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We show that actin lamellar fragments driven solely by polymerization forces at the bounding

membrane are generically motile when the circular symmetry is spontaneously broken, with no need

of molecular motors or global polarization. We base our study on a nonlinear analysis of a recently

introduced minimal model [Callan-Jones et al., Phys. Rev. Lett. 100, 258106 (2008)]. We prove the

nonlinear instability of the center of mass and find an exact and simple relation between shape and center-

of-mass velocity. A complex subcritical bifurcation scenario into traveling solutions is unfolded, where

finite velocities appear through a nonadiabatic mechanism. Examples of traveling solutions and their

stability are studied numerically.
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Cell motility is deeply connected to spontaneous sym-
metry breaking and maintenance of functional asymmetry.
In the context of actin-based motility of crawling cells, the
transition from a roughly circular static cell to a motile cell
has been an important focus of attention in recent years in
experiments, theory and numerical simulation, in an effort
to explain the shape of motile cells such as keratocytes and
fibroblasts, and the mechanical mechanisms behind the
complex actomyosin system that sustains motion [1–3].
Remarkably, fragments of cells that contain the actomyo-
sin machinery but lack essential cell components, have also
been shown to undergo such transitions to self-sustained
motion [4,5]. It remains unclear, however, to what extent
molecular motors and global polarization of such frag-
ments are fundamental to achieve and sustain motion or,
on the contrary, polymerization forces alone can couple to
the shape providing a motility mechanism without an
external or intrinsic symmetry breaking of the dynamics.

From a physical point of view, it is customary to con-
struct minimal models of reduced complexity to elucidate
the underlying mechanisms that connect shape to motion in
such systems, and the role of the different biological
ingredients that are present in real motile cells [6–9].
Within this spirit, a hydrodynamic approach based on the
theory of active polar gels [10,11] has been proposed as a
minimal model for cell lamellar fragments [12]. It has been
shown that in the presence of high friction with the solid
substrate, the actin gel dynamics can be approximated by a
simple 2D Darcy flow, in similar conditions to viscous
fingering in Hele-Shaw cells, a well-known paradigm of
interfacial pattern formation [13–15]. However, the prob-
lem differs from viscous fingering in some fundamental
aspects and thus it can be viewed also as a new prototype
system in the context of Laplacian growth phenomena. In
Ref. [12], it was found that actomyosin fragments do
exhibit a viscous-fingering-like morphological instability,
but the fundamental question of whether such a model
contains the minimal ingredients to initiate and sustain

motion remained unsolved. Extensions of this model to
include an explicit symmetry-breaking of the dynamic
equations to generate motility have also been reported
[16]. Here we show that spontaneous symmetry breaking
of the circular shape is sufficient to initiate and sustain
motion, even in the absence of myosin motors and large-
scale polarization, when nonlinearities are taken into
account. We obtain an exact connection between geometry
and kinematics of the fragments, showing that motile
shapes are indeed generic. By means of conformal map-
ping techniques we unfold a complex bifurcation scenario
in the transition from static to traveling states, where non-
adiabatic effects confer a finite velocity to the traveling
solutions.
Following Ref. [12], we describe a thin actin layer of

actin cytoskeleton as an effective 2D single component,
viscous fluid, bounded by a membrane with an arbitrary
shape [11]. We assume that the relevant dynamics is suffi-
ciently slow to neglect elastic effects. Actin is assumed to
polymerize at the membrane, with a velocity vp normal to

it. Depolymerization is assumed to occur uniformly at a
constant rate kd in the fragment interior. Ignoring the
dynamics of the actin polarization field as in Ref. [12],
and assuming in addition that no myosin motors are
present, the constitutive law reduces to that of an isotropic
viscous fluid with viscosity�. Neglecting inertia, this leads
to �rP� �vþ ��2v ¼ 0, where P is the pressure and �
is an effective friction coefficient. The velocity v can then
be assumed to satisfy Darcy’s law v ¼ �MrP either
because friction forces with the solid substrate dominate
over viscous forces [12], implying M ¼ 1=�, or more
generally, by considering the actin layer to be in a confined
geometry, for instance in a Hele-Shaw cell with a gap b. In
this case, the standard averaging over the narrow third

dimension yields M ¼ b2

12� þ 1
2� [17]. The problem is thus

reduced to a free-boundary problem for the boundary
@�ðtÞ of a 2D domain �ðtÞ. The flow equations of poly-
merized actin are nonconventional in two ways, namely,
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the uniformly distributed sink that accounts for actin
depolymerization in the bulk, and the existence of a line
source localized at the boundary that accounts for actin
polymerization, that is,

r � v ¼ �kd; (1)

Vn ¼ v � n̂þ vp; (2)

where the normal velocity of the interface Vn differs from
the normal velocity of the fluid by the constant vp, assum-

ing that actin polarization is normal to the membrane [12].
In addition to the kinematic condition (2) that defines the
motion of the boundary as part of the solution, we must
supply a boundary condition for the pressure field. The
simplest choice is to assume a Young-Laplace pressure
drop across the membrane [12]. Neglecting the viscosity
of the outer fluid this reads Pj@� ¼ ��, where � is the
curvature (taken positive for a circle) and � is an effective
surface tension.

The model can be transformed into the class of
Laplacian growth problems by the change of variables
v0 ¼vþkdr=2 and P0 ¼P�kdr

2=4M. The free-boundary
problem is thus fully specified by

�P0 ¼ 0; (3)

P0j@� ¼ ��� kd
4M

r2; (4)

Vn ¼ �n̂ �
�
MrP0 þ kd

2
r

�
j@� þ vp: (5)

Equations (3) and (4) are formally identical to those
corresponding to viscous fingering in a rotating Hele-
Shaw cell [18]. The kinematic condition (5), however,
defines a fundamentally different dynamics of the bound-
ary, in particular restoring the translational invariance.

The linear stability analysis of a circle with radius R0 ¼
2vp=kd was studied in Ref. [12]. In the absence of mo-

lecular motors the growth rate of the m-fold sinusoidal
perturbation reads �ðmÞk�1

d ¼ ðm� 1Þ=2� �mðm2 � 1Þ,
where � � M�

R3
0
kd

is a dimensionless parameter expressing

the ratio of capillary to friction forces. A bifurcation occurs
for those values of � ¼ �n � 1=½2nðnþ 1Þ�, with n > 1,
for which �ðnÞ ¼ 0. It is worth stressing that, based on
symmetry, this instability cannot generate motion at the
linear level. In fact, only the mode m ¼ 1 singles out a
unique direction in space, corresponding to an infinitesimal
shift of the circle. However, the mode m ¼ 1 must be
exactly marginal, �ð1Þ ¼ 0, reflecting the translational
invariance of the problem. Explicit symmetry breaking of
the equations has been discussed as a possible mechanism
to generate motion [16]. Here, we are interested in whether
spontaneous symmetry breaking via a morphological insta-
bility is by itself sufficient to initiate and sustain motion, a

fundamental question that must be addressed at the non-
linear level.
Before proceeding to a systematic nonlinear expansion,

we report an exact result that relates kinematics and
geometry in a remarkably simple and illuminating way.
Consider the areal center of mass RAðtÞ of the domain�ðtÞ
of area AðtÞ and the contour center of mass RLðtÞ of its
boundary @�ðtÞ of length LðtÞ. Using the exact equation

d

dt
AðtÞRAðtÞ ¼ d

dt

Z
�
zda ¼

Z
@�

zVndl; (6)

where z ¼ xþ iy is the complex variable, introducing
Eq. (5) and (6), taking into account the mass balance
relation _A ¼ vpL� kdA, and using standard integral

calculus, one can prove that [19]

_RA ¼ vpL

A
ðRL � RAÞ: (7)

The separation between the two centers of mass is a
measure of the asymmetry of the shape. According to
Eq. (7), the system behaves effectively as driven by a
flow from a point source to a point sink, located respec-
tively at the geometric centers of polymerization and
depolymerization. Such interplay between boundary and
bulk differs fundamentally from other self-propulsion
mechanisms reported in reaction-diffusion systems
[20]. For any given shape, Eq. (7) gives us directly
the velocity of the center of mass, so its trajectory is
very simply encoded in the evolution of the shape. In
particular, the existence of sustained locomotion with a
finite velocity Vst is reduced to existence of asymmetric
(RA � RL) stationary shapes, since Eq. (7) then reads
Vst ¼ kdðRL � RAÞ.
In order to describe the evolution of the shape we use

conformal mapping techniques [13]. Without loss of gen-
erality, we take R0 ¼ 1 and we define z ¼ fð!; tÞ ¼
�1

0 amðtÞ!mþ1, with Imða0Þ ¼ 0, as an analytic function

that maps the unit disk in the ! plane into the domain�ðtÞ
in the z plane. Then, Eqs. (3)–(5) can be shown to be
equivalent to

Im½@�f@tf�� ¼ @�H�

�
kd
4
jfj2 �M��½f�

�
þ vpj@�fj

� kd
2

Im½f�@�f�; (8)

where the unit circle is ! ¼ ei�, �½f� stands for the
curvature, and H� denotes the Hilbert transform on the

circle [19]. The shapes are conveniently parametrized with
the set of complex amplitudes amðtÞ which satisfy an
infinite set of ordinary differential equations (ODEs) that
follow from Eq. (8). An appropriate truncation of this set
also defines a convenient numerical scheme to solve the
evolution. This framework is particularly useful to extract
the bifurcation structure of the system by means of the
center manifold theorem [21] which formally decouples
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the dynamics of the fast modes, with �ðkÞ ¼ Oð1Þ, from
that of the slow modes, with �ðnÞ ¼ OðgnÞ when gn �
�� �n � 1. Accordingly, close to each bifurcation �n,
the dynamics is topologically equivalent (i.e., homeomor-
phic) to a system with a closed set of nonlinear equations
for the marginal modes, contained in an invariant manifold,
and a linear dynamics for the fast modes. In our case,
for � � �n and taking into account that �ð1Þ ¼ 0 for any
�, we have

_a1 ¼ N1n½a1; an; akða1; anÞ�; (9)

_an ¼ �ðnÞan þ Nnn½a1; an; akða1; anÞ�; (10)

_ak ¼ �ðkÞak; (11)

where k spans all nonnegative integers excluding 1 and n,
and N1n and Nnn are the nonlinear functions defined by the
set of ODEs obtained from Eq. (8) [19]. The functions
akða1; anÞ define the so-called center manifold and can be
obtained explicitly as power expansions around the bifur-
cation point following a standard procedure [21]. The
amplitudes ak in Eq. (11) stand for the transversal compo-
nents to the center manifold.

It is worth remarking that Eq. (11) includes also unstable
modes, which are not ‘‘slaved’’ to the slow modes. This
fact is crucial to prove the nonlinear instability of the
center of mass in our problem. In fact, the modes with
1< k< n have �ðkÞ> 0 and have in general nonzero
transversal components to the center manifold, which
depart from it exponentially. For �3, for instance, from
the explicit form of Eqs. (9)–(11) and after writing _RA in
Eq. (7) in terms of mode amplitudes, we find that
the lowest order nonlinear coupling is _RA � a2a

�
3.

Consequently, the transversal components of these two
modes lead to _RA � expf½�ð2Þ þOðg3Þ�tg, where �ð2Þ ¼
Oð1Þ> 0. This proves the nonlinear instability of the cen-
ter of mass, a central result of this Letter. In addition, to

prove that the motion of the center of mass will be sus-
tained, it suffices to find stationary shapes with RA � RL,
according to Eq. (7). Explicit stationary shapes can be
obtained analytically near the bifurcation points in
powers of gn from the reduced nonlinear equations,
Eqs. (9) and (10), and continued numerically away from
the bifurcation. Here we focus on symmetry-breaking,
motile shapes (subcritical bifurcations to nonmotile shapes
are also found).
The order of expansion of the functionsN1n andNnn that

is required to fully unfold the nonlinear structure (i.e., the
branches of solutions that bifurcate from the fixed point) is
not known a priori. In our case, the fact that a1 is strictly
marginal introduces a high degeneracy into the problem.
With the help of symbolic calculus software, we have
explicitly determined Eqs. (9) and (10) to very high orders
(up to 14) and we find that the number of branches bifur-
cating from the circle is consistently increasing with the
order of expansion. A careful analysis of the behavior for
increasing orders of the Newton polygon associated to this
set of equations (analysis not shown) strongly suggests that
the number of such branches could well be infinite. A
typical branch of stationary solutions takes the form of
an expansion such as

ast1 ¼ 2
ffiffiffi
3

4
p

g1=42 ½1þOðg2Þ�; (12)

ast2 ¼ 16ffiffiffi
3

p g1=22 ½1þOðg2Þ�; (13)

Ast ¼ �þ 8�g2½1þOðg2Þ�: (14)

Remarkably, however, Vst does not admit an expansion in
powers of gn. In fact, inserting the explicit solutions

FIG. 1 (color online). Branches of stationary traveling solu-
tions bifurcating from �2 and �3. Left: normalized area as a
function of �, (A0 ¼ �R2

0). Right: normalized velocity as a

function of �. The dashed line is the common tangent to all
branches at �2, as defined by Eq. (14). Labels A, B, C, and D
identify the branches plotted in Fig. 2.

A

B

C

D

FIG. 2 (color online). Examples of stationary propagating
shapes. A and B correspond to two branches bifurcating at �2

and C and D at �3, as defined in Fig. 1. � increases from right to
left and velocity increases from left to right.
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ast1;2ðg2Þ into the expression of Vst in Eq. (7) and using the

center manifold relations akðast1 ; ast2 Þ, we get an exact can-

cellation to all orders (explicitly checked up to order 14),
suggesting that VstðgnÞ is exponentially small for gn � 1
and cannot be obtained from the amplitude expansion.
To pursue this puzzling point further, we have used
extremely high-precision arithmetics (up to 64 digits) to
obtain Vst numerically near the bifurcation point. Carefully
analyzing the crossover towards an algebraic relaxation
as a function of the order of truncation of the equations,
we find that, for g2 � 1, Vst ¼ Oð expð�a=g	2ÞÞ with

a � 15:3 and 	 � 1=6 (details not shown). Consequently,
the mechanism to endow a given shape with a finite
velocity appears to be nonadiabatic, i.e., a nonperturbative
effect that is missed by the adiabatic (center manifold)
reduction.

In Fig. 1, we plot some of the stationary branches
obtained numerically, and their propagation velocity, using
continuation techniques away from the bifurcations �2 and
�3 (see corresponding shapes in Fig. 2). Note that all
branches are subcritical. In addition, we have numerically
checked the linear stability of some of the nonlinear trav-
eling solutions obtained. We find that the two solutions
branching from �2 labeled as A and B in Figs. 1 and 2, are
indeed linearly stable. However, it is plausible to expect
that the majority of the branches will be unstable and hence
essentially unobservable. Finally, we have integrated the
full time-dependent evolution from a circular interface
under random, small perturbations and find that the
peanut-shaped branch (row A of Fig. 2) exhibits a seem-
ingly large basin of attraction, including all cases of per-
turbed circles that we have checked out. A typical
evolution is shown in Fig. 3.

In conclusion, we have shown that actin polymerization
forces combining localized assembly at the boundary and
distributed disassembly in the bulk, together with friction
with the environment, are sufficient to initiate and sustain
motion of actin fragments through a nonlinear morphologi-
cal instability mechanism. Consequently, spontaneous
motility does not necessarily require molecular motors,

large-scale actin polarization, intrinsic symmetry breaking,
or any type of biochemical regulation, even though all
these ingredients are usually present and do enhance
the motility of real fragments and cells. We have thus
identified a minimal mechanism of spontaneous motility
that underlies and may have preceded the very complex
actin-based machinery optimized by evolution. Several
effects disregarded in our analysis may take over after
the initial instability and modify the dynamics, so the
shapes and velocities here obtained must be seen as a proof
of principle, not as a quantitatively accurate description of
actual fragments and cells. Nevertheless, to the extent that
the Darcy flow regime stands, the model can be extended
to include more general boundary conditions at the mem-
brane, molecular motors, external forces, and also
inhomogeneous parameters kd, vp, or �, allowing for

more realistic dynamics and shapes. In particular, Eq. (7)
can be generalized and becomes a useful test to relate
simple direct observables, such as shape and velocity, to
the different dynamical ingredients. For instance, relaxing
the assumption of normal polarization of actin at the
membrane, which is often violated in real systems with
the formation of rear actin cables [4], we may admit
an arbitrary polarization p at the boundary, with Vn ¼
ðvþ vppÞ � n̂. Then, Eq. (7) takes the form of the contour

average A _RA ¼ vpLhðz� RAÞðp � n̂ÞiL, which yields more

realistic values of Vst, of the order of vp, for the typical

crescent shapes and polarization at the boundary observed
in real fragments.
As a final remark, it is worth stressing that, in addition to

its biological relevance, the model here studied is interest-
ing from a physical point of view as a new prototype within
the class of Laplacian growth problems in interfacial pat-
tern formation [13–15], and in the context of self-propelled
systems under nonequilibrium conditions (see Ref. [20]
and references therein).
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