 

impact of copy is probably related to the frequent gain or loss of the locus 

15q25/26, which also encodes important repair genes including FANCI and BLM 

as well as IDH2 and CHD2 (readily detected by the “Pattern comparison” tool of 

CellMiner). Expression of the tumor suppressor gene CDKN2A encoding p16INK4A 

and p14ARF showed high correlation to both DNA copy number and methylation (r 

= 0.622 and -0.558, respectively). Moreover, the methylation and copy number 

profiles across the NCI-60 showed remarkable mirror images (Figure 6A, 

compare 2nd and 3rd bar graphs from the right), with the same cell lines lacking a 

gene copy also showing hypermethylation on the other allele and r=0.849.  

 Linear regression assessment of influence of both DNA methylation and 

copy number on transcript expression at the whole genome scale is shown in 

Figure 6B. In the scatter plots of R (the coefficients of determination times the 

sign of the coefficient) for both DNA copy number (the x-axis), and methylation 

(the y-axis), values of 1 or -1 indicate perfect prediction in the positive or negative 

sense, respectively, and 0 no predictive value. The “All genes” plot (Figure 6B, 

left) illustrates the cumulative importance of both DNA methylation and copy 

number, as indicated by the presence of 59% of the points in the bottom right 

quadrant. These points are both negative for DNA methylation (indicating 

negative predictive power for transcript expression), and positive for DNA copy 

number (indicating positive predictive power for transcript expression).  

Figure 6B (2nd panel from left) shows that restricting the plot to the 

epithelial genes (including RAB25, CLDN4, ESRP2, CLDN7; see Figures 4B and 

5) demonstrates that methylation is their predominant regulator. The 

mitochondrial and tumor suppressors plots indicate more balanced influences 

from both DNA methylation and copy number for these categories. The R values 

are pre-calculated for any gene of interest (with data) in Supplemental Table 3. 

These analyses demonstrate which genes transcript levels in what cell lines are 

driven by copy number and/or methylation levels in particular cell lines. 
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 Figure 6C extends the integrative approach combining DNA copy number, 

methylation, transcript expression, and mutational data obtained from whole 

sequencing of the NCI-60 (12,14) for MLH1, MSH2, and MSH6, to provide the 

genomic underpinnings for the reported presence of microsatellite instability in 

8/9 cell lines (12,35). For MLH1, there is DNA copy number loss in SKOV3, DNA 

methylation and reduced transcript expression in KM12, reduced transcript 

expression in IGROV1 and SKOV3, and predicted function affecting amino acid 

changes in HCT116, HCT15, CCRF-CEM, IGROV1, and DU145. For MSH2, 

there are predicted function affecting amino acid changes in SK-MEL2, NCI-

H522, and DU145. For MSH6, there is reduced transcript expression in IGROV1, 

and predicted function affecting amino acid changes in IGROV1 and DU145. 

Only the instability of LE:MOLT-4 remains unexplained. The example of the 

mismatch repair pathway demonstrates the converging contribution of the four 

genomic parameters now available in the NCI-60 (methylation, copy number, 

expression and deleterious mutations), and the importance of data integration. 

 

NCI-60 methylome and anticancer pharmacology 

MGMT encodes methylguanine methyltransferase, an enzyme that removes O6-

methylguanine, the most cytotoxic DNA methylation adduct produced by 

temozolomide, a commonly used oral drug in glioblastomas (36). Cancer cells 

deficient for MGMT are exquisitely sensitive to temozolomide (34) and MGMT 

promoter methylation is a positive prognostic indicator for temozolomide 

treatment in glioblastoma (36). The scatter plot of MGMT methylation versus 

expression levels (see Figure 5 bottom right) showed significant correlation (r=-

0.48). DNA promoter methylation levels above 40% was found associated with 

MGMT expression levels at background levels (<-0.6) for 81% of those cell lines 

(Figure 5 and Supplemental Figure 2B). DNA promoter methylation levels less 

than 40% are associated with (76%) of expressed cell lines (>-0.6). Promoter 

hypermethylation leading to transcriptional inactivation extended beyond the 6 

glioma (CNS) cell lines, with colon (KM12) and the leukemia (SR) both having 

high methylation and background expression. However, only 5 of the 21 NCI-60 
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cell lines with low MGMT expression (<-.06) have significant methylation (above 

50%). Thus, the incomplete association between MGMT expression and 

methylation parameters imply the use of epigenetic silencing by DNA methylation 

level as a prognostic indicator for temozolomide treatment is useful, but 

incomplete. 

 A second gene, which has recently been causally linked with response to 

a broad spectrum of DNA damaging drugs (including topoisomerase inhibitors, 

PARP inhibitors as single agentes or in combination with temozolomide, cisplatin, 

alkylating agents and DNA synthesis inhibitors) is SLFN11 (Schlafen 11) 

(15,32,33,37,38). SLFN11 encodes a nuclear protein with putative helicase 

activity that blocks cell cycle progression and dampens DNA repair (32,39). 

SLFN11 was among the genes with the highest correlation (at the top 94th 

percentile) between methylation and expression (see Figure 5 bottom right). 

Notably, approximately 38% of the NCI-60 cell lines do not express SLFN11 

above background level (32). Of these, lack of SLFN11 expression is linked to 

methylation in approximately half of the cell lines (Figure 5). Neither SLFN11 or 

MGMT expression had significant association to DNA copy number (p<0.01, 

Supplemental Table 3). 
 To test whether SLFN11 promoter methylation was linked with resistance 

to DNA damaging agents, the whole NCI-60 drug database (≈ 21,000 

compounds including 108 FDA-approved and 70 clinical trial drugs) was tested. 

Drug activity correlations revealed that SLFN11 methylation was significantly 

correlated with resistance to multiple clinically relevant drugs that cause DNA 

damage, including alkylating agents (cisplatin, carboplatin, melphalan), 

topoisomerase I (topotecan, LMP400) and II (etoposide) inhibitors, DNA 

synthesis inhibitors (gemcitabine, fludarabine, cytarabine, hydroxyurea), PARP 

inhibitors (talazoparib, olaparib) and bleomycin (Table 1). As expected (32,37), 

no correlation was observed for tubulin inhibitors (paclitaxel, docetaxel) and 

protein kinase inhibitors (erlotinib, crizotinib, vemurafenib), consistent with the 

selective implication of SLFN11 for cytotoxic response to DNA damaging drugs. 
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Discussion 

Here we provide readily usable and accessible genome-wide data for the NCI-60 

cancer cell line methylome based on two independent determinations (Figure 1). 

Assignment of salient CpG sites for each gene (Supplemental Table 1) enables 

the extraction of those data using our CellMiner tools (14,29). We provide 

examples of how the DNA methylation data may be integrated with the extensive 

genomic and pharmacological databases for the NCI-60 (Figures 4, 5 and 6). We 

anticipate that these data and tools will enable exploration of i) the relevance of 

DNA methylation as a key regulator of gene expression, ii) its relationships with 

other forms of molecular data, and iii) genomic biomarkers for precision 

therapeutics. Determination of methylation status is a preferred approach for 

clinical samples because it provides robust information with which to evaluate 

cancer genomes (as it uses DNA rather than RNA, which tends to be unstable). 

 The examples we provide demonstrate that genome-wide access to DNA 

methylation gives new insights in tumor biology and regulatory mechanisms for 

gene expression. Figures 4, 5 and 6 demonstrate that promoter methylation is a 

prominent regulator for EMT (epithelial mesenchymal transition), a major 

determinant for tumor invasion and resistance to therapy, which is being targeted 

by DNA methyl transferase inhibitors (40). On the other hand, for tumor 

suppressors, both methylation and gene deletion drive gene expression. A 

salient example is the cyclin-dependent kinase inhibitor 2A gene CDKN2A, which 

encodes the two major tumor suppressors, p16INK4A and p14ARF. As shown in 

Figures 5 and 6, approximately 40% of the NCI-60 fail to express CDKN2A. That 

almost half of cancer cells suppress CDKN2A expression is consistent with the 

larger MIT-Broad-CCLE dataset where ∼40% of the 1000 cell lines only express 

background (no) CDKN2A (33). In addition, examination of CDKN2A gene copy 

number shows that 20 of the NCI-60 cell lines have 9p21 deletions (Figure 6A, 

right). Furthermore, integrating the NCI-60 data for CDKN2A methylation and 

gene copy number shows a high correlation between the two genomic 

parameters (r=-0.85; p=9.7 x 10-18), This demonstrates that, in the NCI-60, 
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cancer cells commonly inactivate CDKN2A by biallelic loss of CDKN2A (one 

allele by promoter methylation and the other by 9p21 chromosome deletion). 

 DNA methylation is also relevant to precision therapeutics, and, in this 

study, examples of two genes are presented: SLFN11 and MGMT. Both genes 

encode key factors that determine response to widely used DNA damaging 

agents, which remain a major component of the cancer armamentarium but lag 

behind protein kinase inhibitors in terms of predictive biomarkers. A relationship 

between SLFN11 transcript levels and pharmacological response has been 

demonstrated in both the NCI-60 and CCLE cancer cell lines (15,32,33,41,42). 

This relationship is both causal and broad in scope, affecting topoisomerase I 

inhibitors, topoisomerase II inhibitors, alkylating agents and DNA synthesis 

inhibitors (32,37). SLFN11 expression has recently been shown to be driven by 

ETS transcription factors (43), which explain high SLFN11 expression in Ewing’s 

sarcoma (33,43). Epigenetic inactivation of SLFN11, which accounts at least in 

part for frequent lack of expression of SLFN11 in many cancer cell lines including 

commonly used ones such as HeLa, U2OS and HCT116 (38), and has recently 

been shown to have a robust and causal influence on resistance to platinum-

derived drugs such as cisplatin and carboplatin (15). The present study expands 

this finding to eleven clinically relevant drugs (Table 1). Correlations between the 

SLFN11 methylation levels and DNA damaging drug activities demonstrate the 

potential for using DNA methylation of SLFN11 in addition or in place of RNA- 

and immunofluorescence-based assays for measuring SLFN11 expression, and 

testing the usefulness of SLFN11 as a novel predictive biomarker for drug activity 

in the clinical setting. 

 Temozolomide is approved for the treatment of glioblastomas because of 

the frequent inactivation of MGMT by promoter methylation in those tumors 

(34,36,44). Methylome and gene expression analyses of the NCI-60 reveals that 

MGMT expression is frequently suppressed beyond CNS cancer cell lines (2 out 

of the 6 breast cancer cell lines, 2 out of the 7 colon, 2 or the 6 leukemia, 4 of the 

10 melanomas, three of the 9 lung, and one of the 8 kidney cancer cell lines) 

(Figure 5 and Supplemental Figure 2B). Yet, promoter methylation explained only 
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5 of these 20 cell lines with low or no MGMT expression. These observations 

suggest that MGMT promoter methylation (36,44) is actually insufficient to predict 

temozolomide activity and that other assays (transcripts or protein 

measurements) should be used to monitor patient candidates for temozolomide 

not only for glioblastomas but also outside of brain tumors. 

 In summary, the NCI-60 methylome adds to the preexisting molecular and 

pharmacological databases, which are publicly available and usable by non-

informaticists at the Cellminer website (14). They provide an additional 

translationally relevant piece in the molecular puzzle of understanding and 

predicting transcriptional regulation, and for the broader interplay among cancer-

associated molecular and pharmacological parameters. 
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Figure Legends 
 
Figure 1. Comparisons of the NCI and CEPB DNA methylation datasets for the 

NCI-60. A, Scatter plots of the NCI versus CEPB methylation data for three 

representative cell lines. Methylation levels for 30,000 randomly selected probes 

were used in each plot. The x and y-axes are the CEPB and NCI methylation 

levels, respectively. The values of 0 to 1 for both axes correspond to 0 to 100% 

methylation. “r” is the Pearson’s correlation between datasets. B, Hierarchical 
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clustering of the NCI and CEPB data for all the NCI-60 cell lines using 1- 

Pearson correlation distance, and average linkage. A randomly selected set of 

10,000 probes was used. The x-axis is the 1- Pearson correlation distance. The 

y-axis contains the cell lines with colors corresponding to tissue of origin (as in 

the CellMiner tools) (14). 

 

Figure 2. Methylation data for three representative genes across the NCI-60. 

The graphical output for the “Cell line signature” tool, for the average gene 

methylation values for each cell line from the CellMiner website 

(http://discovery.nci.gov). The x-axis is the average gene methylation level 

(percentage / 100). The y-axis lists the cell lines, color-coded by tissue of origin. 

Note the high DNA methylation of VHL in one and only one of the 60 cell lines. 

 

Figure 3. Global methylation levels across the NCI-60. A, Box and whisker plots 

of average methylation for the total set of 485,577 probes. For each cell line, the 

data is broken into four quartiles of equal number. The first quartile is distributed 

from the top of the dotted line to the top of the colored bar, the second from the 

top of the colored bar to the black median line, the third from the median line to 

the bottom of the colored bar, and the forth from the bottom of the colored bar to 

the bottom of the dotted line. The x-axis lists the cell lines, color-coded by tissue 

of origin, and the y-axis is the methylation level (percentage / 100). B, Linear 

regression analysis using six genes to predict the median methylation pattern in 

Figure 6A. R is the correlation coefficient. 

 

Figure 4. Functional categories with significant correlation between gene 

transcript expression and DNA methylation. A, Heat-map for GO categories, 

including gene overlap between categories enriched for genes with high 

correlations between expression and methylation. These fall into the seven color-

coded partially overlapping functional groupings identified on the right side of the 

figure. The x-axis has the same GO categories identified for the y-axis (on the left 

of the figure), going from left to right instead of top to bottom. The fraction of 
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genes in common between different categories is indicated by the red-yellow-

white color code, with the red diagonal line of boxes indicating each category 

versus itself. B, Histogram of the distribution of correlations of 17,144 transcript 

expression and DNA methylation data. Median values are shown for the 

transcript expression versus DNA methylation level correlations of the seven 

significant GO functional groupings from panel A, each of which is the composite 

of its component GO categories and is preceded by a red “GO”. In addition, the 

median values are included for 17 additional functional groups (defined in 

Supplemental Table 2), an “All genes” category of the 16,888 transcripts 

excluding the 256 microRNAs. The x-axis is the correlations of the transcript 

expression versus the DNA methylation values, and the y-axis is the frequency. 
 

Figure 5. Representative scatter plots of DNA methylation versus transcript 

expression levels for genes from different functional categories (see Figure 4 and 

Supplemental Table 2). Transcript expression z scores values were obtained 

from CellMiner \ NCI-60 Analysis Tools \ Cell line signature \ Gene transcript z 

scores and are plotted on the x-axis. The transcript values are standard 

deviations from the mean expression with the 0 values demarked by dashed 

vertical lines for each gene. Methylation values were obtained from CellMiner 

\ NCI-60 Analysis Tools \ Cell line signature \ Gene methylation values (see 

Figure 4) and are plotted on the y-axis. For the methylation data, values of 0 

correspond to 0% methylation, and 1 corresponds to 100%. The Pearson’s 

correlation between the two is “r”. Gene categories are as described in 

Supplemental Table 2. EMT is the abbreviation for epithelial-mesenchymal 

transition. Note the cluster of cell lines at the upper left of the 4 diagrams for 

epithelial genes (4 diagrams on the right in the upper row); these clusters 

correspond to cell lines having high DNA methylation and low expression, 

presumably representing mesenchymal cell lines. 

 

Figure 6. Integration of NCI-60 genomic data. A, Cell line signatures for three 

types of genomic data for RAB25, POLG, and CDKN2A. Genomic signatures 
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were generated for DNA copy number, DNA methylation, and transcript 

expression using “CellMiner \ NCI-60 Analysis Tools \ Cell line signature”. The x-

axis bars correspond to DNA copy number, gene methylation level 

(percentage/100), and transcript z-score, respectively. The y-axis is the NCI-60 

cell lines in all cases, color-coded by tissue of origin. B, Plots of the linear 

regression coefficients of determination times the sign of the coefficients (R) of 

both DNA copy number versus expression and methylation versus expression. In 

all four plots, for both axes, R ranges from -1 to 1. An R of 0 indicates no 

predictive power. An R of 1 or -1 indicates perfect predictive power in the positive 

or negative sense, respectively. “All genes” is a smoothed scatter plot for the 

15,798 genes with all three forms of data (Supplemental Table 3). “Epithelial”, 

“DNA damage response”, and “Tumor suppressors” are scatter plots of these 

gene groups from Figure 3B, defined in Supplemental Table 2. Note that the 

epithelial genes show deviations towards low methylation and little or no 

deviations with respect to gene copy number.  C, Integration of four different 

forms of genomic data accounting for the microsatellite instability (MSI) 

phenotype in the NCI-60. Cell line signatures were generated for DNA copy 

number, DNA methylation, transcript expression (z scores), and genetic variant 

summation using “CellMiner \ NCI-60 Analysis Tools \ Cell line signature”. The x-

axis is DNA copy number, gene methylation level (percentage/100), transcript z-

score, and summation of variants (using the “Protein function affecting” output), 

respectively. The y-axis is the NCI-60 cell lines in all cases. The dotted lines are 

a visual aid to ease alignment of data by cell line. The red stars indicate the cell 

lines proposed to be affected functionally by the indicated molecular parameter. 

Multiple red stars in the “Mutation” bar graph for a single cell line indicate 

deleterious variants occurring in more than one of the genes. Microsatellite 

instability for the cell lines is as described previously (12,35). Note the strong 

positive relationship between mutation of the mismatch repair genes (MLH1, 

MSH2, and MSH6) and microsatellite instability, and that this occurs in colon cell 

lines, as expected, and also in other cell line types. 
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Table 1. Correlations between SLFN11 methylation and drug activities a 

Corr. b p-value b NSC c Name Mechanism d FDA Status e

      
-0.592 0.000001 119875 Cisplatin A7|AlkAg FDA approved
-0.547 0.000006 241240 Carboplatin A7|AlkAg FDA approved
-0.455 0.000479 757098 Melphalan A7|AlkAg FDA approved

      
-0.452 0.000285 609699 Topotecan T1 FDA approved
-0.438 0.000529 759878 Irinotecan T1 FDA approved
-0.336 0.009383 724998 LMP-400 T1 Clinical trial 

      
-0.356 0.005304 279836 Mitoxantrone T2 FDA approved
-0.338 0.009564 246131 Valrubicin T2 FDA approved

      
-0.407 0.001238 613327 Gemcitabine Ds FDA approved
-0.416 0.000944 312887 Fludarabine Ds|AM FDA approved
-0.312 0.015334 63878 Cytarabine Ds FDA approved
-0.318 0.013378 32065 Hydroxyurea AM|Dr FDA approved

      
-0.427 0.000659 125066 Bleomycin Db FDA approved

      
-0.23 0.091124 747856 Olaparib PARP Clinical trial 
0.144 0.286869 758645 Paclitaxel Tu FDA approved
0.159 0.274977 628503 Docetaxel Tu FDA approved
-0.085 0.522831 718781 Erlotinib YK|PK:EGFR FDA approved
0.147 0.267993 756645 Crizotinib YK|PK:MET Clinical trial 
0.066 0.619252 761431 Vemurafenib YK|PK:BRAF FDA approved

      
 

a SLFN11 DNA methylation, and drug activity data is as obtained from CellMiner\NCI-
60Analysis Tools\ Cell line signature”, using either the, "Gene methylation values" or
“Drug activity z scores” selections at https://discover.nci.nih.gov/cellminer/. The drug
activity is from the Developmental Therapeutics Program, http://dtp.nci.nih.gov/. 

b Corr. is Correlation (Pearson's coefficients). P-values were calculated within the
"CellMiner\NCI-60 Analysis Tools\Pattern comparison" tool. 

c Cancer Chemotherapy National Service Center number. 
d A7|AlkAg is an alkylating agent at the N-7 position of guanine. T1 is topoisomerase I

inhibitor. T2 is topoisomerase II inhibitor. Ds is DNA synthesis inhibitor. AM is
antimetabolite. Dr is ribonucleotide reductase inhibitor. Db is DNA binder. PARP is
Poly(ADP-ribose)polymerase inhibitor. Tu is tubulin affecting. YK is tyrosine kinase
inhibitor. PK is protein kinase inhibitor. EGFR is EGFR inhibitor. MET is MET inhibitor.
BRAF is BRAF inhibitor. 

e FDA is the Food and Drug Administration. 
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