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Abstract

Background: What impact gene loss has on the evolution of developmental processes, and how function shuffling
has affected retained genes driving essential biological processes, remain open questions in the fields of genome
evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in
the chordate phylum as a case study.

Results: We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in
13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla
and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the
identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas
for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of
Wnt expression throughout the radiation of chordates.

Conclusions: Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal
and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to
infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well
as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we
propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
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Background
The era of comparative genomics is providing a new per-
spective on the evolution of living diversity by revealing
an unexpected and significant amount of genetic com-
plexity that already existed in ancestral organisms. This
new perspective implies that evolutionary simplifica-
tion—and not only complexification resulting from the
acquisition of gene novelties [1] or from the co-option
of pre-existing or duplicated genes for novel functions
[2–5]—has been a prominent trend across the Tree of
Life (reviewed in [6]). At the genetic level, simplification
has often been accompanied by pervasive gene loss, pro-
viding an important source of genetic variation, in many

cases even eliciting major evolutionary adaptive re-
sponses—“the less is more” principle [7]—(reviewed in
[8]). However, understanding the significance of gene
loss [8] and function shuffling among duplicated genes
[9] on the generation of biodiversity, and especially their
impact on the evolution of the genetic mechanisms of
development of complex multicellular animals, is still a
fundamental problem in evolutionary and developmental
biology. To explore this problem, we focus here on
the evolution of the Wingless/Wnt family in chor-
dates as a paradigm; the Wnt family is among the
best characterized of all metazoan gene families
(reviewed in [8, 10, 11]) and plays conserved roles in
fundamental developmental processes in all animals,
including determination of the primary body axis,
spatial cell patterning, cell fate specification, and cell
proliferation and migration (reviewed in [11–13]).
The Wnt family encodes a set of secreted glycoprotein

ligands that trigger a variety of signal transduction
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pathways to regulate gene transcription in target cells
(e.g., [14]). The transduction of Wnt signaling can occur
via two main pathways, the “canonical” and the “non-
canonical”, although they are not mutually exclusive
[11]. The “canonical” Wnt/β-catenin pathway (a.k.a.
cell-fate pathway) is mediated by the stabilization and
transport of β-catenin into the nucleus, where it binds to
transcription factors that regulate the expression of Wnt
target genes, and thus specify cellular fates. The various
Wnt signaling pathways that act independently of
β-catenin have been described as non-canonical and, des-
pite their diverse functions, they can be broadly grouped
into the so-called “Wnt cell polarity” pathway [11]. The
ascription of each Wnt family member to a particular
pathway is not straightforward and it largely depends on
the ability of each ligand to modulate β-catenin availability
or, alternatively, to mediate cell behaviors. From cnidar-
ians to vertebrates, for instance, Wnt1 and Wnt3 have
been generally considered to signal through the canonical
pathway, while Wnt5 and Wnt11 have been typically
assigned to the Wnt cell polarity pathway [15–17]. The
fact, however, that certain Wnt ligands can be promiscu-
ous and activate more than one pathway (e.g., [18]) makes
it difficult to assign them to any specific group.
Wnt genes are a metazoan novelty [1] found from

sponges to humans that duplicated and diversified into
13 subfamilies—Wnt1 to Wnt11, Wnt16, and WntA—
before the bilaterian and cnidarian split [19, 20].
Large-scale phylogenetic and genomic analyses have re-
vealed that several Wnt genes have been lost and
retained during animal evolution [8, 10, 11, 21–23]. For
instance, the gastropod Patella vulgata is the proto-
stome that has suffered the greatest number of losses (9
out of 13, only preserving Wnt1, Wnt2, Wnt10, and
WntA subfamilies), which is in stark contrast with the
only two losses (Wnt3 and Wnt8) seen in another
gastropod, Lottia gigantea [24, 25]. Other species such
as Drosophila melanogaster and Caenorhabditis elegans,
which have lost six (Wnt2 to 4, 11, 16, and A) and eight
(Wnt1 to 3, 6 to 8, 11, and 16) subfamilies, respectively,
make it evident that each animal lineage has shaped its
own repertoire of Wnt genes. They also reveal that while
many gene losses are recurrent and occurred independ-
ently in many lineages, others are ancestral and possibly
important for the evolution of specific clades. For in-
stance, the patchy pattern of absence/presence of Wnt9
suggests that it has been lost at least eight times during
the evolution of arthropods, annelids, platyhelminthes,
and cnidarians, while the absence of Wnt3 in all proto-
stomes suggests an early loss of Wnt3 in the stem proto-
stome ancestor, likely affecting the evolution of the
entire group (reviewed in [8, 10, 11]).
In contrast to protostomes, vertebrates appear refrac-

tory to the loss of entire Wnt subfamilies. They have

preserved at least one member in 12 out of the 13 sub-
families, with WntA the only subfamily that has not
been found so far in vertebrates [24]. However, whether
the tendency to retain Wnt subfamilies is specific to ver-
tebrates or rather is a feature shared by all chordates
(i.e., vertebrates + urochordates + cephalochordates) re-
mains unkown. In urochordates (tunicates), the Wnt
repertoire remains unresolved: phylogenetic classifica-
tions of Wnt genes from partial studies in three ascidians
species (i.e., Halocynthia roretzi, Ciona robusta, and
Botryllus schlosseri) have resulted in many unascribed
Wnt genes (referred to as “orphan” Wnt genes) and, in
some cases, conflicting orthologies due to the high
sequence divergence typical of these species [26–33].
In cephalochordates, so far only eight Wnt genes
(Wnt1, 3, 4, 5, 6, 7, 8, 11) have been studied in one
amphioxus species, Branchiostoma floridae [34–39]
(reviewed in [40]), of which five (Wnt3, 5, 6, 7, and
8) have been partially characterized in another, B. lan-
ceolatum [41, 42]. Consequently, the taxonomic diver-
sity of the analyzed urochordate and cephalochordate
species has been too narrow, and the phylogenetic
analysis of non-vertebrate chordate Wnt genes too
ambiguous, to draw general conclusions about the
evolution and function of orthologous Wnt subfam-
ilies in the chordate phylum.
In order to provide a comprehensive view of the evolu-

tion of Wnt subfamilies in chordates, we have conducted
an exhaustive survey of Wnt genes in genomic databases of
ten ascidian (urochordate subphylum) and three amphioxus
(cephalochordate subphylum) species and have generated
the first complete atlas of developmental expression of the
Wnt family in amphioxus. Our phylogenetic analysis repre-
sents, to our knowledge, the first fully resolved reconstruc-
tion of all Wnt subfamilies in the three chordate subphyla,
resolving previous ambiguous or conflictive ascriptions of
orthology. Our study reveals opposite trends in Wnt gene
losses and retentions in cephalochordates and urochor-
dates: while amphioxus shows a conservative pattern of
evolution, retaining the complete ancestral repertoire of
chordate Wnt subfamilies, ascidians in contrast reveal a dy-
namic pattern of evolution, with numerous gene losses and
duplications. Our study also demonstrates for the first time
the presence of WntA genes in chordates (both in cephalo-
chordates and in urochordates), which implies that the ab-
sence of the WntA subfamily in vertebrates is not due to
an ancestral loss in chordates as previously suggested, but
to a specific gene loss occurring during the early evolution
of vertebrates. Finally, our detailed atlas of Wnt expression
in amphioxus, including the newly identified WntA genes
in non-vertebrate chordates as well as several cases of
“function shuffling” [9], allows us to evaluate the contribu-
tions of different Wnt subfamilies to the diversification of
each chordate subphylum.
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Results
The Wnt gene repertoire in non-vertebrate chordates
Our comprehensive survey of Wnt genes in genomic data-
bases of 13 non-vertebrate chordate species—three
cephalochordate species and ten urochordate species
representing five ascidian families from two different or-
ders (two solitary Cionidae and two solitary Ascidiidae
within Phlebobranchia; and two solitary Pyuridae, three
solitary Molgulidae, and one colonial Styelidae within Sto-
lidobranchia)—identified 156 Wnt genes (Additional file 1:
Table S1), which constitutes the first comprehensive cata-
log of Wnt genes in non-vertebrate chordates. Our phylo-
genetic analyses, which included a total of 247 Wnt
sequences from 19 species (sequence alignment in
Additional file 2) representing all major metazoan groups,
from cnidarians to vertebrates, sorted the non-vertebrate
chordate Wnt sequences into 13 monophyletic groups
corresponding to the 13 known Wnt subfamilies (Fig. 1).

Conservative Wnt evolution in cephalochordates
Our phylogenetic analyses revealed that the three Bran-
chiostoma species possess one ortholog for each of the 13
ancient Wnt subfamilies (Fig. 1a, b; see Additional file 2
for sequence alignment). Our results identified five Wnt
genes that had not been analyzed in cephalochordates be-
fore and corroborated the orthology of eight previously
described amphioxus Wnt genes [34–39, 41] (reviewed in
[40]). We further extended our Wnt survey to the tran-
scriptome project of Asymmetron lucayanum, a cephalo-
chordate distantly related to the other Branchiostoma
species [43]. We identified 13 Wnt sequences, mostly full
length (Additional file 1: Table S1), each one orthologous
to one of the 13 Wnt subfamilies (Additional file 1: Figure
S4; see Additional file 3 for sequence alignment). The fact
that all amphioxus Wnt orthologs form a single cluster
nested within vertebrate and ambulacrarian sequences
from each Wnt subfamily suggests that neither gene
duplications nor gene losses affected the evolution of Wnt
subfamilies in the cephalochordate subphylum. Our find-
ings, therefore, reinforce the idea of genomic and morpho-
logical evolutionary stasis attributed to cephalochordate
species [41, 44–48] (reviewed in [49]), in spite of diver-
gence times estimated at over tens of millions of years ago
[43, 50–53].

Liberal Wnt evolution with losses and duplications in
ascidian urochordates
Our phylogenetic analyses provided the first fully re-
solved orthology of ascidian Wnt genes, allowing us to
rename previously described genes still classified as “or-
phan Wnts” with unclear orthology, as well as to settle
conflicting orthology assignments, probably caused by
limited species sampling [29–32] (Fig. 1a and Additional
file 1: Table S1). The phylogenetic tree showed long

branches for ascidian Wnt genes, which rarely clustered
as the sister group of vertebrate Wnt genes within each
Wnt subfamily, as would be expected from their taxo-
nomic relationships, likely due to artifactual “long--
branch attraction” [54]. Our results showed that
ascidians, in contrast to amphioxus, do not conserve the
entire Wnt repertoire and have suffered various events
of gene loss, as well as gene duplications (Fig. 1). While
some of the losses appeared to be ancestral, resulting in
the absence of Wnt subfamilies in all ascidian species,
other losses and duplications affected different families
and orders heterogeneously, suggesting a more dynamic
evolution of Wnt genes in ascidians than in the conser-
vative amphioxus. Wnt4 and Wnt8, for instance, are ab-
sent in all analyzed species, plausibly due to two
ancestral gene losses that occurred prior to the ascidian
radiation, and therefore relevant to our understanding of
the divergence in developmental mechanisms between
ascidians and other chordates (Fig. 1b). On the other
hand, Wnt1 and Wnt11 appear to be absent in species of
the Phelobobranchia suborder and Molgula genus, re-
spectively, while Wnt3 is only absent in B. schlosseri. It
seems, therefore, that loss of Wnt genes might have
contributed to the genetic divergence between different
groups or even single species of ascidians.
Our results, moreover, revealed that the Wnt5 subfamily

in the Stolidobranchia order had experienced extensive
amplification by gene duplication, affecting all six analyzed
species (Fig. 1b). The fact that many of these Wnt5 dupli-
cates appeared to be located in the same genomic regions
suggested that they originated by tandem gene duplica-
tions (Additional file 1: Figure S1). The complex phylo-
genetic reconstructions of the ascidian Wnt5 clade were
difficult to interpret, suggesting either the occurrence of
independent gene duplications in different lineages after
events of speciation or, alternatively, ancestral Wnt5 dupli-
cations in stem Stolidobranchia, followed by multiple gene
losses and events of gene conversion (Additional file 1:
Figure S1). In either case, the expansion of Wnt5 in
Stolidobranchia provides a singular case of Wnt subfamily
amplification in non-vertebrate chordates, suggesting that
the evolution of this order of ascidian species has been
accompanied by a relaxation of the evolutionary con-
straints that maintain Wnt5 genes as a single copy gene in
other species. This may be linked to the recruitment of
new Wnt5 paralogs in biological innovations unique to
this group of ascidians.
Overall, the dynamic pattern of gene losses and dupli-

cations of Wnt genes observed among different orders,
families, or individual species of ascidians correlates with
the burst of morphological diversification within the
urochordate subphylum, contrasting with the conserva-
tive pattern of Wnt evolution and morphological stasis
observed in cephalochordates.
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Fig. 1 (See legend on next page.)
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WntA, lost and found in chordates
Our analysis also led to the identification of WntA genes in
cephalochordates and urochordates (Fig. 1 and Additional
file 1: Table S1). This finding was of special interest since
WntA had previously been identified in cnidarians, proto-
stomes, and ambulacrarian deuterostomes (e.g., in the
hemichordate Saccoglossus kowalevskii and the echinoderm
Strongylocentrotus purpuratus), but not in any chordate,
leading to the suggestion that the WntA subfamily had
been lost in stem chordates [10, 24]. The identification in
this study of WntA genes in both cephalochordate and
urochordate species implies, therefore, that WntA was
present in the last common chordate ancestor, preserved
in cephalochodates and urochordates, but specifically lost
during the early evolution of the vertebrate lineage.

The complete expression atlas of cephalochordate Wnt
genes
The apparent conservative evolutionary stasis shown in
amphioxus and the finding that amphioxus possesses a
full and non-redundant Wnt repertoire make this organ-
ism a very attractive model to infer the roles of Wnt
genes in the ancestral stem chordate, and from compara-
tive studies, to analyze the impact of changes in the
Wnt repertoire during the evolution of each chordate
subphylum. In order to obtain the first comprehensive
stage-matched developmental expression atlas for the ceph-
alochordate Wnt repertoire, we performed whole-mount in
situ hybridization (WMISH) for all Wnt genes in the
European species B. lanceolatum (Figs. 2 and 3). Our re-
sults revealed that Wnt genes were expressed in a robust
and precise tissue-specific fashion, with significant overlap
among several amphioxus Wnt paralogs. Nevertheless, we
also saw a number of differences in the expression of differ-
ent paralogs, suggesting a choreographed modulation of
their expression domains throughout development to gen-
erate spatio-temporally complementary patterns (a
gene-by-gene detailed description of the expression pat-
terns of all Wnt genes shown in Fig. 2 is provided in

Additional file 1: Text S1 and summarized in Fig. 4). Over-
all, Wnt expression appears to be highly dynamic, spanning
a broad variety of tissues derived from all three germ layers,
which precisely up- or down-regulate different Wnt para-
logs throughout development.

Posterior dominance of Wnt expression
“Posteriority” is likely the most conspicuous hallmark
observed in the expression domains of the majority of
amphioxus Wnt genes. At the blastula stage, Wnt1,
Wnt8, and Wnt11, which were the first Wnt genes to be
expressed in amphioxus (class A genes in Fig. 2), showed
an evident restriction of their expression domains to the
posterior half of the embryo. Thus, while Wnt1 expres-
sion clearly labeled the vegetal pole, Wnt8 and Wnt11
were expressed at the equator of the prospective poster-
ior pole [55]. At the gastrula stage G3, along with the
early class A genes, Wnt3, Wnt4, and Wnt5 expression
domains appeared surrounding the blastopore (white as-
terisks, class B genes in Fig. 2), as well as Wnt6 a little
later (at stage G7). They were expressed in these poster-
ior regions through neurulation (N2 and N3) until larval
stages (L1). Close observation of the blastoporal view re-
vealed some degree of overlap among gene expression
patterns, but also important differences among the Wnt
expression domains of each paralog. For instance, while
Wnt1 signal labeled the entire circumference surround-
ing the blastopore (Fig. 2, G3 column), Wnt3 demar-
cated a narrower outer ectodermal strip of cells into G7
(Fig. 2). Wnt8 and Wnt11 signals were excluded from
the edges of the blastopore and reached more central
endomesodermal regions (Fig. 2). At G3, Wnt4 signal
was also strongly visible in the endomesoderm near the
blastopore, but rather than being restricted to the pos-
terior region, it spanned the entire layer surrounding the
gastrocoel and was excluded entirely from the ectoderm
(Fig. 2). Finally, Wnt5 most strongly marked the endo-
mesoderm of the dorsal blastopore lip (Fig. 2). Most of
these early posterior Wnt expression domains were

(See figure on previous page.)
Fig. 1 Wnt family evolution in chordates. a The ML phylogenetic tree reveals a conservative pattern of genomic evolution in cephalochordates
(species names in blue), which preserve all 13 Wnt subfamilies, contrasting with the dynamic pattern of genomic evolution in urochordates (in
red), which are characterized by several gene losses and duplications. The scale bar indicates amino acid substitutions. Values for the approximate
likelihood ratio test (aLRT) are shown at nodes. Species are as follows. Chordate species: Urochordates: Botryllus schlosseri (Bsc), Ciona savignyi
(Csa), Ciona robusta (Cro; formerly Ciona intestinallis), Halocynthia roretzi (Hro), Halocynthia aurantium (Hau), Mogula occulta (Moccu), Mogula
oculata (Mocul), Mogula occidentalis (Mocci), Phallusia fumigata (Pfu), and Phallusia mammillata (Pma). Cephalochordates: Branchiostoma belcheri
(Bbe), Branchiostoma floridae (Bfl), Branchiostoma lanceolatum (Bla). Vertebrates: Danio rerio (Dre), Homo sapiens (Hsa). Non-chordates species:
hemichordate Saccoglossus kowalevskii (Sko), annelid Capitella teleta (Cte), mollusk Lottia gigantea (Lgi), and cnidarian Nematostella vectensis (Nve).
b The Wnt gene catalog (Wnt1–11, Wnt16 and WntA) present (white squares) or absent (red squares) in the three chordate subphyla, allowing
inference of plausible events of gene losses (red circles; the number or letter inside the circle indicates the lost Wnt subfamily) and duplications
(black squares; the number inside the square indicates the duplicated subfamily) during the evolution of different lineages. While some losses
appear to be ancestral (e.g., Wnt8 and Wnt4 losses in stem urochordates), others only affected specific groups or species (e.g., Wnt1 loss in
Phlebobranchia, Wnt11 in Molgulas, and Wnt3 in Botryllus). In vertebrates, Wnt subfamilies expanded following the rounds of whole-genome
duplications (WGD) that occurred during their early evolution [4], while in the rest of chordates all Wnt are conserved as a single copy, with the
exception of Wnt5 in Stolidobranchian ascidians, which has suffered multiple events of tandem gene duplications (see Additional file 1: Figure S1)
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steadily maintained throughout development. The Wnt1
expression domain, for instance, remained in the poster-
ior wall of the neurenteric canal after elongation and
closure of the blastopore until at least the early larval
stage (Fig. 2, L1 column). Wnt5 strongly marked the
posterior growth zone during neurulation (Fig. 2, N2
and N3 columns), culminating in strong tailbud expres-
sion in larvae (Fig. 2, L1 column). Wnt3 signal was ob-
served up to L1 stage in the posterior-most ectoderm
fated to become tailfin, abutting the Wnt1 domain.
Posteriority was also observed for some Wnt genes

with late expression onset (class C genes in Fig. 2). Of
these, Wnt10, for instance, showed a new ectodermal
expression domain in the most posterior part of the
embryo at N2 and N3 (Fig. 2), which subsequently faded
concomitantly with the appearance of Wnt11 expression
in this same region. This Wnt11 expression clearly
marked the entire fin in the one-gill-slit larval stage (Fig. 2,
L1 column, and Fig. 3b). In summary, our data show that
nine out of the 13 Wnt amphioxus Wnt genes showed pos-
terior expression domains (Fig. 4), highlighting posteriority
as one of the main hallmarks of this gene family.

Mesodermal Wnt expression and somite formation
In addition to the propensity for posterior dominance,
another important source of Wnt signaling was observed
in the presomitic and axial mesoderm, where seven out
of the 13 Wnt paralogs were expressed. Besides the
aforementioned early overlapping expression domains of

Fig. 2 Complete atlas of Wnt expression in the cephalochordate
Branchiostoma lanceolatum. Stage-matched expression patterns of
13 amphioxus Wnt genes reveal complex spatio-temporal choreography
throughout embryogenesis. Wnt genes are ordered according to their
developmental timing of expression: Wnt1, Wnt8, and Wnt11 are first
expressed in the blastula (class A genes); Wnt3, Wnt4, Wnt5, and Wnt6
begin in the gastrula (class B genes); Wnt7, Wnt16, Wnt10, Wnt2, and
Wnt9 in the early neurula (N2; class C genes); and WntA in the mid-late
neurula (N3 class D gene). All Wnt genes are expressed through to early
larval stages (L1), prior to mouth opening. Arrowheads are color-coded to
match schematics based on germ layer origins: light blue, ectoderm
including tail fin (fi); dark blue, neural tube (nt) and cerebral vesicle (cv);
yellow, endoderm derivatives including foregut (fg), hindgut (hg), preoral
pit (pp), endostyle (es), club-shaped gland (csg), and gill slit primordium
(gs); orange, mesendoderm; red, mesoderm derivatives including somites
(so) and mesothelial cells (me); fuchsia, axial mesoderm derivatives
including notochord (no); white, tailbud structures (tb, boxed),
including neurenteric canal and chordoneural hinge; black, mouth
primordium (mo). Note that only some somites are represented for the
sake of clarity to permit visualization of underlying tissues. For all genes,
anterior is to the left and dorsal up; developmental stages are indicated
at the top and embryo schematics are shown at the bottom. Lateral and
dorsal views are shown, with the exception of blastulae (blast), for which
only lateral views are represented, and gastrula stage G3, for which
lateral and blastopore (white asterisk) views are shown. Dotted lines
indicate planes of sectioning in larvae L1. Scale bars = 50 μm. Please see
Additional file 1: Text S1 for a detailed gene-by-gene description of all
amphioxus Wnt expression patterns
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Wnt8 and Wnt11 observed in the posterior endomeso-
derm surrounding the blastopore at G3, new expression
domains of Wnt4, Wnt5, Wnt6, and Wnt16 consecu-
tively appeared in the most posterior mesoderm by G7,
N2, N3, and L1, respectively, in a temporally orches-
trated manner. At the one-gill-slit larval stage, Wnt5 and
Wnt16 expression was maintained in the posterior-most
mesoderm (Fig. 2, L1 column, and Fig. 3b). In addition
to the Wnt-positive posterior mesodermal domain, sev-
eral other Wnt expression domains could be identified
in temporally dynamic complementary (as well as over-
lapping) patterns, in some cases forming nested domains
along the anteroposterior axis (for instance, Wnt8/16–
Wnt11–Wnt8/16–Wnt4/5/6). In other cases Wnt expres-
sion domains differed in their dorso-ventral extent
within somites. For instance, Wnt10 appeared excluded
from dorsal domains compared with Wnt16 in the N2
stage. Wnt16 signal was observed in the last pair of

formed somites by L1, while Wnt10 appeared to be dor-
sally restricted in all mature somites (see cross-section in
Fig. 2) and excluded from this last pair. No Wnt signal
was observed in the anteriormost pair of somites at any
stage of development.
In contrast to the paraxial mesoderm, surprisingly few

Wnt genes appeared to be expressed in chordamesoderm
or other mesoderm derivatives. For example, only Wnt2
and Wnt5 were expressed in the notochord. Wnt2 signal
was localized to the anterior two-thirds of the chorda-
mesoderm during neurula stages (Fig. 2), becoming
restricted to the most caudal and rostral portions in
one-gill-slit larvae (Fig. 3); in contrast, Wnt5 was con-
spicuously expressed in the anterior notochord only in
larval stages (Fig. 2, L1 column, and Fig. 3). Finally, sev-
eral non-myotomal structures of mesodermal origin ap-
peared to express Wnt genes in restricted domains.
Wnt4 signal was observed in mesothelial cells in late

a b

Fig. 3 Wnt expression in one-gill-slit amphioxus larvae. a Anterior expression domains of selected Wnt genes ordered as in Fig. 2: Wnt8, posterior
cerebral vesicle (black arrowhead), preoral pit (pp), endostyle, and around the mouth; Wnt4, posterior cerebral vesicle (black arrowhead) and neural
tube; Wnt5, cerebral vesicle (black arrowhead), club-shaped gland (cg), and weakly in anterior notochord; Wnt6, isolated spots in neural tube (black
arrowhead); Wnt7, posterior cerebral vesicle (black arrowhead); Wnt16, neural tube, including the hindbrain (black arrowheads); Wnt10, posterior
cerebral vesicle (black arrowhead); Wnt2, anterior notochord (black arrow), and isolated cells of the anterior endoderm; Wnt9, posterior cerebral
vesicle (black arrowhead), pharyngeal endoderm around the preoral pit, endostyle, and the first gill slit primordium (black arrow); WntA, around
the mouth and in the first forming gill slit (black arrow) and within the rostral coelom and muscle. Black asterisk indicates pigment spot in the
forming frontal eye; white dotted line indicates mouth. b Posterior expression domains. Wnt1, posterior neural tube (white arrowheads) and neurenteric
canal hinge (black arrowhead); Wnt11, tail fin (black arrowhead); Wnt5, tailbud region; Wnt6, neural tube (black arrow) and posterior wall of the neurenteric
canal (black arrowhead); Wnt16, posterior wall of the neurenteric canal and posterior mesoderm of the last somites (black arrowhead); Wnt2, posterior
notochord (black arrowhead); Wnt9, midgut endoderm (black arrowhead); WntA, mesothelial cells (black arrowhead). Older larvae have tail fins containing
brown pigment. All views are lateral, with anterior to the left and posterior to the right
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neurula and early larval stages on the left side adjacent
to the pharynx (Fig. 2). WntA was expressed in larval
stages in mesothelial cells between the ventral endoderm
of the gut and the ectoderm in both early and late larvae
(Figs. 2, 3b, and 4).

Endodermal Wnt expression
In addition to mesodermal expression, Wnt signal was
also evident in endodermal derivatives. By the gastrula
stage, Wnt8 and Wnt11 expression domains were
already observed in the endodermal portion delimiting
the blastopore, expression domains that persisted until
N3 and L1, respectively (Fig. 2). Many of the Wnt genes
expressed in the posterior growth zone or tailbud also
labeled hindgut domains in that area (e.g., Wnt4; Fig. 2).
During larval stages, new anterior Wnt expression do-
mains became evident in the anterior region and other
parts of the digestive system (Fig. 2, L1 column). Some,
such as Wnt5, Wnt2, and Wnt9, appeared to be already
expressed at late neurula stages in anterior endoderm

(Fig. 2, N2 and N3 columns). Wnt genes labeling specific
derivatives by L1 included Wnt8, Wnt9, and WntA in
the mouth primordium, Wnt2, Wnt5, Wnt8, and Wnt11
in Haetschek’s diverticula, Wnt8 and Wnt9 in the endo-
style, and Wnt9 in the branchial primordium (Fig. 2, L1
column). Once the mouth was open and the first gill slit
was clearly formed, Wnt5 labeled the club-shaped gland,
while Wnt8 and Wnt9 labeled the preoral pit, WntA the
entire circumference of the mouth, and Wnt9 and WntA
the first gill slit (Figs. 2 and 3a). Wnt4 and Wnt2 signal
appeared in a few cells of the endostyle along with Wnt8
and Wnt9. Wnt10 signal was also clearly evident in cells
lining the rostral coelom (Fig. 3a). Posteriorly, Wnt6 ap-
peared to be expressed in a single line of cells demarcat-
ing the posterior wall of the neurenteric canal, and Wnt9
labeled cells within the posterior gut (Fig. 3b).

Ectodermal Wnt expression
Ectodermal Wnt expression was detected in the epider-
mis as well as the nervous system. Besides the sequential

Fig. 4 Wnt expression in B. lanceolatum is complex and spatio-temporally dynamic. Color-coded horizontal bars represent the expression domains
of Wnt genes (see left box) and refer to schematic illustrations of B. lanceolatum embryos from blastula to early larva (lateral view at the top and
dorsal view at the bottom; anterior is to the left and posterior to the right; main structures are labeled), organized by germ layer into endoderm
(yellow), mesoderm (red), chordamesoderm (magenta), and ectoderm (dark blue, neural derivatives; light blue, epidermal derivatives). Vertical dotted
lines delimit antero-posterior reference domains and underscore hypothesized Wnt functions during neural regionalization, posterior growth, and
structure differentiation. The hash sign denotes minor differences with B. floridae expression. Abbreviations: ec ectoderm, men mesendoderm, ep epidermis,
ch chordal plate, np neural plate, no notochord, cv cerebral vesicle, fo foregut, nt neural tube, so somites, hi hindgut, tb tailbud, pp. preoral pit, es endostyle,
csg club-shaped gland, gs gill slit primordium, my myomere, mec mesothelial cells, fi fin, mo mouth primordium. See text for further details
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coexpression of Wnt3, Wnt10, and Wnt11 in the tip of
the tail, the ventral epidermis of the anteroventral region
at the level of the Haetschek’s diverticulum also ap-
peared to express Wnt11 and Wnt5 in L1 larvae (Fig. 2,
L1 column). At some stage, all Wnt genes—with the ex-
ception of Wnt11—labeled the developing central ner-
vous system (CNS), consisting of cerebral vesicle and
nerve cord (Figs. 3 and 4). Thus, the invaginating neural
tube expressed Wnt7, Wnt3, Wnt6, Wnt2, Wnt4, and
Wnt8 starting in neurula stages, while Wnt5, Wnt10,
and WntA signal appeared later in early larvae (Fig. 2).
The spatio-temporal expression profiles differed among
ligands, ranging from continuous Wnt7 expression
throughout the majority of the nervous system until lar-
val stages, to the more restricted patterns shown by
Wnt2, Wnt4, Wnt6, WntA, Wnt10, or Wnt5. Some, such
as WntA or Wnt10, only labeled a few isolated cells
within the cerebral vesicle in the early larval stage L1
(Fig. 2, L1 column). However, by the one-gill-slit larval
stage, regionalisation of the cerebral vesicle became ap-
parent, with Wnt5 expression restricted to an anterior
domain encompassing the frontal eye (Fig. 3a), while
genes such as Wnt4, Wnt7, Wnt8, Wnt9, and Wnt10
(and possibly Wnt16) marked posterior regions of the
cerebral vesicle or the hindbrain (Fig. 3b).

WntA expression in non-vertebrate chordates
We paid special attention to further investigating the
function and evolution of our newly discovered chordate
WntA genes. We therefore analyzed the expression pat-
terns of WntA during embryonic development not only
in the amphioxus B. lanceolatum but also in two add-
itional chordate species, the ascidians C. robusta (Phelo-
bobranchia order) and H. roretzi (Stolidobranchia order).
WntA expression, however, was not detected during
embryonic development in either of these two ascidian
species (Additional file 1: Figure S2). This lack of expres-
sion of WntA was consistent with the absence of ESTs
from embryonic libraries in databases of C. robusta and
H. roretzi; the only existing ESTs of the WntA gene
(FF969784 and FF969783 of C. robusta) came from adult
animals. These results suggested, therefore, that WntA
might be exclusively expressed at postembryonic stages
or during adulthood in ascidians.
In contrast to ascidians, we found that WntA was

expressed in a complex pattern during amphioxus embry-
onic development. Our results revealed that amphioxus
WntA was the last Wnt gene to turn on in mid-late neuru-
lae, with expression in only one or two cells located an-
teriorly on the left side under the ectoderm (Fig. 2), likely
in the oral mesovesicle (OMV). The OMV is a coelomic
vesicle that develops from the posterior ventral corner of
the left first somite, and which has been associated with
amphioxus mouth opening [56]. This expression domain

persisted throughout development, accompanied by punc-
tuated expression in the posterior cerebral vesicle from
the late neurula until the pre-mouth larval stage (see
above). WntA signal was also observed in cells between
the ectoderm and endoderm of the forming gut of early
and one-slit larvae (Fig. 2, cross-section, and Fig. 3),
possibly in the mesothelial precursors of the “amoebo-
cytes”, considered to be the homologs of the vertebrate
blood cells [57]. Strong expression was further evident all
around the mouth opening in these late larvae (Fig. 3a).
This gene therefore represents a late-phase Wnt (class D)
that plays a major post-neurulation role in differentiating
structures such as the mouth and cerebral vesicle, and
possibly in the circulatory system of amphioxus.

Discussion
Evolutionary patterns of Wnt subfamilies in non-
vertebrate chordates
The identification and fully resolved phylogenetic re-
construction of the entire Wnt repertoire in several
species of urochordate and cephalochordate (Fig. 1
and Additional file 1: Figure S4) permit the first
complete reconstruction of the evolution of the Wnt
subfamilies in chordates, revealing that each subphy-
lum follows different evolutionary trajectories. Cepha-
lochordates show a conservative evolutionary pattern,
without either apparent gene duplications or gene losses
since the cephalochordate lineage diverged from other
chordates more than half a billion years ago [43, 50]. This
finding suggests that the amphioxus genome has pre-
served the complete and prototypical chordate/deutero-
stome/eumetazoan Wnt repertoire (Fig. 1b). Analyses of
many amphioxus gene families (e.g., Hox cluster [58],
homeobox gene families [59], gene families of the steroid
and retinoic acid signaling pathway [60–62], the tyrosine
kinase superfamily [63], DNA-methylation genes [64, 65],
and the FGF gene family [66]) reinforces the idea of evolu-
tionary stasis of cephalochordate genomes [43, 44, 48].
The expression patterns of all Wnt genes analyzed here in
B. lanceolatum are congruent with the expression of their
eight orthologs previously characterized in the American
lancelet species B. floridae [34–39] (Wnt1, 3, 4, 5, 6, 7, 8,
and 11; reviewed in [40]), which extends previous reports
of cephalochordate stasis of morphology and developmen-
tal expression patterns [41, 46, 47, 67] and provides fur-
ther support to the idea that the ancestral chordate
resembled in many respects a modern amphioxus [58, 59].
In sharp contrast to the conservative nature of the

amphioxus Wnt complement, ascidians show a dynamic
pattern of evolution, including several gene losses and
duplications (Fig. 1b). Some of the gene losses are likely
ancestral, affecting the early stem of the ascidian lineage,
since some paralogs are absent in all ascidian species. In
contrast, other losses appear to be more recent, affecting
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only some groups of ascidians (i.e., Wnt1 in the Phelobo-
branchia suborder and Wnt11 in the Molgula genus), or
limited to specific species (Wnt3 to B. schlosseri). Infer-
ring the point at which Wnt losses occurred is not only
important to better understand their possible impact on
the divergence of developmental mechanisms between
ascidians and other chordates, but will also help eluci-
date how they may have contributed to genetic and
morphological divergence during the ascidian radiation.
Moreover, the extensive gene duplications of the Wnt5
subfamily of the Stolidobranchia order may have also
facilitated divergence within this order. Since this is the
only case of amplification of all Wnt subfamilies ana-
lyzed in non-vertebrate chordates, and recurrent tandem
duplications have independently affected several species
of the Stolidobranchia, the developmental constraints to
maintain Wnt5 as single copy seem to have been exclu-
sively relaxed in this order of ascidians.
In contrast to cephalochordates and urochordates,

many vertebrate Wnt subfamilies consist of two ohnolo-
gues (e.g., human Wnt subfamilies 2, 3, 5, 7, 8, 9, and
10), which originated during the two rounds of
whole-genome duplications (2R-WGD) that occurred
during early vertebrate evolution [4]. The differences in
the retention rate of Wnt paralogs between vertebrate
and non-vertebrate chordates are possibly due to the dif-
ferent modes of duplication, i.e., genome duplication vs
small-scale duplication (reviewed in [4, 8]), and suggest
that duplication within Wnt subfamilies in non-vertebrate
chordates might be impaired by dosage imbalance with the
exception of the Wnt5 subfamily in the Stolidobranchia
order. Remarkably, WntA is the only Wnt subfamily ab-
sent in vertebrates. To investigate when the WntA gene
was lost, we analyzed the Wnt catalog of two additional
vertebrate species: the lamprey Petromyzon marinus, an
agnathan representative, and the shark Callorhinchus milii,
a cartilaginous fish. We identified 24 Wnt sequences in P.
marinus and 20 in C. milii databases (Additional file 1:
Table S1). In our phylogenetic reconstruction, P. marinus
and C. milii sequences distributed among all Wnt subfam-
ilies, with the exception of the WntA subfamily (Additional
file 1: Figure S4; see Additional file 3 for sequence align-
ment), suggesting that WntA was lost early in vertebrate
evolution, before the divergence of jawless and gnathos-
tome lineages. It can be argued, therefore, that WntA
plausibly became dispensable in the primitive vertebrate ei-
ther because alternative pathways or genes compensated
for its function, or because environmental or physiological
changes made them dispensable [8]. Finally, taking advan-
tage of genomic information on the new Wnt genes identi-
fied in this study, we have re-evaluated the conserved
synteny of previously postulated Wnt clusters [25]. Amphi-
oxus has four clusters: the Wnt9–Wnt1–Wnt6 cluster, the
Wnt2–Wnt16 cluster, the Wnt3–Wnt10 cluster, and the

Wnt5–Wnt7 cluster (Fig. 5; Additional file 1: Table S3). In
ascidians, we have found evidence for a single cluster:
Wnt9–Wnt6–Wnt3 in C. robusta and Wnt6–Wnt3 in C.
savignyi (Fig. 5; Additional file 1: Table S3). Lamprey con-
serves at least five clusters: the Wnt9–Wnt1–Wnt6 cluster,
the Wnt3–Wnt10 and at least three Wnt5–Wnt7 clusters
(Fig. 5; Additional file 1: Table S3). Interestingly, cluster
conservation is higher between lamprey and amphioxus
than between either of these and human (Wnt5–Wnt7,
and Wnt5–Wnt7 and Wnt2–Wnt16, respectively), pointing
to genomic rearrangements in the lineage leading to
humans. In summary, our work highlights how distinct
genomic rearrangements and patterns of gene conserva-
tion, loss, and duplication shaped differently the Wnt
repertoire in amphioxus, ascidians, and vertebrates, and
provides an evolutionary scenario that will facilitate future
investigations of how these changes relate to adaptations
to the environmental and physiological requirements
evolved by each subphylum.

Comparative analysis of Wnt expression patterns during
embryonic development in the three chordate subphyla
Our assignment of all non-vertebrate chordate Wnt
genes to the different Wnt subfamilies permits the first
comparison of expression patterns of all orthologs
among vertebrate and non-vertebrate chordates. With
the complete cephalochordate dataset in hand, we were
able to compare the expression patterns of all B. lanceo-
latum Wnt genes with the reported patterns of verte-
brate Wnt genes and those available for ascidians
(Additional file 1: Figure S3 and Text S2). Overall, our
analysis revealed three main situations: first, cases of
orthologous Wnt genes that share expression domains in
homologous structures among chordate species, likely
reflecting ancestral functional conservation; second,
homologous structures that share Wnt expression do-
mains, although the orthology of the ligands is not con-
served among taxa, suggesting, therefore, gene function
shuffling; and third, Wnt expression domains absent in
amphioxus but present in other chordates, possibly
reflecting lineage-specific Wnt innovations during the
evolution of Olfactores (vertebrates + urochordates), or
simplifications of the cephalochordate lineage.

Ancestral conserved Wnt functions in chordates
Amphioxus Wnt7 is highly expressed in the CNS (Fig. 2),
a feature that is shared with ascidian and vertebrate Wnt
homologs [27, 34] (reviewed in Additional file 1: Figure S3
and Text S2). The posterior expression of Wnt5 in somite
and muscle development is also conserved in amphioxus
(Fig. 2) ([39] and this work), vertebrates [68], and ascidians
[28, 69]. Wnt9 expression is conserved in endodermal de-
rivatives in both amphioxus (Fig. 2) and vertebrates (spe-
cifically gut derivatives including the vertebrate liver), as
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well as in the gill slits, the vertebrate homologs of amphi-
oxus pharyngeal arches, and in the amphioxus cerebral
vesicle and the brain of vertebrates [70–73], while to our
knowledge, only partial expression data have been docu-
mented for Wnt9 orthologs in a colonial ascidian [33]. Fi-
nally, shared expression domains are observed for Wnt10
and Wnt16 in the neurectoderm, Wnt16 in somites, and
Wnt5, Wnt3, Wnt8, and possibly Wnt11 in the tailbud
(Additional file 1: Figure S3 and associated references).
Globally, comparative analyses suggest a limited conserva-
tion in the expression patterns of orthologous Wnt subfa-
miles in the three chordate subphyla.

Function shuffling among Wnt paralogs
In vertebrates, expression of Wnt1 is essential for proper
anteriorposterior axial patterning of the brain and

specification of particular neuronal populations (the
“mid-hindbrain organizer”), in some cases functioning
redundantly with other Wnt genes [74]. In amphioxus,
no Wnt1 expression has been observed in the anterior
neuroectoderm or the cerebral vesicle ([38] and this
study). However, we have identified a different ligand,
Wnt2, with expression in the developing cerebral vesicle
at mid-neurula stages, which is compatible with a role of
amphioxus Wnt2 in cerebral vesicle/hindbrain pattern-
ing. Other Wnt genes, including Wnt3, Wnt5, Wnt7,
Wnt8, Wnt9, WntA, and Wnt16, are also turned on in
the amphioxus brain between neurulation and larval
stages (reviewed in [40] and this study). These results
are consistent with the unexpectedly complex genoarchi-
tecture in the amphioxus neural tube that is conserved
with vertebrates [42] and highlights events of “function

Fig. 5 Synteny of Wnt genes in chordates. Genes and their relative position and orientation on chromosomes or scaffolds (numbers above lines)
are represented by block arrows, color- coded by Wnt gene. Gray arrows on dotted lines indicate Wnt genes for which linkage has so far not been
demonstrated. The phylogenetic relationship of chordate subphyla is shown on the left. Lancelets are represented by B. floridae, B. belcheri, and B.
lanceolatum. Among tunicates, genome arrangements in C. savigni and C. robusta are shown. P. marinus and H. sapiens are vertebrate representatives.
The data presented for B. floridae have been modified and extended from [25, 129]; this is the only cephalochordate for which Wnt10–Wnt3 and
Wnt6–Wnt1–Wnt9 syntenic groups are linked on the same scaffold. Representative taxa are illustrated on the right (black silhouettes)
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shuffling” [9] among Wnt paralogs during chordate evo-
lution. Other remarkable examples of function shuffling
can be found in the notochord, one of the defining syn-
apomorphies of all chordates. Besides Wnt5 and Wnt11,
which are near-ubiquitously expressed and may play
more general functions (perhaps in cell movement or
polarity) across chordates, Wnt2 is the only paralog
expressed in the amphioxus notochord, while chick
Wnt16 (and maybe Xenopus Wnt4 and Wnt8 according
to Xenbase data) is expressed in the vertebrate structure
(Fig. 2; reviewed in Additional file 1: Figure S3). In con-
trast, Wnt5 in C. robusta and the Wnt-5α paralog in H.
roretzi are the only Wnt genes so far identified with ex-
pression in the asicidian notochord [26, 31, 75]. Similar
examples of Wnt function shuffling are observed in early
mesodermal derivatives (e.g., early paraxial mesoderm or
somites), which express Wnt10 in amphioxus (this work)
but Wnt3 in both vertebrates and ascidians (Fig. 2;
reviewed in Additional file 1: Figure S3).
Comparison of the development of the posterior pole

of the embryo in all three subphyla reveals a complex
scenario in which a variable number of Wnt subfamilies
take part in different species. While in ascidians, Wnt5
seems to be the only ligand determining early posterior-
ity in the primary axis, in amphioxus our study reveals a
highly redundant posterior Wnt expression system in-
volving at least eight out of the 13 subfamilies (i.e.,
Wnt1, 8, 11, and 3 surrounding the blastopore during
gastrulation, plus Wnt4, 5, 16, and 6 in the most caudal
part of the embryo later during neurulation and larval
stages). In vertebrates, interestingly, while some species
(similarly to ascidians) use a reduced number of Wnt li-
gands for determing early posteriority (e.g., Wnt8a in
zebrafish [76], Wnt11 (and Wnt5) in Xenopus [77, 78],
and Wnt3 in mouse [79] (reviewed in [11]), other species
such as chicken show a redundant posterior Wnt sys-
tem, more similarly to amphioxus (e.g., [80, 81]; Add-
itional file 1: Figure S3 and associated references). If the
ancestral chordate relied on a simple Wnt system for
determing posteriority, extensive Wnt function shuffling
occurred during the evolution of the cephalochordate
lineage as well as some vertebrate species such as chicken,
recruiting other Wnt subfamilies for this posterior signal-
ing role. Evidence from the direct-developing hemichord-
ate Saccoglossus kowalevski further corroborates the idea
that posterior Wnt flexibility is a common occurrence
during evolution, with a different but partially shared
combination of Wnt genes showing blastoporal expression
during gastrulation (Wnt1, Wnt3, Wnt4, Wnt6, and
Wnt16) [82]. It seems, therefore, that providing β-catenin
is asymmetrically localized (along the axis or in dividing
daughter cells), then which particular Wnt ligands act up-
stream, or how they are spatially organized relative to one
another, may not be particularly important [13], making

the Wnt system one of the gene families most prone to
function shuffling so far described. Importantly, the exten-
sive events of function shuffling that occurred during Wnt
evolution challenge the notion of establishing homologies
simply based on the expression of orthologous genes and
highlight the need to consider these events when analyz-
ing cases of deep homology.

Wnt expression domains absent in amphioxus but present
in other chordates
Different Wnt expression domains have been observed at
different stages of germline formation and gonadogenesis
in Olfactores, such as Wnt5 in two ascidian species and
mouse, Wnt4 and Wnt8 in zebrafish and mouse, Wnt1 and
Wnt3 in chick, and Wnt11 in Xenopus (Additional file 1:
Figure S3 and associated references), while no evidence has
been found suggesting any specificWnt expression in ceph-
alochordate primordial germ cells (PGCs) or the germline
(this work and [46, 67, 83, 84]; reviewed in [49]). Similarly,
the mesodermal cardiac-related expression domain of
Wnt9 in Olfactores—i.e., the heart endocardium of verte-
brates [85] and the epithelial walls of the vasculature of the
colonial ascidian B.schlosseri [33]—is not paralleled by any
Wnt paralog in amphioxus. Moreover, in vertebrates, many
Wnt genes are expressed in placodal derivatives and neural
crest (Additional file 1: Figure S3 and associated refer-
ences), and complex modulation of Wnt signals both
within ectoderm and from other tissues is required for their
specification and later differentiation [86–88]. In amphi-
oxus, none of the ectodermal Wnt domains seem to be
compatible with the presence of placode-like structures,
which supports the notion that placodes may have been an
evolutionary innovation of Olfactores [89–91], similar to
migratory cells with neural crest-like properties [92]. It
seems, therefore, that the appearance of important func-
tional novelties during chordate diversification—e.g., germ-
line, heart or placode development—were accompanied by
new expression domains and functions of Wnt genes.

Evolution of WntA: another new mouth?
Our work demonstrates the presence of WntA orthologs
in both cephalochordates and urochordates, suggesting
that its absence in vetebrates is likely due to a specific
gene loss in this lineage. Our expression analyses reveal
WntA function may be linked to mouth development in
amphioxus, since it is clearly expressed in the region
where the mouth will open at neurula stages, and around
the periphery of the opening mouth in late larvae. A role
for Wnt signaling in cephalochordate mouth formation
may be further supported by the expression of Wnt antag-
onist Dkk1/2/4 in the region in which the dissolution of
basal laminae and mouth perforation occur [56].
After the dorso-ventral inversion of chordates (i.e., chor-

dates are dorsoventrally inverted relative to non-chordates),
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the chordate mouth shifted from its now dorsal position
[93], implying that chordates evolved a new means of
mouth formation. Two possible evolutionary scenarios have
been proposed for the origin of the amphioxus mouth,
which would have had different consequences on the evolu-
tion of WntA. In the first scenario, the amphioxus mouth
would share its evolutionary origins with the ambulacrarian
coelomic pore-canal [56]. In this case, the absence of WntA
expression associated with pore-canal formation in
Parentrotus lividus [94] may suggest that WntA function
was co-opted in the cephalochordate lineage (or secondarily
lost in sea urchin). In the second scenario, the amphioxus
mouth would represent a specialized gill slit [95] supported
by the fact that both structures utilize Wnt (now including
WntA), Fgf, and Hh signaling pathways for their formation
[41, 96, 97], and that uncoupling of the gene regulatory net-
work for mouth formation from the blastopore could be
key deuterostome innovations. The expression of WntA in
hemichordates is of particular relevance for discriminating
between these hypotheses. Although evidence points to a
conserved pharyngeal transcriptional network in deutero-
stomes [98], the expression patterns reported for WntA in S.
kowalveskii are for stages too early to properly evaluate a pu-
tative conserved role in gill slit (or mouth) formation [82].
Regarding a role for WntA in ascidian mouth develop-

ment, it should be noted that Olfactores and amphioxus pri-
mary mouths may not be homologous structures [56, 99].
To open a new mouth, Olfactores developed an anterior
placode or stomodaeum, whereas amphioxus utilized an al-
ternative system probably owing to its inability to form pla-
codes [100]. With an alternative mode to open a mouth,
Olfactores no longer needed WntA for this purpose, which
might favor its loss in vertebrates and redeployment in uro-
chordates. The dorsal-ventral inversion hypothesis, besides
postulating changes in mouth formation mechanisms, pro-
poses associated changes in brain architecture, which may
have further relaxed constraints on WntA (and other Wnt)
gene expression in this structure in different chordate
lineages. Losses or redeployments of WntA have indeed
been frequent during evolution. WntA has been lost in
different species of arthropods, annelids, platyhelminthes
and cnidarians [8], or used in a variety of conserved or novel
structures and processes in different prototostome species
[21, 101–104].WntA evolution illustrates, therefore, the ver-
satility of Wnt signaling in controlling diverse biological
processes in metazoans.

Functional diversification and loss of Wnt signaling
during animal evolution
Function shuffling has significant consequences because
it makes it difficult to predict biological function from
orthology, challenging the so-called “orthology–function
conjecture” (reviewed in [105]). This consequence is
supported by the divergent expression patterns we

observe here for orthologous chordate Wnt genes. Far
from being a specific property of the chordate Wnt fam-
ily, however, substantial differences have also been re-
ported for Wnt expression in many other animal species,
mainly arthopods and annelids [21, 25, 101, 106–110]. A
detailed analysis of many Wnt genes in different proto-
stome species, for instance, leads to the conclusion that
the repertoire of Wnt ligands used during segment
addition has evolved differentially among arthropod line-
ages, that the general role of Wnt8 in regulating poster-
ior development has been altered in annelids [21] and
onychophorans [104], and that Wnt5 and Wnt16 ortho-
logs are differentially expressed in annelids [25]. Outside
bilaterians, substantial differences in the expression pat-
terns of the ctenophore Mnemiopsis leidyi Wnt genes
render difficult comparisons with those of other meta-
zoans, including clades such as cnidarians, placozoans,
and poriferans [111].
Finally, the loss of WntA in vertebrates, as well as of a

number of Wnt genes in ascidians, illustrate another
general feature of Wnt evolution: the “pervasiveness” of
the loss of Wnt genes during animal evolution. The loss
of Wnt subfamilies in ascidians might have contributed
to the morphological diversification of urochordates.
Likewise, the loss of Wnt6 in hemipterans has been
linked to the loss of maxillary palps in this group of in-
sects [112], while the loss of Wnt2 and Wnt4 in insects
[107] might be related with arthropod diversification.
Thus, pervasive gene loss accompanied by numerous
events of function shuffling appear to be two of the main
features that characterize the evolution of the Wnt fam-
ily not only in chordates but also in all branches of
metazoan evolution.

Conclusions
Up until now, Wnt research has mainly focused on iden-
tifying “conserved” biological functions. Here, we argue
that essential information can also be gleaned from the
analysis of Wnt “differences”, many of them derived
from events of function shuffling and gene loss. Under-
standing the biological basis of such differences will help
uncover how highly conserved developmental pro-
cesses—such as axial patterning, germlayer specification,
or body segmentation—might be controlled by molecu-
lar mechanisms (e.g., Wnt signaling) with remarkable
genetic and functional diversity.

Methods
Genome database searches and phylogenetic analyses
Protein sequences of the Wnt repertoire from vertebrate
Homo sapiens, urochordate C. robusta, and cephalochord-
ate B. floridae were used as queries in BLASTp and
tBLASTn searches in genome databases of selected species:
http://amphiencode.github.io/ for B. lanceolatum; http://
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genome.bucm.edu.cn/lancelet/ for B. belcheri; https://blas
t.ncbi.nlm.nih.gov/Blast.cgi for B. floridae; NCBI Sequence
Read Archive accession SRX437623 for Asymmetron lucaya-
num; http://www.aniseed.cnrs.fr/, https://blast.ncbi.nlm.nih.
gov/Blast.cgi and http://octopus.obs-vlfr.fr/public/botryllus/
blastbotryllus.php for ascidian species (C. robusta, C.
savignyi, P. fumigata, P. mammillata, H. roretzi, H. auran-
tium, B. schlosseri, M. occulta, M. oculata, and M. occiden-
talis); https://genomes.stowers.org/organism/Petromyzon/
marinus and https://www.ensembl.org/Petromyzon_mari
nus/Info/Index for P. marinus; and NCBI database for C.
milii. Orthologies of the non-vertebrate chordate Wnt were
initially assessed by the reciprocal best blast hit (RBBH)
approach and corroborated by phylogenetic analyses. Phylo-
genetic reconstructions were based on ML inferences calcu-
lated with PhyML v3.0 and automatic mode of selection of
substitution model [113] using protein alignments generated
with MUSCLE [114] and CLUSTALX [115] programs and
reviewed manually. Accession numbers and protein align-
ment for phylogenetic tree reconstruction are provided in
Additional file 1: Table S1 and Additional file 2, respectively.

Animal collection and gene expression analysis by WMISH
C. robusta type A adults were obtained from the
National Bio-Resource Project for Ciona (AMED, Japan).
H. roretzi adults were purchased from fishermen in Ao-
mori and Iwate prefectures, Japan. B. lanceolatum adults
were collected in Argelès-sur-Mer, France, and induced
to spawn as in [116].
Fragments of Wnt genes were PCR amplified and

cloned to synthesize gene-specific riboprobes for H. ror-
etzi and B. lanceolatum Wnt genes (Additional file 1:
Table S2). For C. robusta, cDNA clones were obtained
from the cDNA clone collections [117, 118]. WMISH
experiments were performed as previously described in
[119] for C. robusta; as in [120] for H. roretzi with minor
modifications (the acetylation step was not carried out
before prehybridization, and after the antibody incuba-
tion the specimens were washed with PBST 12 times,
20 min each, and stored overnight at 4 °C); and as in
[41] for B. lanceolatum. NBT/BCIP (Roche) or BMPur-
ple (Roche) were used for the chromogenic reaction.

Comparative studies of expression patterns
Vertebrate and ascidian Wnt gene expression patterns
were identified and cross- and back- referenced using
published literature as well as public database searches.
These included ANISEED for ascidians species [121, 122]
(http://www.aniseed.cnrs.fr/), ZFIN for zebrafish [123]
(www.zfin.org), Xenbase for Xenopus [124–126] (http://
www.xenbase.org/, RRID:SCR_003280), Geisha for chick
[80] (www.geisha.arizona.edu/geisha/), and the EMAGE
gene expression database for mouse [127] (http://www.e
mouseatlas.org/emage/). As no such database is currently

available for cephalochordates, published literature images
were examined by eye only. In all cases, special care was
taken to ensure gene name nomenclature in the literature
matched our results for Wnt gene assignation. In verte-
brates, the expression of paralogs was grouped for ease of
comparison across subphyla, under the assumption that
both neo- and subfuctionalization events would be ad-
equately represented. Please see Additional file 1: Figure S2
for additional details.

Additional files

Additional file 1: Figure S1. Evolution of Wnt5 in ascidians. Figure S2.
Expression of WntA in two ascidian species. Figure S3. Chordate Wnt
expression. Figure S4. Wnt subfamilies in A. lucayanum, P. marinus,
and C. milii. Table S1. Chordate Wnt genes analyzed in this study.
Table S2. Branchiostoma lanceolatum and Halocynthia roretzi primer
and probe sequences. Table S3. Wnt synteny in lancelets (B.
lanceolatum, B. belcheri and B. floridae) and vertebrates (H. sapiens
and P. marinus). Text S1.Branchiostoma lanceolatum Wnt expression
as shown in Fig. 2. Text S2. References for Figure S3. (PDF 11566 kb)

Additional file 2: Wnt sequence alignment for Fig. 1. (FASTA 307 kb)

Additional file 3: Wnt sequence alignment for Additional file 1: Figure
S4. (FASTA 99 kb)
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