
 
 

ANALYZING LONGITUDINAL DATA AND USE OF THE GENERALIZED LINEAR 

MODEL IN HEALTH AND SOCIAL SCIENCES 

 
Jaume Arnau1,2, Roser Bono1,2, Rebecca Bendayan3 and Maria J. Blanca3 

 
1 Department of Behavioural Sciences Methodology (Faculty of Psychology), University of 
Barcelona 
2 Institute for Brain, Cognition, and Behavior (IR3C), University of Barcelona 
3 Department of Psychobiology and Behavioural Sciences Methodology (Faculty of Psychology) 
at the University of Malaga 
 
 
Address for correspondence: 

Roser Bono 

Department of Behavioural Sciences Methodology 

Faculty of Psychology, University of Barcelona 

Passeig de la Vall d’Hebron, 171 

08035 Barcelona (Spain) 

Email: rbono@ub.edu 

Tel. +34 93 312 50 80 * Fax +34 93 402 13 59 

 

mailto:rbono@ub.edu


ANALYZING LONGITUDINAL DATA AND USE OF THE GENERALIZED 

LINEAR MODEL IN HEALTH AND SOCIAL SCIENCES 

 

 



 
 
 
 
 

2 

Abstract 

 

In the health and social sciences, longitudinal data have often been analyzed without 

taking into account the dependence between observations of the same subject. 

Furthermore, consideration is rarely given to the fact that longitudinal data may come 

from a non-normal distribution. In addition to describing the aims and types of 

longitudinal designs this paper presents three approaches based on generalized 

estimating equations that do take into account the lack of independence in data, as well 

as the type of distribution. These approaches are the marginal model (population-average 

model), the random effects model (subject-specific model), and the transition model 

(Markov model or auto-correlation model). Finally, these models are applied to 

empirical data by means of specific procedures included in SAS, namely GENMOD, 

MIXED, and GLIMMIX. 

 

Keywords: generalized linear model, longitudinal data, marginal model, random effects 

model, transition model. 
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1. Introduction 

 

Longitudinal designs are used to study processes of change that are directly 

associated with the passing of time. There are two reasons why, in recent years, 

longitudinal studies have become widely used in applied contexts. The first concerns the 

development of advanced analytic techniques, while the second is that current software 

packages have much greater potential in terms of analysis and simulation. This 

combination of improved statistical modelling and more powerful computational 

programs has led to considerable interest in longitudinal designs, especially in those 

areas where the study of processes is particularly relevant, such as the social, 

psychological, educational, psychotherapeutic, and epidemiological contexts. 

This paper describes current versions of the statistical models that take into 

account the metric and non-metric nature of longitudinal data. As such, it offers a 

systematic account of the most up-to-date analytic approaches to a class of data that are 

usually correlated. The correlation among within-subject observations is the main 

problem faced by longitudinal research, and it poses a considerable challenge in terms of 

developing more powerful and flexible models. Indeed, the correlation among 

observations of the same subject must be taken into account both in the design and when 

analyzing data. Here we focus on the examination and analysis of data from longitudinal 

designs not only because of the considerable plasticity and increasing popularity of this 

approach, but also due to the variety of analytic techniques that can be used to infer 

hypotheses. One of the currently most popular of these techniques is based on the 

hierarchical or multilevel longitudinal model, which is considered to be a good option for 
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the analysis of repeated measures data (Bryk & Raudenbush, 1992; Goldstein, 2011; 

Raudenbush, 1988).  

Our aim in this paper is to provide a general framework for analyzing longitudinal 

designs, and this is why the various models are presented within the context of the 

generalized linear model. Specifically, the goal is to compare three approaches based on 

the generalized linear model which have been developed specifically for use with non-

normal data, a form of data that is increasingly common within the field of applied 

longitudinal research. The generalized linear model was chosen precisely because it can be 

used with non-normal data, whether quantitative or discrete. 

 

2. Generalized linear model 

 

 The generalized linear model (GLM) is designed to analyze non-normally 

distributed data in the context of regression. The GLM also covers a wide range of data 

distributions within the exponential family.  

In the GLM a single equation, initially formulated by Nelder and Wedderburn 

(1972), combines the systematic and random components (predictors and measurement 

variable, respectively) by means of a link function. If we take as our starting point the 

linear regression model then the response variable, y, is normally distributed with mean 

μ and constant variance, such that 

  E(y) = µ = Xβ                                  (1) 

                E(y – µ) =  σ 2           (2) 
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 The general or classical linear regression model (Equation 1) assumes that the yi  

observations are normal and independent with standard deviation σ, such that the 

parameter vector β is estimated by means of the least squares criterion (y - µ)’(y - µ). 

Under this assumption both yi and µi are  determined by a large number of values. 

However, if y = 0 or y = 1, as is the case when responses are categorized according to the 

absence or presence of a given characteristic, then 0 < µi < 1. In this case the general 

linear model is no longer appropriate due to the restrictions that must be imposed on β so 

that µi falls within the possible range of values. This is why generalized models include 

a linear link function for μ, g(µ). This function, g(·), transforms μi into a scale on which 

the values are not subject to such drastic restrictions. Thus, for example, one could use 

g(μ) = log(μ) if μi > 0 or g(μ) = log[μ / (1-μ)] if 0 < μi < 1. 

 In sum, the generalization of the classical linear model consists in assuming that 

E(y) is not identical to the linear combination Xβ, since the relationship is mediated by a 

function that takes into account the nature of the data (y). Technically, the GLM has 

three components: 

a) A random component or data vector y (response variable) formed by independent 

observations derived from a distribution of the exponential family or similar, with 

a canonical parameter β that determines the form of the response. This implies 

being able to reformulate the distributions of the exponential family in canonical 

form, which is possible for most exponential distributions. Note, however, that 

some distributions of this family, such as the log-normal distribution, cannot be 

written in canonical form. It is assumed, therefore, that the observation data, y, 

follow an independent normal distribution with mean µ and constant variance σ2. 
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b) A systematic component referring to the model’s predictor variables (covariates 

X) or explanatory part. This component refers not only to the variables that must 

be taken into account but also to the way in which they should be introduced into 

the equation. The set of covariates determines a linear predictor η, expressed by 

   η = Xβ              (3) 

c) The link function enables the distribution parameters to be related to the model’s 

predictors. Thus, for example, the function g links the systematic component with 

the parameter of the mean µ 

   η = g(µ) = Xβ                        (4) 

where g(⋅) is the link function that defines the linear relationship between the 

mean of y and the predictors. Its inverse is known as the response function. 

               E(y) = µ  = g−1(Xβ)              (5) 

 The function π = g−1(Xβ) used in the expression of the mean (Equation 5) is 

referred to in the GLM as the canonical link function, and it enables better estimators of 

the model parameters to be obtained.  

Note that the majority of distributions encountered in social and psychological 

research, regardless of whether they refer to continuous or discrete data, have a 

probability density function that belongs to the exponential family. Their mathematical 

expression may take either a normal or canonical form. The general expression of the 

distribution from the exponential family is as follows: 
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 f(y,θ) = exp{a(y) b(θ) + c(y) + d(θ)}           (6) 

 

where a, b, c, and d are known functions that have the same form for all y. If there are 

parameters other than θ they are considered as nuisance parameters that form part of the 

functions a, b, c, and d, and they are treated, therefore, as if they were known. If a(y) = y 

the distribution is said to have a canonical form, and in this case b(θ) is referred to as the 

natural or canonical parameter. Note, however, that the mathematical expression of the 

common exponential distribution is not usually described in terms of this general form 

(Equation 6), since the parameter θ is replaced by b(θ), where η = b(θ). As a result, 

Equation 6 is redefined as follows:  

 

 f(y,η) = exp{a(y).η + c(y) + d(η)}            (7) 

 

where η is a function of θ. Obviously, the function d(·) is not the same as in the general 

expression (Equation 6). If y is normally distributed with mean θ and variance σ2, and θ 

= η, then one is dealing with the ordinary linear model with normal errors. In other 

words, the GLM uses a special subclass of the natural exponential family, where b(θ) = 

η and a(y) = y. This natural form can also be written in terms of the mean µ rather than θ 

by means of a simple transformation µ = g(θ) = E(y,θ) or reparameterization of the value 

of the mean. In the GLM the probability distribution is reparameterized such that the 

distribution is a function of unknown parameters based on known data. 
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2.1. Fit of the model 

 

If we apply a link function to the response mean the resulting model must be fitted by 

means of the maximum likelihood (ML) method. Having defined the likelihood function 

of the model the next step consists in determining which parameters make the data most 

likely. This is done by log-transforming the likelihood function to convert it into an 

additive rather than the multiplicative scale.  

The estimation of GLM parameters uses the Newton-Raphson algorithm, which 

resolves the log-likelihood function. The log transformation converts a multiplicative 

model into a linear one, thereby facilitating parameter estimation and the use of the ML 

estimation algorithms. The log-likelihood of the exponential model is expressed as: 

 

 l(θ, y, φ) = Σ{(yθ – b(θ))/φ – c(y, φ)}           (8) 

 

where φ is a dispersion constant for all yi (McCullagh & Nelder, 1989) and where the 

corresponding deviance function is defined as: 

 

  2Σ{l(y, y) – l(y, µ)}             (9) 

 

 The deviance gives us an idea of the variability in the data. Hence, a measure of 

the variability explained by the model can be obtained by comparing the null deviance 

with the residual deviance. Therefore, the deviance represents the amount of variability 

in the response variable that is not explained by the model: 
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 D’= (y, μ) = 2(l(y, y) − l(y, μ))          (10) 

 

where l(y, μ) is the log-likelihood function defined in terms of the predicted mean μ and 

the response vector y. As for D, this is the total value of the discrepancy of the GLM. 

The deviance statistic for an observation also reflects its contribution to the overall 

goodness of fit of the model. There are two useful statistics for evaluating the goodness 

of fit of the GLM: the scaled deviance and the Pearson chi-squared. For a fixed value of 

the dispersion parameter, φ, the scaled deviance is defined to be twice the difference 

between the maximum achievable log-likelihood and the log-likelihood at the maximum 

likelihood estimates of the regression parameters. The scaled version of these two 

statistics can be used as an approximate index of the goodness of fit of the model. Note, 

however, that when the value of the dispersion parameter is unknown its estimation can 

be used as a good approximation to both the scaled deviance and the Pearson chi-squared 

statistic.  

 

3. Generalized estimating equations: generalized linear models and maximum 

quasi-likelihood estimation 

 

It has already been pointed out that the correlation among repeated measures of the same 

subject is the main challenge faced when analyzing longitudinal data. In addition, many 

of the data encountered in social and behavioral research take the form of binary, 

frequency, or categorical responses, and hence it is necessary to use models designed for 

the analysis of discrete data. Note that it cannot be assumed that this kind of data fulfill 

the assumption of multivariate normality. 
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 Liang and Zeger (1986) and Zeger and Liang (1986) proposed a unified method 

for analyzing longitudinal data that incorporates the most important aspects of 

multivariate analysis. Their approach is based on generalized estimating equations 

(GEEs) and examines the dependence between the response variable and a set of 

explanatory covariates. The GEE method, which constitutes an integration of the GLM 

and quasi-likelihood (QL) methods, can be used with both normally and non-normally 

distributed response variables (Davis, 1991; Park, Shin, & Park, 1998; Shoukri & Edge, 

1996). When the assumption of multivariate normality is fulfilled the GEE method is 

comparable to the maximum likelihood (ML) procedure, although the ML criterion 

provides more efficient estimates (Schwartz & Stone, 1998). The GEE method only 

requires specification of the mean, the variance, and the working correlation matrix of 

the repeated measures vector for a given subject. By means of this procedure, one can 

obtain efficient and consistent estimates of the regression parameters, even when the 

correlation matrix is misspecified.  

 Depending on the aim of the analysis, and taking into account the correlation 

among the repeated measures of the same subject, Diggle, Liang, and Zeger (1994) and 

Zeger and Liang (1986, 1992) propose three approaches to the GEE method: the 

marginal model (population-average model), the random effects model (subject-specific 

model), and the transition model (Markov model or auto-correlation model).  

QL estimation is a regression procedure that, in contrast to the maximum 

likelihood criterion, requires few assumptions about the distribution of the dependent 

variable. It is therefore applicable to a wide variety of data. With longitudinal data it is 

assumed that the observations of different subjects are independent and that those from 

the same subject are correlated. When the data are normally distributed the dependence 
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between observations of subjects can be analyzed by means of multivariate techniques. 

If, however, the data follow other distributions, as in the case of binary longitudinal data, 

other approaches such as GEEs may be applied. In this approach the marginal 

distribution of observations is specified together with the working correlation matrix for 

observations of the same subject. As a result, the GEE method proposed by Liang and 

Zeger (1986) and Zeger and Liang (1986), which is based on the QL approach, provides 

consistent estimations of the parameters and their corresponding variances, under what 

can be considered as weak assumptions regarding the correlation among within-subject 

observations. Consequently, this kind of GEE method can be used to calculate the values 

of β. Although the GEE method developed by Liang and Zeger (1986) was initially 

applied to the analysis of covariance structure models, it can also be extended to linear 

mixed models (LMM). 

 

3.1. Marginal model 

 

The marginal model analyzes the relationship between the response variable and the 

covariates without taking into account the between-subject heterogeneity (Zeger, Liang, 

& Albert, 1988). This model is an extension of the GLM with correlated observations, 

and it estimates the parameters by means of the QL criterion (Liang & Zeger, 1986). The 

QL criterion, associated with the marginal model, enables the equations for parameter 

estimation to be derived. Given that, in this model, the coefficients have a population 

interpretation rather than an individual one, the model is also referred to by Zeger et al. 

(1988) as the population-average model. 
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By way of an example, let us suppose, following Howes and Matheson (1992), 

that we wish to study the development of competent play with peers, and that we will 

examine this from infancy through preschool, taking measurements every six months 

over a period of three years. If we are solely interested in studying the effect of age on 

children’s average social behaviors during play across the established age intervals, then 

our study is centered on average population values and their dependence on a series of 

covariates. We are not studying individual development, but rather the mean 

development of a sample of observed children. The marginal model, which is centered 

on the population average, estimates the effect of covariates on the marginal expectation 

of the response variable. According to this model the regression coefficients associated 

with the covariates must be specified separately to the correlation structure of the within-

subject observations. The main interest here is estimating the fixed parameters, since the 

parameters that define the covariance matrix are considered as nuisance parameters and 

are required to calculate the accuracy of the fixed parameter estimates (Burton, Gurrin, 

& Sly, 1998; Omar, Wright, Turner, & Thompson, 1999). 

The marginal model for longitudinal data consists of:  

1) The mean or marginal expectation of the response at time t for subject i and is 

given by 

 

   E(yit) =  μit             (11) 

 

where the response yit is a random variable at time t for subject i. The outcome yit  

depends on a set of explanatory variables, Xit, by means of the function 

 



 
 
 
 
 

13 

   g(µit) = Xitβ                 (12) 

 

According to the GLM approach the mean is related to a set of covariates through 

a known link function, g, for example, the logit function for binary responses or the log 

function for amounts or frequencies. In Equation 12, β is a vector p x 1 of unknown 

parameters and it represents the way in which the average population response is a 

function of the covariates. According to Zeger et al. (1988) the advantage of these 

models is that, for a given covariate, the average population response can be estimated 

without assumptions regarding the heterogeneity among individual parameters. 

2) The marginal variance is a function of the marginal mean, in other words, the 

variance of yit is a function of μit, as follows: 

 

  var(yit) = g(μit)⋅φ  = σit
2                        (13)        

 

where g is a function of the known variance. It is assumed that the marginal distribution 

of yit follows a GLM, such that g(µit) is completely determined by the assumption of the 

exponential family. Similarly, φ is a scale or dispersion parameter that has to be 

estimated. For binomial and Poisson distributions this scale parameter is fixed at 1.  

3) In order to take into account the within-subject dependence in yit (i.e., the 

correlations among observations taken from a given subject) it is necessary to specify the 

working correlation matrix, Ri(α). This matrix depends on an unknown parameter 

vector, α, which is the same for all subjects. In accordance with the QL criterion the 

working correlation matrix is defined by 
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  Vi = Ai
1/2 Ri(α)Ai

1/2 /φ                                             (14)                  

 

where Ai is a diagonal matrix ni x ni, for each subject i, with g(µ it) as t element of the 

diagonal (A i = diag[g(μi1, μi2,..., μit )]), and Ri(α) is the working correlation matrix ni x 

ni for each subject i, with parameter α. Since Ri(α) is not expected to be correctly 

specified the GEE method provides consistent estimates even when R i(α) is not the 

correct correlation matrix. With independent observation, Vi = Ai·φ and R0 = I. Given 

that a correlation is also expected among the repeated measures of a given subject, Ri(α) 

is defined as a function of a vector s x 1 of unknown parameters α. Finally, φ is an 

overdispersion parameter whose square root is called the scale parameter and which is 

estimated from the data.  

The GEE method for estimating the parameters β, as proposed by Liang and 

Zeger (1986) and Zeger and Liang (1986), extends the concept of QL to correlated 

observations and has the following function:  

 

  U(β) = ∑=

n

i iii1
-1' SVD  = 0                                                (15)               

 

where D i is the derivative matrix with ∂ μi/∂ β elements, Vi is the covariance matrix as 

specified in Equation 14, and Si  = Yi – μi. Given that the repeated measures of a given 

subject are expected to be correlated, Ri(α) is a working correlation matrix that depends 

on the vector of unknown parameters α. 

 The GEE of β is given by 
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 U(β) =  0))((
,

=−
∂
∂

iii
i µα
β
µ YV 1−Σ           (16) 

 

where Vi(α) = Ai
½Ri(α)A½. The marginal regression coefficients, β, are interpreted as 

coefficients of cross-sectional regression, such that marginal models with correlated data 

are naturally analogous to the GLM with independent data (Zeger et al., 1988). 

   

3.2. Random effects model 

 

If a researcher is more interested in the individual response than the population value it is 

preferable to use the random effects (or subject-specific) model. This model assumes that 

the subject-specific effects follow a parametric distribution in the population. As in the 

case of linear random effects models it is assumed that the response is a linear function 

of the explanatory variables, with coefficients that vary from one subject to another. This 

variability reflects the heterogeneity attributable to unmeasured factors. The study by 

Howes and Matheson (1992) is a good example of the classical linear regression of 

children’s development, where the coefficients represent the measures of initial social 

play and the rate of peer play development. Obviously, children exhibit different weights 

social behaviors and they develop at different rates, due, for example, to environmental 

factors that are difficult to quantify. A random effects model is a reasonable description 

when the set of coefficients for a population of children can be considered as a sample 

from a distribution. Given the current coefficients for a child the linear random effects 

model also assumes that the repeated observations of this individual are independent. 

The correlation among repeated observations arises because it is not possible to observe 
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the underlying growth curve, that is, the true regression coefficients, since we only have 

imperfect measures of each child’s social behavior during play. 

 The generalized linear mixed model (GLMM), one of whose applications is the 

subject-specific model, assumes that the regression coefficients vary among subjects 

according to a normal distribution. The use of GLMMs is required when the data are 

binomial and non-Gaussian (Hand & Crowder, 1996). The GLMM is specified as 

follows: 

1) Let yit be a random outcome variable, Xij a vector p x 1 of fixed covariates at 

time t for subject i, Zit a vector q x 1 of covariates associated with the random effects γi, 

and μit = E(yit|γ i). The GLMM model then assumes that the responses of subject i satisfy 

 

  μit  =  f(yit|γi) = X’itβ + Z’itγ i         

(17.1)                         

 

   var(yit|γ i) = g(μit)·φ              (17.2)  

 

where β and γi are vectors of fixed and random effects parameters, respectively, as in the 

LMM. It is assumed that the random effects are independent and come from an F 

distribution. 

2) The marginal moments, μi and V i, are calculated from the conditional 

moments and the F distribution of the random effects. Thus, given the conditional 

moments (equations 17.1 and 17.2) and the F distribution for the random effects the 

expected marginal value, μit, is 
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   μit = E(yit) = E[E(yit|γi)]         (18.1)   

 

and the marginal covariance matrix is given by 

 

 Vi = cov[E(Yi|γi] + E[cov(Yi|γi)]        (18.2) 

 

3) When μi and Vi have been calculated for each subject, β is estimated by means 

of Equation 17.1. The idea underlying the random effects model is that there is natural 

heterogeneity among individuals as regards their regression coefficients, and that this 

heterogeneity can be represented by a probability distribution.  

 The basic difference between the subject-specific model and the population-

average model concerns the objectives. The former is mainly interested in subjects, 

whereas the latter focuses on the mean response. In addition, the subject-specific model 

explains the covariance among repeated measures, whereas the population-average 

model only describes this covariance. Although subject-specific models are preferable 

when one wishes to determine individual responses and profiles, their use is limited due 

to the minimal information available about each subject. As Zeger et al. (1988) point out, 

longitudinal studies often involve only a few observations per subject, and this makes it 

difficult to estimate the regression coefficients separately. 

 

3.3. Transition model 

 

Transition models analyze the effect of covariates on the transitional patterns of 

continuous, binary, and categorical responses across time. These are conditional models, 
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since the explanatory variables and the previous responses act as predictors of the current 

response. In transition models the correlation among the observed data is explained by 

the action of past values on the current outcome. Hence, the main characteristic of 

transition models is that they include past observed values as additional predictor 

variables. Note that the extent to which yit depends on Xit remains a basic objective. 

However, given that the observations are serial and probably dependent, Zeger and 

Qaqish (1988) propose Markov models in which the actual expected response depends 

not only on the associated covariates but also on past responses.  

These models also use a QL approach with Gaussian and non-Gaussian time 

series data. In general terms the transition model can be defined by means of the 

following expression: 

 

   yit = X’itβ +  εit                     (19) 

 

where 

 

  εit = αεit-1 + uit             (20) 

 

and where α = exp(-φ) and the uit are mutually independent random variables that follow 

a normal distribution of mean 0 and variance σu
2= σ2(1 - α2). By substituting Equation 

20 into Equation 19, we obtain the conditional distribution of yit, given the preceding 

response, yit-1, as follows: 

 

 yit|yit-1 ∼ N{X’itβ + α(yit-1 – X’it-1β), σu
2}                                     (21) 
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Equation 21 considers both the explanatory variables and the previous responses as 

explicit predictors of the current outcome. Using this expression the transition model can 

easily be defined. Thus, with metric data a linear regression model with autoregressive 

errors takes the form 

 

 yit = X’itβ+∑ =
+

q

r itr-tr-itr uyα
1 i )-( βX'                           (22)  

 

 According to Equation 22 the current observation yit is a linear function of X it or 

of the explanatory covariates and the prior observations, r = 1,..., q, and the uit are the 

mutually independent random variables. From here the transition model can be 

reformulated by means of the binary or categorical responses across time. For binary 

data the formula is reduced to  

  

 logit pr(yit = 1| yit-1, yit-2,..., yit-q ) = X’it-q  β + Σαyit-q                  

(23)   

                                                                                                                                         

where the Xit are time-dependent subject-specific variables and q is the order of Markov 

dependence. The regression coefficients can be interpreted, in this case, as the effect of 

the variables on the probability of a binary event adjusting for the past history of the 

process. 

 

4. Analysis of data from an empirical example using SAS  
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In this section we present a more extensive analysis of data in order to illustrate the 

analysis of GEEs using SAS version 9.4. Specifically, we examine a set of data taken 

from the Millennium Cohort Study (MCS). This study followed the lives of around 

19,000 children in the UK since 2000-2001. The present study used the first four sweeps 

of the MCS, the first being when the children were around 9 months old, the second 

when they were around 3 years old, the third when they were 5 years old, and the fourth 

when they were around 7 years old. More information about the MCS data sets can be 

found in Hansen (2012).  

 Although the MCS is a longitudinal study with a large sample, the aim of the 

illustrative study being considered here requires the researcher to use subsamples, which 

might be small. Note that some of the values of the variables of interest may have been 

changed in order to make the example clearer and easier to follow for the reader.  

 The aim of the illustrative study was to examine alcohol consumption in two 

groups of mothers. More specifically, a group of 60 mothers who were diagnosed with 

depression at the first measurement point, when their child was 9 months old, was 

compared with a control group of 96 mothers. The variable frequency of current alcohol 

consumption was regrouped into five main categories: (1) five times or more per week; 

(2) three or four times per week; (3) one or two times per week; (4) one or two times per 

month; and (5) never. 

 The aim of the study was to examine whether there were systematic between-

individual differences in within-individual change in the mothers’ alcohol consumption 

over time as a consequence of depression. 

The data file was organized according to the longitudinal format in SAS, and for 

the transition models a new variable was generated with the lag data of each subject 
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(Table 1). 

The syntax for organizing the data, shown in Table 1, was developed following 

Singer and Willett (2003). In the original format, each subject has a row of data 

containing the values of the outcome variable on each of four occasions (alcohol9m, 

alcohol3y, alcohol5y, and alcohol7y). Each record also contains an identifying variable, 

id, and the variable depression. In the longitudinal format, the data set contains two 

variables identical to those in the original format (id and depression) and two new 

variables (time and alcohol). Time identifies the measurement occasion to which the 

record refers, and alcohol records the individual’s score at that measurement occasion. 

The longitudinal data set for this example has a total of 624 records, four for each of the 

156 mothers. 

 

[INSERT TABLE 1 ABOUT HERE] 

 

4.1.  Model specification and analysis 

 

In this example we would expect the alcohol consumption values at the successive time 

points to be correlated, and also that they would be affected by a set of covariates such as 

time and depression. 

 Let us begin by applying the marginal model (Model 1) to the data. The syntax 

corresponding to the GEEs is shown in Table 2. PROC GENMOD in SAS is used as it 

enables this kind of model to be fitted. 

 With respect to the distribution followed by these data, it should be taken into 

account that they refer to a categorical variable, and it is therefore possible to fit a 
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multinomial distribution with cumulative logit link. The cumulative logit model is the 

most popular model for ordered categorical data (for details on the cumulative logit 

model, see McCullagh & Nelder, 1989). 

 Table 2 displays the parameter estimates obtained with the GEE model. The 

intercept terms correspond to the four cumulative logits defined on the categories of 

alcohol consumption. Thus, Intercept1 is the intercept for the first cumulative logit, 









− 1

1

1 p
p

log , Intercept2 is the intercept for the second cumulative logit, 







+−

+
)pp(

pp
log

21

21

1
, 

and so forth. Note the strong effect of time (p=0.022). By contrast, the variable 

depression shows no significant differences (p=0.913). Neither was the time*depression 

interaction significant (p=0.067).  

 

[INSERT TABLE 2 ABOUT HERE] 

 

 The second model analyzed, the random effects model, can be resolved 

analytically by means of the LMM with PROC MIXED or the GLMM with PROC 

GLIMMIX, depending on whether the distribution is normal or another member of the 

exponential family. In this example, following Stroup (2012), PROC GLIMMIX was 

used as the data are not normally distributed. Random effect models for longitudinal data 

are regression models in which the regression coefficients are allowed to vary across 

subjects. Therefore, it is necessary to specify the random variables and the fixed 

variables, depending on whether they come from a random sample or are held constant 

across different subjects. For example, in the analysis of the effect of depression on 

alcohol consumption among our sample of 156 subjects, depression is taken as a fixed 
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effect, and we are interested in comparing the mean alcohol consumption across the two 

levels of depression. The unique subject identification (id) for each of the 156 subjects 

would be treated as a random factor. Given that the aim of the study was to analyze the 

variables time and depression, these variables must be considered as fixed effects. 

The corresponding syntax is shown in Table 3. As regards the random effects, the 

random statement in Model 2 enables us to estimate the between-subjects variance or the 

degree to which subjects vary around the intercept and the within-subject residual 

variance. 

The estimates of the fixed for Model 2 are shown in Table 3. Note that the 

parameter estimates and their significance are similar to those of Model 1.  

 

[INSERT TABLE 3 ABOUT HERE] 

 

 To conclude, let us analyze the transition model, which represents the true nature 

of longitudinal, or change over time. To this end, at the level of the data structure, it is 

helpful to create a new variable based on the lag of the values of each subject, such that 

the influence of each observation on the next can be ascertained (Table 1). Based on the 

transition structure, in Table 4 we specify an initial model with PROC GENMOD (Model 

3) and another model with PROC GLIMMIX (Model 4). In all these models the model 

statement includes the new variable that takes into account the effect of the preceding 

observation on the current one (lag_1). 

 Note that when the transition models include the lag variable (lag_1) this variable 

is statistically significant under both approaches, PROC GENMOD (Model 3) and PROC 

MIXED (Model 4). The variable “depression” and its interaction with the lag variable 
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(lag_1) are also significant in the transition models analyzed. As expected, the increase 

in alcohol consumption is greater among mothers diagnosed with depression than in the 

control group, when taking into account the immediately preceding level of 

consumption. 

 

[INSERT TABLE 4 ABOUT HERE] 

 

 In the above example, different SAS procedures have been applied depending on 

the kind of model. Thus, PROC GENMOD is suitable with the marginal model, while 

with random effects or transition models one may use PROC GENMOD or PROC 

GLIMMIX. 

 

5. Discussion 

 

One alternative to classical techniques for modelling longitudinal data is the LMM, 

which assumes a multivariate normal distribution of observations. One of the concepts 

on which this model is based is that the mean profile of the observations of a given 

subject is formed by an average population term and a subject-specific term. This is 

reinforced by the form of the covariance matrix, which comprises components of within-

subject and between-subject variance. 

 When the data do not follow a Gaussian distribution it is possible to apply the 

estimation method based on GEEs. The GEE method is a regression procedure within the 

context of the GLM and it applies the QL criterion to estimate the regression parameters. 

The GEE method was initially described in relation to two non-dynamic models, 
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depending on whether the focus of interest was on the average population parameters 

(marginal model) or subject-specific parameters (random effects model). Thus, the main 

distinction between these two models concerns whether the regression coefficients 

describe an average change in response with respect to the covariates or an individual 

change. In addition, the marginal model describes the covariance among repeated 

measures of a given subject, whereas the random effects model focuses on the source of 

this covariance. According to Zeger and Liang (1992) there are three advantages to the 

GEE approach. Firstly, the regression coefficients are almost as efficient as ML 

estimators. Secondly, even if the covariance structure for correlated repeated measures is 

misspecified, the estimates for the regression coefficients remain consistent as long as 

the sample size is large enough. And thirdly, the statistical inference of the regression 

coefficients is not influenced by the covariance matrix, provided that one uses a robust 

estimate of the covariance matrix of the regression coefficient estimators, as suggested 

by Liang and Zeger (1986). A further point is that use of the GEE method means that we 

can apply the transition model, which is the most suitable in longitudinal studies. 

To conclude, note that the models examined (marginal, random effects, and 

transition) are extensions of the GLM and they can be applied to continuous or discrete 

longitudinal data. Marginal models are recommended in population studies, such as 

epidemiological research, where the difference in the mean response between groups is 

more important than the change in the response of a given subject. Random effects 

models are used when the individual response is of greater interest than the population 

response, as would be the case, for example, in growth curve studies. However, the 

effectiveness of random effects models is limited by the minimal information available 

per subject. Many longitudinal studies involve only a few observations of each subject, 
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and it is not possible to estimate the regression coefficients separately. A further point to 

note is that time series models with linear regression methods have been widely studied 

with Gaussian data, but very little attention has been paid to non-Gaussian data. Hence 

the importance of the QL approach for regression with time series data (Zeger & Liang, 

1992).  

In this paper we have described how the GEE method can be used to study the 

retroactive effects that are typical of time series or longitudinal data. This is especially 

relevant to those cases in which the interdependence of data is an important aspect to 

take into account. The GEE method is also suitable for studies involving categorical 

data, and in those where subjects’ responses are influenced by prior responses (Zeger & 

Liang, 1991). The three models described in this article have been analyzed empirically 

using procedures incorporated within SAS, although this does not mean that other 

software packages could not also be used. 
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Table 1. SAS syntax for transforming data 
Data structure Syntax 
  
Longitudinal data alcohol; 

input id depression alcohol9m alcohol3y alcohol5y alcohol7y; 
alcohol=alcohol9m; time=1; output; 
alcohol=alcohol3y; time=2; output; 
alcohol=alcohol5y; time=3; output; 
alcohol=alcohol7y; time=4; output; 
drop alcohol9m alcohol3y alcohol5y alcohol7y; 

 
Lag data for each 
subject 
(transition 
model) 
 

 
data alcohol; 
set alcohol; 
lag_1=lag(alcohol); 
if time=1 then lag_1=.; 
run; 

Note. data is the data set for the analysis; input statement defines the variables to be 
read in each line of data; alcohol=alcohol9m creates new variable called alcohol using 
the original variable of alcohol consumption among mothers when their child was 9 
months old (alcohol9m); time=1 creates new variable called time and sets the value for 
the first time measure as 1; output statement defines output to the new converted 
univariate dataset (the same commands apply to the next three command lines for 
different time measures: when the children were 3, 5, and 7 years old); drop statement 
specifies the names of the variables to omit from the output data set; set alcohol 
statement modifies an existing SAS data set; lag_1=lag(alcohol) creates the variable 
lag_1 and lag function returns the value of the previous observation; if time=1 then 
lag_1=. assign “.” to the first response of each subject. 
 



 

Table 2. Syntax and analysis of the marginal model (Model 1) 
proc genmod; 
class id; 
model alcohol = time depression time*depression  
            / dist=multinomial link=cumlogit; 
repeated subject=id /corr=ind; 
run; 
 

Analysis of GEE parameter estimates 
Parameter Estimate SE Z p 

Intercept1 -2.831 0.630 -4.49 <0.001 
Intercept2 -1.887 0.596 -3.16 0.002 
Intercept3 -0.670 0.587 -1.14 0.254 
Intercept4 0.084 0.582 0.14 0.885 
Time 0.370 0.161 2.29 0.022 
Depression -0.038 0.347 -0.11 0.913 
Time*Depression -0.166 0.091 -1.83 0.067 

 

Note. proc genmod calls the PROC GENMOD in SAS; class statement defines the 
classification variables or grouping variables; id is the subject identifier or subject 
variable; model statement specifies an equation in which the dependent variable is to 
the left of the equals sign and the effects or predictor variables are to the right (by 
default, the intercept is included on the right); the multinomial distribution is fitted by 
dist=multinomial and link=cumlogit; repeated command indicates there are repeated 
data for each subject; the option subject=id refers to the individual subjects specified in 
the input data set by the variable id (this variable must be listed in the class statement); 
corr=ind indicates that the working correlation type is independent (note that corr=ind 
is the only correlation structure allowed whenever dist=multinomial is specified). 

 
 
 



 

Table 3. Syntax and analysis of random effects model (model 2) 
proc glimmix; 
class id; 
model alcohol = time depression time*depression 
                           / dist=multinomial link=cumlogit solution; 
random intercept / type =un subject=id; 
run; 
 

Estimates of the fixed effects 
Parameter Estimate SE t p 

Intercept1 -5.004 1.053 -4.75 <0.001 
Intercept2 -3.294 1.035 -3.18 0.002 
Intercept3 -0.989 1.024 -0.97 0.336 
Intercept4 0.595 1.023 0.58 0.562 
Time 0.622 0.253 2.46 0.014 
Depression -0.162 0.612 -0.26 0.792 
Time*Depression -0.283 0.153 -1.85 0.065 

 

Note. proc glimmix calls the PROC GLIMMIX in SAS; class specifies the categorical 
variable id; model specifies the fixed effects; the multinomial distribution is fitted by 
dist=multinomial and link=cumlogit; the option solution requests the parameter 
estimates and their corresponding standard errors; random specifies the random effects; 
random intercept/subject=id indicates that each subject has its own intercept; type=un 
next to the random command specifies the structure of the between-individual 
covariance matrix as non-structured. 
 

 



 

Table 4. Syntax and analysis of transition models 
Models Syntax 
 
    Model 3 

 
proc genmod; 
class id; 
model alcohol = time lag_1 depression time*depression 
                           lag_1*depression / dist = multinomial link = cumlogit; 
repeated subject = id /corr = ind 
run; 

 
Model 4 

 
proc glimmix; 
class id; 
model alcohol = time lag_1 depression time*depression 
                           lag_1*depression / dist = multinomial link = cumlogit 
                           solution; 
random intercept / type=un subject=id; 
run; 
 
 

Model 3 Analysis of GEE parameter estimates 
Parameter Estimate SE Z p 

Intercept1 -1.505 1.471 -1.02 0.306 
Intercept2 0.022 1.503 0.01 0.988 
Intercept3 2.140 1.525 1.40 0.160 
Intercept4 3.430 1.540 2.23 0.026 
Time 0.614 0.356 1.73 0.084 
Lag_1 -0.973 0.298 -3.26 0.001 
Depression 1.823 0.902 2.02 0.043 
Time*Depression -0.280 0.214 -1.30 0.192 
Lag_1*Depression -0.378 0.167 -2.26 0.024 

 

 
Model 4 

 
Estimates of the fixed effects 

Parameter Estimate SE t p 
Intercept1 -1.505 1.491 -1.01 0.314 
Intercept2 0.022 1.489 0.02 0.988 
Intercept3 2.140 1.498 1.43 0.155 
Intercept4 3.431 1.503 2.28 0.024 
Time 0.614 0.381 1.61 0.108 
Lag_1 -0.973 0.257 -3.78 <0.001 
Depression 1.823 0.908 2.01 0.045 
Time*Depression -0.280 0.231 -1.21 0.227 
Lag_1*Depression -0.378 0.155 -2.46 0.014 

 
 

Note. The commands of PROC GENMOD are explained in Table 2, while those of 
PROC GLIMMIX are described in Table 4. The variable lag_1 (lag data) is added to the 
model statement. 
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