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We show that modifications of Einstein gravity during inflation could leave potentially measurable
imprints on cosmological observables in the form of non-Gaussian perturbations. This is due to the fact that
these modifications appear in the form of an extra field that could have nontrivial interactions with the
inflaton. We show it explicitly for the case Rþ αR2, where nearly scale-invariant non-Gaussianity at the
level of fNL ≈ −ð1 to 30Þ can be obtained, in a quasilocal configuration.
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The current inflationary paradigm [1–7] is the most
economical at successfully describing many observed
features in the Universe, from its homogeneity, flatness
and size, to the origin of the structure in the Universe as
quantum fluctuations, e.g., [8,9]. In the vast majority of
inflationary models, Einstein gravity is assumed as
the correct description of gravity. However, it might be
that Einstein gravity is not the correct description of
gravity at very high energies either via a true modification
of general relativity or because quantum effects become
relevant. Departures from Einstein gravity during inflation
have been considered in the first inflationary model
proposed [10], in Refs. [11–17], and most recently in
Ref. [18]. In Ref. [15] (see also [16,17]) graviton non-
Gaussianities are considered beyond ordinary Einstein
gravity. However, such non-Gaussianities are well below
the sensitivity of future measurements and in fact well
below the cosmic variance limit for the full sky. In this
Letter we investigate if deviations from general relativity
(GR) could be observable and measurable in the sky
through the enhancement of non-Gaussianity (NG) of
curvature perturbations. In the simplest models of infla-
tion with standard gravity (or inflation models within
modified gravity, which can be described as GR plus
single-field slow-roll inflation), the amount of primordial
non-Gaussianity (NG) is too small to be measurable, the
NG parameter fNL being ∼OðϵÞ [19–21].
NG has been recognized as a powerful tool to learn

about fundamental physics at play during inflation, being a
probe of the interactions of the field(s) driving inflation.
Other statistics, such as the power spectrum, do not carry as
specific signatures as NG does. For this reason we expect
that the effect of modifying gravity will leave specific
signatures on the departures from Gaussianity. We find that
this is the case, in particular, we show that modifications
of Einstein gravity, if already relevant during the epoch

of inflation, could lead to a measurable non-Gaussian
signature in the cosmological fluctuation field. Such
non-Gaussian signatures would be the imprints of depar-
tures from GR that, on the other hand, might be much
harder to probe in the power spectrum of scalar perturba-
tions. Also, we will show that, for a large part of the
parameter space, the generated non-Gaussianities have a
quasilocal shape. This is observationally promising given
that future LSS surveys can be sensitive to values of local
NG fNL ∼Oð1Þ or even smaller (see, e.g., [22–25]).
Let us start from a Lagrangian that contains all generally

covariant terms up to two derivatives built with the
metric and one scalar field, which we will assume to drive
inflation [26]:

L¼ ffiffiffiffiffiffi
−g

p �
1

2
M2

PlΩðψÞ2R−
1

2
hðψÞgμν∂μψ∂μψ−UðψÞ

þf1ðψÞðgμν∂μψ∂νψÞ2þf2ðψÞgρσ∂ρψ∂σψ□ψ

þf3ðψÞð□ψÞ2þf4ðψÞRμν∂μψ∂νψþf5ðψÞRgμν∂μψ∂νψ

þf6ðψÞR□ψþf7ðψÞR2þf8ðψÞRμνRμν

þf9ðψÞCμνρσCμνρσ

�
þf10ðψÞϵμνρσCμν

κλCρσκλ: ð1Þ

If the inflaton ψ is slowly rolling, then the functions ΩðψÞ,
hðψÞ and fiðψÞ are varying slowly and can be simply
treated as constants up to slow-roll corrections, which we
will neglect. In this case, the Weyl-squared terms can be
recast as a surface term (the Gauss-Bonnet term) plus R2

and RμνRμν, which can then be reabsorbed. Moreover, in
order to avoid ghosts, the terms proportional to f2, f3, f6,
and f8 will be set to zero, as well as f10 as we are not
interested in parity violating signatures. We are interested
only in the terms that could give rise to a possibly enhanced
local (or quasilocal) NG in the squeezed limit, different
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from the well-known result fNL ∼OðϵÞ that is valid in
standard gravity [19–21]. Therefore, we will not consider
inflaton derivative self-interactions, which are known to
generate NGmainly in the equilateral configuration. This is
valid also for the ghost-free combination that can be built
with the operators proportional to f4 and f5 [27], which
would not generate significant NG in the local configura-
tion. The only term left to consider is therefore the term R2,
which is nothing else than the first term in an expansion in
powers of the Ricci scalar of a more general fðRÞ theory:

L ¼ ffiffiffiffiffiffi
−g

p �
fðRÞ − 1

2
gμν∂μψ∂νψ −UðψÞ

�
: ð2Þ

This action describes one more degree of freedom asso-
ciated to the fðRÞ term. Through a standard procedure we
use an auxiliary field f0ðχÞ ¼ M2

Plϕ=2 to recast the action in
the form

L ¼ ffiffiffiffiffiffi
−g

p �
1

2
M2

PlϕRþ ΛðϕÞ − 1

2
gμν∂μψ∂νψ −UðψÞ

�
; ð3Þ

where ΛðϕÞ ¼ f½χðϕÞ� −M2
Plϕχ=2.

By performing a Weyl transformation gμν → e−2ωgμν,
with e2ω ¼ ϕ, to go to the Einstein frame, the action
appears as a two-field interacting model:

~L ¼ ffiffiffiffiffiffi−gp �
1
2
M2

PlR − 1
2
gμνγab∂μφ

a∂νφ
b

−U1ðφ1Þ − e−4φ1=
ffiffi
6

p
MPlUðφ2Þ

�
; ð4Þ

where a; b ¼ 1; 2 we have normalized the fields asffiffiffi
6

p
MPlω ¼ φ1; ψ ¼ φ2; ð5Þ

defined U1 as

U1ðφ1Þ ¼ −e−4φ1=
ffiffi
6

p
MPlΛðϕ½ωðφ1Þ�Þ; ð6Þ

and defined the field metric

γab ¼
�
1 0

0 e−2φ1=
ffiffi
6

p
MPl

�
: ð7Þ

As expected, there is an equivalence between
“fðRÞ þ scalar” and a two-field model with a specific field
metric, a generic potential for φ1 and a “conformally
stretched” potential for φ2. Then it is conceivable that
the interactions between the two fields could induce some
observable effects, possibly enhancing also local NG to
an observable level. It is important to note here that if
both fields contribute to the dynamics of the background,
we should rigorously impose slow-roll conditions on
both of them. However, if the field associated to the R2

terms is subdominant, then this condition could be relaxed
and its possible NG could be transferred to the inflaton
field. In the Einstein frame this is equivalent to a transfer of
non-Gaussian isocurvature perturbations to the adiabatic
perturbation mode [28]. To study this effect, we will
consider fðRÞ ¼ 1

2
M2

PlRþ R2=12M2.
This choice is motivated by the fact that it corresponds

to the leading-order term in an expansion of a generic fðRÞ
in powers of R (or, equivalently, in derivatives of the
metric). In this case, we obtain a complete potential
Vðφ1;φ2Þ given by

Vðφ1;φ2Þ ¼
3

4
M2M4

Plð1 − e−2φ1=
ffiffi
6

p
MPlÞ2

þ e−4φ1=
ffiffi
6

p
MPlUðφ2Þ: ð8Þ

It is clear that if the field φ1 is very heavy and the scale of
the new physics induced by the R2 term is much higher than
the energy scale of the inflaton φ2, then its effect should be
vanishingly small. Indeed, if φ1 is heavy enough, it could
not be excited during inflation and its kinetic energy would
be completely negligible. Therefore, we could integrate it
out of the action (4), coming back to a standard effective
single-field scenario. This would correspond to a value of
M ∼ 1 or higher, which implies that the new physics simply
enters at the Planck scale or beyond. On the other hand,
lowering the scale M ≲ 1, the first regime we encounter is
the quasisingle field regime [29]. Progressively reducing
the value of M, other regimes are possible: first the
multifield inflation where both scalar fields are actively
at play and then, when the field φ1 dominates the dynamics,
single-field Starobinsky inflation [10]. Hereafter, we
adopt a monomial potential Uðφ2Þ¼m4−βφβ

2, with β < 2
(motivated by current Planck-satellite constraints). Our
results are insensitive to the choice of β. We have also
explored other nonmonomial potential, like cosine poten-
tials [U½φ2� ¼ m4ð1 − cos½φ2=f�Þ; with f a free parameter],
and found our results do not depend on the particular
choice of Uðφ2Þ.
We are interested in the quasi single-field regime, as

observables do not depend on the particular choice of the
initial conditions. In this sense we look for generic
predictions. In this case, assuming that the adiabatic
direction is given by φ2 ≡ φI, we obtain nontrivial effects
from the coupling with the isocurvature field φ1 ≡ φG.
(Here, by using the subscripts I and G we have made
explicit that the field φI is the inflation and φG describes the
modifications of gravity). To make an estimate of the
magnitude of the effect, we can expand the action Eq. (4) in
the flat gauge and ignore metric perturbations for simplic-
ity. At second order, we find the leading transfer vertex

δL2 ¼
2ffiffiffi
6

p
MPl

eð−2φ̄G=
ffiffi
6

p
MPlÞ _̄φIδφGδ _φI; ð9Þ
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where the bar refers to homogeneous quantities computed
on the background. At third order, as the isocurvature
potential U1

000 is not subject to slow-roll conditions, the
leading vertex is

δL3 ¼ −
1

6
U1

000ðφ̄IÞδφ3
G: ð10Þ

Therefore, we expect a contribution to the bispectrum of
size

fNL ≃ αðνÞðcδL2Þ3cδL3P
−1=2
ζ

¼ −
4

9π
αðνÞP

−1
ζffiffiffi
ϵ

p M2

�
ϵ − 3

�
_MPI;eff

HMPI;eff

�2�3=2

×

��
MPI;eff

MPl

�
2

− 4

��
MPI;eff

MPl

�
−7
; ð11Þ

where cδL2 and cδL3 are the vertices of the interaction
terms, Eqs. (9)–(10), ν ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9=4 − ðMeff=HÞ2

p
, Meff is the

effective mass of the isocurvature mode, and ϵ the total

slow-roll parameter. In Eq. (11) MPI;eff ¼ MPleφG=
ffiffi
6

p
MPl is

the effective (reduced) Planck mass during inflation in the
Jordan frame. The numerical factor αðνÞ can range from
0.2, for heavier isocurvatons, to approximately 300; how-
ever, in the perturbative regime, NG can gain at most an
effective enhancement factor proportional to the number of
e foldings; see [29].
The shape of the potential as a function of the two fields

φI and φG is shown in Fig. 1. On the left panel one can
appreciate that the φI direction is flat but there are values of
φG where the potential is steep. On the right panel we show
the region around the global minimum. Figure (2) shows
the NG parameter fNL as a function of e folds adopting
UðφIÞ ¼ m3φ; our results are not sensitive to the specific
value adopted for β. As an example, for M ¼ 10−3 and

m ¼ 10−8=3, in Planck units, we obtain fNL ∼Oð−3Þ, for
initial values of the field φG ¼ 3;φI ¼ 12. Note the nearly
scale invariant dependence. A similar value and scale
dependence was found when using the cosine potential
for Uðφ2Þ instead. For this particular example at 60 e folds
the field abandons slow-roll and reheating starts. The
characteristic shape of this kind of NG is intermediate
between an equilateral shape, which is reached for small
values of ν, i.e., towards a single-field regime, and a local
shape, for ν ≥ 1=2, i.e., closer to a multifield scenario.
In this set up fNL is generically negative. A quasilocal

shape with fNL ≈ −1 to −30 can thus be achieved without
necessity of much fine tuning. The value of fNL scales as a
function of the masses of the two potentials,

fNL ∝ −ðMMPl=mÞ2αðνÞ: ð12Þ

This makes it possible to test deviations from GR, including
quantum corrections of Einstein gravity, a couple of orders

FIG. 1 (color online). Potential as a function of the two scalar fields. φG describes the “scalaron” field that accounts for modifications
of Einstein gravity while φI is the one driving inflation. Significant non-Gaussianities (jfNLj ≈ 1–30) are generated for generic initial
field values, provided φG > −3. Parameters are chosen for illustration purposes. In particular, we chose a quadratic potential [30] for the
inflaton field φI . The right panel shows the potential around the minimum.
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FIG. 2 (color online). The NG parameter fNL as a function of
number of e folds for αðνÞ ¼ 1, M ¼ 10−3, and m ¼ 10−8=3 in
units ofMPl to illustrate the scale dependence; fNL can be smaller
than −1 for fairly generic conditions.
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of magnitude above the mass scale of the inflaton. Note
that Eq. (11) gives a “consistency relation” between the
amplitude of NG and its shape. In fact, fNL measures
departures from the effective gravitational constant Geff

during inflation as Geff=GGR ¼ e−φG=
ffiffi
6

p
MPl .

To summarize, we have explored whether signatures of
modified gravity during the period of inflation can produce
observable effects. To be used to gain insight into the
physics at play during inflation, these effects should be
specific and not easily mimicked by standard gravity,
yet arising under fairly generic conditions. For this reason
we concentrated on local (or quasilocal) NG: departures
from Gaussianity are OðϵÞ in standard gravity single-field
inflation (and higher-derivative inflaton self-interactions
generate equilateral-like NG, the same being true for
various gravity theories with one scalar degree of freedom
that can be described in terms of a Horndeski theory, such
as Galileon models [31]—for a summary of predictions see,
e.g., [32]). Large non-Gaussianities can arise in multifield
inflation but also other observational signatures can be
generated such as isocurvature modes and breaking the
tensor consistency relation. We have found that it is
possible, in a very generic setup, for modifications of
gravity to generate deviations from Gaussian initial con-
ditions where the NG is close to the local type and has
values fNL ≈ −1 to − 30.
It is interesting to note that in the same way that gravity,

via its relativistic corrections, enhances the level of NG to
fNL ∼Oð−1Þ right after inflation (as pioneered by [23,33]),
a modification of GR during inflation will lead to an
enhancement of similar magnitude.
For quasilocal shapes NG is near maximal in the

squeezed limit and the squeezed limit is made observatio-
nally accessible in the so-called large-scale halo bias.
Thanks to the halo bias effect, a local NG of this

amplitude is expected to be measurable in forthcoming
and future LSS surveys (see, e.g., [22–24,34,35]) if
systematic effects can be kept under control (e.g., [36]).
On the other hand, the departures from exact single-field
behavior leave some imprint on the shape of NG, and, in
particular, on the squeezed-limit dependence of the bispec-
trum on the (small) momentum. In fact, since the shape of
the effective potential, Eq. (8), is given, there is a consis-
tency relation linking the amplitude of non-Gaussianity,
fNL, to its shape (i.e., the parameter ν). For large
enough values of fNL it is possible to constrain the scale
dependence of the bispectrum in the squeezed limit and
hence ν, from forthcoming surveys [37,38]. Thus, in case
of a detection of NG, it may be possible to test the
consistency relation between amplitude and shape. If such
a consistency relation were found to be satisfied to
sufficient precision, it would require a fine-tuning to be
produced by any multi-or quasisingle field inflation.
Conversely, it is a fairly generic prediction of GR modi-
fication effects at high energies.

Further, because the noninflating field is related to
gravity, the ratio between r (the tensor-to-scalar ratio)
and its power law slope (nT) will be modified from the
standard single field relation—with its counterpart in the
two-field description in the Einstein frame [39,40]. A given
form for fðRÞ [corresponding to a given shape of U1ðφGÞ]
will break the standard consistency relation in a spe-
cific way.
Notice also that a specific running of the NG parameter

fNL in Eq. (11) can be left imprinted by the dynamics
of the scalaron field φG, and, interestingly, the NG running
will be correlated with the running of the scalar spectral
index [29]. Specific signatures in the trispectrum of
curvature perturbations, similar to those featured in
Eq. (11), arise as well.
There are several features found above that, if found

experimentally, will point to a modification of gravity
and not simply an arbitrary two-field inflation model: the
consistency relation between amplitude and shape, the
specific running of fNL, and a breaking of the consistency
relation for r; these are specific features driven by the
modified gravity sector, i.e., the fact that to go in the two-
field formalism we make a Weyl transformation that brings
the various exponentials in our expressions. So, if in the
future we test observationally some of the above 3 points,
this would be an indication of modified gravity that is
difficult to mimic by an arbitrary two-field model. The fact
that this result is independent of the inflaton potential sector
makes our predictions general.
To conclude, these findings, if supported by data, would

yield clear insights into the physical mechanism behind
inflation. Conversely, a null result would place limits on
possible departures from GR at the energy scale of
inflation, 20 orders of magnitude beyond what has been
currently tested.
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