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ABSTRACT: We report on how an inexpensive and very selective gas sensor can be implemented, simply combining color-

imetric indicators casted on top of Scotch tape, with a commercial microchip adapted here to measure optical reflectance. 

The system can be easily reproduced (leading to quantitatively consistent results), refreshed and reconfigured to sense dif-

ferent target gases, just replacing the colorimetric. 

 

 

Colorimetric methods put at our disposal a wide arsenal of compounds and reaction mechanisms to address specific gase-

ous molecules. A colorimetric indicator is a substance that develops light absorption at specific wavelengths in the presence 

of the target substances. These techniques are widely spread in analytical chemistry and offer unbeatable levels of selectivity 

and specificity towards the target species[1–6], if compared to other popular transduction methods like solid state conduc-

tometric sensors or electrochemical devices[7–13]. However, colorimetry often raises concerns about the long-term stability 

of the indicator reagents and thus about the robustness of this methodology outside of a laboratory environment.  

Regarding their readout, the changes developed in the light absorption spectra of the indicators can be thoroughly inves-

tigated by means of spectrophotometers. These systems are, however, bulky and practicable only for research purposes or 

high-end applications. To carry out measurements in the field, manual readout is also very common. In this case, an operator 

compares with the naked eye the color observed in the indicator with a set of references colors in a chart. This is the most 

simple and cheap approach, but bothersome and prone to human error. Alternatively, camera-based methods offer the 

chance of monitoring color changes automatically with the information available on a picture[14,15]. The challenge is avoid-

ing external influences on the color appearance due to, e.g. ambient light or camera setup. The approach is convenient for 

sporadic measurements but leads to relatively costly and bulky implementations if continuous monitoring is required. In 

order to achieve a continuous readout in compact form factors, many research efforts have and are being devoted to 



 

developing miniaturized systems that measure changes in absorbance/reflectance/transmittance of color indicators at spe-

cific spectral ranges[16,17]. Even though many different configurations have been proposed, all of them are based on con-

fronting a narrow-spectrum light source (e.g. LEDs or broader emitters with filters) with a photodetector. To maximize their 

sensitivity to small color changes, and thus to small gas concentrations, different strategies to enlarge the optical path from 

the emitter to the detector through the indicator are being used[18–20]. Anyhow, the integration of the different compo-

nents, especially concerning their optical alignment, is still challenging. Also, the efforts in miniaturization complicate re-

freshing the indicator substance if degradation occurs. In summary, the continuous readout of colorimetric indicators still 

raises a set of inconveniences. 

In this work, we propose a simple approach to colorimetric detection of gaseous substances that combines the following 

advantages: 1) it is based on easily accessible, off the shelf commercial components, 2) it is compatible with a wide range of 

colorimetric indicators, operating at different wavelengths, 3) it is easily resettable/refreshable and 4) offers an excellent 

repeatability among devices. 

We base our readout approach on a commercial component, the MAX30105, a “High-Sensitivity Particle-Sensing Module” 

from MAXIM. This integrated microsystem encloses a set of 3 internal LEDs - operating in the green (537  35 nm), the red 

(660  20 nm), and the infrared (880  30 nm) ranges -, a broad band photodiode (from 640 to 980 nm, >30% Quantum 

Efficiency), and the corresponding control, driving, acquisition and communication modules. The device itself was conceived 

to address dissimilar applications like smoke particle detection in air and blood pulse oximetry monitoring; and operates 

sequentially measuring the amount of light reflected at different spectral ranges (i.e. green, red, infrared). This device has a 

footprint of 5.6x3.3 mm2 and can be found in the market at a retail price of less than 4$ per unit in bulk amounts. Figure 1 

shows images of the device, the proposed configuration and a cross section of its internal parts. 

Sensitivity to gases was incorporated by means of different colorimetric indicators. For illustration purposes we choose 

two different pH-based indicators, Bromophenol Blue and m-Cresol Purple, targeting ammonia (NH3) and carbon dioxide 

(CO2), respectively. These indicators have become a standard in the industry of colorimetric sensors as in the case of the so-

called Dräger gas tubes. The indicator (5 g) for NH3 consisted of 0.075 g of Ethylcelullose and 44 g of Bromophenol Blue in 

Ethanol. The indicator (5 g) for CO2 consisted of 0.356 mL of 1 M Tetrabutylammonium hydroxide (TBAH) in Methanol and 

0.075 g of Ethylcelullose and 44 mg of m–Cresol Purple in ethanol. In dry synthetic air (SA), right after the synthesis, the NH3-

sensitive indicator was bright-yellow and the CO2-sensitive one was dark blue. In turn, in the presence of NH3 and CO2 their 

 
Figure 1. (a) and (b) Optical images of the MAX30105 component covered with a colorimetric tape. (c) A detailed image of the sensor chip 
with the red, green and IR LEDs and the photodetector. (d) Scheme of the proposed configuration: the photodetector will measure  the 
reflected light and  the transmitted light through the colorimetric tape (i.e. absorbance of the color indicator). 



 

respective color shades turned to blue and yellow, in a reversible manner when exposed back to SA. Figure 2 shows the 

reflectance spectra of both indicators in SA and in the presence of their respective target gases. 

In order to integrate the indicators on the readout chip, we spin coated each indicator on conventional Scotch Magic 

tape (rotation at 500 rpm for 10 seconds followed by 2000 rpm for 20 seconds) and left them to air dry. To facilitate the 

handling during the spinning process, the tape was adhered on top of a glass coverslip, from where it could be easily removed 

after deposition. We obtained uniform indicator films spread on top of the adhesive tape. Then, the indicator-carrying pieces 

of tape (from hereafter “colorimetric tape”) were transferred to the readout MAX30105 chip by attaching the tape directly 

on the chip glass surface (Figure 1). Finally, the colorimetric tape was cut to shape following the edges of the chip with a 

blade. This process was repeated to produce newly refreshed devices with excellent reproducibility. Also, the methodology 

made it possible changing the functionality of the sensor, just replacing the colorimetric tape (as a replaceable sticker) and 

reusing the readout chip. 

To investigate the response to gases of the here-described sensors, we placed them into a gas tight dark chamber coupled 

to a gas mixing system feeding a flow of 200 ml/min of different gas blends. The sensors were read externally with an ESP8266 

microcontroller through a I2C bus fed through the chamber walls. The internal logic of the MAX30105 allows for many differ-

ent settings, like different integration times, acquisition range and number of samples averaged in the photodiode; as well 

as different light intensities emitted by the LEDs. In our experiments, the optimum conditions were found to be an integration 

time of 411 S, a least significant bit of 31.25 pA and 16 samples averaged per measurement, without much impact of these 

parameters on the here-reported results. The role of the LED intensity will be discussed in detail later. 

Figure 3 shows a summary of the responses to NH3 and CO2 obtained with the here-proposed sensor system. Clear re-

sponses in the red and in the green channels were observed, but none in the infrared as expected from the matching between 

the emission spectrum of the LEDs and the absorption bands of the colorimetric indicator (see Figure 2). For simplicity, and 

since the response signal in the red and green channels were similar, we will use the only the green LED data in the forth-

coming discussion.  

 
Figure 2. UV-vis transmission spectra of both NH3 and CO2 colorimetric indicators together with the emission spectra of the LEDs (Green 
line, Red line and Infrared line). Yellow and blue lines indicate the acid and basic state of the color indicator, respectively. A set of images 
of the colorimetric tapes at different concentrations of CO2 and NH3 are also depicted. 



 

On the one hand, NH3 concentrations ranging from 2.5 ppm to 25 ppm were measured, with responses up to 10% 1. On 

the other hand, the CO2 concentrations investigated ranged from 2.5% to 50%, with responses up to 12%. The response and 

recovery times were around 20 minutes in all cases. It may perhaps be observed without straying too far afield from our 

primary focus that the response can be improved by adjusting the formulation of the colorimetric inks. For example, just by 

diluting the original formulation response times in the sub-minute range can be achieved (see S.I.) 

To investigate the selectivity of the here-proposed sensors, both devices were exposed to mixtures containing NH3 and 

CO2 simultaneously (see Figure 3a). Clearly, each indicator responded exclusively to its target gas, without being affected by 

the other one (no cross-interference). Similar interference experiments were carried out with other gases (ethanol, and CH4) 

leading to identical conclusions (see Figure 3b).  

Concerning the power consumption of the MAX30105 system, it is mostly determined by the power needed to lit on the 

LEDs: while the control, driving and communication electronics consume less than 1 mW during the acquisition, the electrical 

power dissipated at the LEDs can be varied widely - from 0.65 mW to 165 mW (green LED) - depending on the light emission 

set point. Evidently, higher light intensities provide larger absolute signals, while the absolute noise level remains approxi-

mately constant. Accordingly, the relative noise level is higher at lower light intensities (see Figure 4). We have also observed 

that the light intensity does not affect significantly the response to gases, which, according to our definition, it is a relative 

change of the signal. Therefore, light intensity only determines the gas detection limit; this is the point at which the response 

                                                 

 

1 The response was defined as the variation of the signal in presence of the target gas relative to the baseline signal: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (%) = 100 · (
𝑆𝑔𝑎𝑠−𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
). 

 
Figure 3. Dynamic response of the NH3 (blue line) and CO2 (red line) colorimetric sensors under different concentrations and cross-inter-
ference experiments (a) between them (b) and with methane (CH4) and ethanol (C2H6O). Lower panels show the response values and times 
for both sensors (circles and minutes) together with the responses obtained in the cross-interference experiments (horizontal lines). Data 
acquired with the green LED operating at 41 mW.   

º  
Figure 4. The theoretical detection limits for the NH3 and CO2 colorimetric tapes (left axis) and relative noise levels (right axis) at different 
LED power settings.  



 

is comparable to the relative noise level. Figure 5 shows the detection limits measured at different LED powers (i.e. light 

intensities). Clearly, the detection limit can be lowered increasing the power consumption. As a matter of fact, and without 

any further optimization, the proposed setup can achieve detection limits in the range of 1 ppb for NH3 and 200 ppm for CO2 

operating the LEDs at the maximum power (165 mW). If a minimum power consumption were required (1 mW for the elec-

tronics plus 0.65 mW for the LED), detection limits would raise to 1 ppm for NH3 and 1% for CO2. 

It is worth insisting on the fact that the gas sensor behavior of our devices is mostly determined by the colorimetric indi-

cator. To illustrate this, we modified the formulation of the CO2 indicator to measure much lower concentrations, which are 

of interest in environmental applications (up to 500 ppm). To that end, the pH of the fresh indicator was shifted towards the 

inflection point of the titration curve[21] by modifying the amount of TBAH (0.285 mL in 5 g of indicator) of the original 

formula. Figure 5 shows the response to CO2 of two of these new colorimetric tapes applied on top of two different 

MAX30105 chips. Now, this new gas sensor operates in the hundreds of ppm range, with similar responses as before. 

This last experiment also served to prove the repeatability of the approach. The two tracks shown in Figure 5 were nearly 

identical and corresponded to two different pieces of colorimetric tape on two different MAX30105 devices. Similar repro-

ducible results were obtained routinely following our fabrication procedure, provided that colorimetric tapes produced in 

the same deposition batch were used. Further optimization could be achieved by optimizing the thickness of the indicator 

layer, playing around with the other on-chip settings, and housing the device in an enclosure to provide a stable optical 

environment. It is worth noting that the signals recorded display a mostly monotonous baseline drift, which is quite common 

in pH-based colorimetric indicators. In contrast, no-drift was observed in long term measurements using only a piece of non-

impregnated tape as a test sample. This demonstrates that neither the tape itself or the readout device are accountable for 

the drifts observed. In any case, drift correction is widespread issue in chemical sensors that can be addressed using manifold 

signal processing techniques [22] (see S.I.).  

In conclusion, we have presented a method to implement a highly specific gas sensor with an off the shelf component, the 

MAX30105 optical sensor, and conventional colorimetric indicator recipes. The sensor has a cost of less than 4$ and can be 

easily replicated, with excellent reproducibility. The device operates at different wavelengths and with moderate power re-

quirements (starting from a few mW). The approach has also the advantage of being easily resettable/refreshable, as the gas 

sensitive color indicator layer can be easily removed and replaced by a new one. This also allows for addressing other target 

 
Figure 5. Dynamic responses towards CO2 in the range of environmental applications for two identical tapes (top). Summary of averaged 
responses and rise time of each concentration. In both cases, the green LED data was considered. 
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gases, as simply as just replacing the indicator, and reusing the readout chip. Therefore, the proposed principle offers a good 

trade of between cost, simplicity, convenience, and good gas sensing performance; circumventing some of the limitations of 

colorimetric indicators in long term operation. 
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Optimization of the colorimetric ink: Case of CO2 

The optimization of the colorimetric ink is fundamental to achieve the necessary characteristics 

to improve the performance of the sensors (response time, detection range, etc.). 

Detection Range. 

It’s been already proof in the main manuscript that the detection range can be tuned in order 

to detect different concentration ranges of the targeted gas (CO2). By controlling the pH of the 

fresh indicator, it is possible to shift the inflection point of the titration curve to be more 

sensitive in the hundreds of ppm region (environmental applications) whereas the original ink 

was formulated to work in the region of interest of a breath sensor (10 – 100 % of CO2). 

Response Time. 

Response time is another magnitude that is critical in many applications and highly dependent 

on the formulation of the inks. To prove that our inks can be also tuned to be operative in a wide 

range of response times, the original ink was diluted with methanol. Figure S1.a shows the 

normalized signal of the green LED for a concentration of 20% of CO2 for the different dilutions 

levels. From the shape of the signal, it is clear that the response time was decreasing with the 

dilution level, from several minutes (13 minutes) down to barely 30 seconds (sub-minute range). 

 



 

Baseline Correction. 

The signal drift can be easily removed by applying simple signal processing techniques to the 

raw data. The following image shows how the baseline drift is completely removed (left) with a 

derivative/integration filter (more explicitly, taking the numerical derivative of the sensor signal, 

followed by a sliding window average of 5000 samples to remove the derivative offset and 

integrating again to recover the original signal without drift). This signal processing can be 

carried out in real time. 

 

This is the simplest approach, since there exist much more complex algorithms like piece-wise 

orthogonal signal correction or adaptive filters to name a few that could improve further these 

results. 
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