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Abstract 
 

  

In this paper, we attempt to assess the potential importance of different 

types of traders (i.e., those with public and private information) in financial 

markets using a specification of the standardized duration. This approach 

allows us to test unobserved heterogeneity in a nonlinear version based on a 

self-exciting threshold autoregressive conditional duration model. We 

illustrate the relevance of this procedure for identifying the presence of 

private information in the final days of trading of Banco Popular, the first 

bank rescued by the European Single Resolution Board. 
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1. Introduction 

 

Market prices aggregate and convey information, reacting to it and revealing it (see, 

e.g., Radner, 1979, and Grossman, 1981). On this view, market prices disclose the 

dispersed information held by investors about the underlying fundamentals of the 

economy. Economic theory in particular suggests that the presence of private information 

has important implications for financial markets. For instance, institutional investors, 

particularly those trading in individual stocks, possess firm-specific information which is 

not available to the general public; therefore, they are regarded as better informed and 

more sophisticated traders than individual investors (Albuquerque et al., 2009). 

Financial market microstructure theories divide traders into uninformed (with no 

special informational advantages) and informed (with private information, see Glosten 

and Milgrom, 1985; Easley and O’Hara, 1987, among many others). For example, the 

presence of private information in financial markets has been documented not only in 

equity markets (see, e. g. Dev, 2013; and Levi and Zhang), but also in bond markets (see 

Brandt and Kavajecz, 2004; Green, 2004; Pasquariello and Vega, 2007; and Menkveld et 

al., 2008, among others) and foreign exchange markets (see, e. g., Lyons, 2001; and Evans 

and Lyons, 2008). 1 

In this paper we assess the presence of different categories of traders (i.e., those with 

public and those with private information), using financial trade duration models. Recent 

developments in the modelling of trade duration are able to model the behaviour of the 

different types of traders by introducing unobserved heterogeneity into duration models 

such as De Luca and Zuccolotto (2003), De Luca and Gallo (2004, 2009) and Gómez-

Déniz and Pérez-Rodríguez (2016, 2017). To this end, these authors have proposed 

mixture distributions to account for the process of trading, considering in the model either 

a finite or an infinite number of traders with different probability laws. 

More specifically, in this paper, we use a specification of the standardized duration 

which allows us to consider switching regimes in duration (so as to allow for fast and 

slow transacting periods or structural breaks in the trading process, because market 

conditions may have changed) but also to test unobserved heterogeneity (i.e., different 

probability laws for traders). In this regard, our model combines a nonlinear version based 

on a self-exciting threshold autoregressive conditional duration model (TACD) and a 

mixture of duration distributions. In our case, we propose a finite inverse Gaussian-TACD 

(FIGM-TACD) model, which assumes a finite mixture of an inverse Gaussian distribution 

with its reciprocal one (Gómez-Déniz and Pérez-Rodríguez, 2017), and two infinite 

mixtures also based on inverse Gaussian distributions (Gómez-Déniz and Pérez-

Rodríguez, 2016), given that these models allow us to consider non-monotonic hazard 

duration functions.2 We stress the relevance of this procedure for identifying different 

categories of traders (some of whom may possess public or private information) in the 

final trading days of Banco Popular, the first bank rescued by the European Single 

Resolution Board (SRB).3 

Banco Popular was the sixth largest banking group in Spain before the SRB placed it 

under resolution. It was bought by Banco Santander as part of a rescue package in June 

                                                 
1Aslan et al. (2011) investigate the relationship between firm characteristics as captured by accounting and market data 

and a firm's probability of private information-based trade as estimated from trade data. 

2 To our knowledge, Pérez-Rodríguez (2003) was the first paper to analyse the effect of financial trade durations on 

Spanish stocks. In particular, this author examined trading durations of Telefónica’s stock using tick data. 
3 Later, on 23 June 2017, although the ECB declared Banca Popolare di Vicenza and Veneto Banca as ‘failing or likely 

to fail’, the SRB decided that resolution action was not warranted for these banks. These banks were wound up under 

national proceedings launched by the Italian authorities. 
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2017. The decision was made after the European Central Bank (ECB) detected a stressed 

liquidity situation and considered that Banco Popular was “failing or likely to fail” on 

June 6 2017. The SRB and the Spanish National Resolution Authority decided on June 7 

2017 that the sale was in the public interest, since it protected all depositors of Banco 

Popular and avoided adverse effects on financial stability and the real economy. The 

perceived lack of transparency regarding the SRB’s treatment of Banco Popular has 

prompted a rash of litigation from both bondholders and shareholders. 

The paper is organized as follows. Section 2 briefly surveys the literature on 

autoregressive conditional duration (ACD) models. Section 3 presents the econometric 

methodology for modelling the unobserved heterogeneity with a finite mixture. Section 

4 reports the empirical results. Finally, Section 5 offers some concluding remarks. 

 

2. Financial duration models 

 

High-frequency financial transaction data provide researchers with unprecedented 

opportunities to study the evolution of financial asset prices at the transaction-by-

transaction frequency. The intraday trading process has been modelled using the ACD 

model (Engle and Russell, 1998) and its extensions such as the logarithmic ACD 

(Bauwens and Giot, 2000), threshold autoregressive processes (Zhang et al., 2001; 

TACD), the Markov switching ACD model (Hujer et al., 2002; Calvet and Fisher, 2008; 

Chen et al., 2013) or the Box-Cox ACD which encompasses most specifications in the 

literature (Fernandes and Grammig, 2006). Stochastic conditional duration models have 

also been proposed (Bauwens and Veredas, 2004), as has the stochastic volatility duration 

model (Ghysels et al., 2004; SVD), among others. 

These models have been estimated using different choices of duration distributions. 

The simplest distributional assumptions for conditional excess durations are the 

Exponential and Weibull distributions (Engle and Russell, 1998). Today, however, 

several choices of standardized financial duration distributions are available for 

estimating parameters of ACD models: for example, generalized Gamma (Lunde, 1999), 

Burr (Grammig and Maurer, 2000), or Birnbaum-Saunders (Bhatti, 2010), among others. 

Also, tests based on ACD parameters developed to test the innovation distribution of 

ACD specifications have been derived  by gauging the distance between the parametric 

density and hazard rate functions implied by the duration process and their nonparametric 

estimates (Fernandes and Grammig, 2005), the density forecast evaluation technique 

(Bauwens et al., 2004) or the use of spectral density when testing for the so-called ACD 

effects, and for evaluating the adequacy of ACD models (Duchesne and Pacurar, 2008). 

However, the above models do not account for the unobserved heterogeneity. 

Statistically, it is well known that duration analysis produces incorrect results if 

unobserved heterogeneity is ignored because it has serious consequences for parameter 

estimation (i.e., they may be quite sensitive to the presence of unobserved heterogeneity). 

In financial terms, following De Luca and Zuccolotto (2003), for example, unobserved 

heterogeneity can be caused by the differences across trading conditions (i.e., different 

degrees of information, as well as different attitudes toward risk, budget constraints, and 

so on), which are not readily captured by covariates (observed heterogeneity). The link 

between statistical and financial aspects in a set of distributional assumptions is based on 

financial market microstructure theories (which divide traders into informed and non-

informed). In fact, the assumption of an interaction between agents, informed traders who 

possess private information. and liquidity traders whose information set is publicly 

available (O’Hara, 1995; and Ghysels, 2000), suggests that financial durations may obey 
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different probability laws. Furthermore, there are many reasons for believing that arrival 

rates for informed and uninformed agents exhibit temporal dependence, with each having 

its own distinct pattern. In this regard, Dávila and Parlatore (2019) recently found that 

stocks with more volatile prices are likely to be less informative and that an increase in 

the precision of investors’ private signals about the fundamental increases price 

informativeness. 

In this context, the distribution of duration can be assumed to derive from a mixture 

of distributions. Authors like De Luca and Zuccolotto (2003), De Luca and Gallo (2004, 

2009) and Gómez-Déniz and Pérez-Rodríguez (2016, 2017) have proposed a mixture of 

distributions to characterize the trading process. This allows us to take into account the 

unobserved heterogeneity (different trading conditions, traders, etc.) in the context of 

ACD models. For example, in the De Luca and Zuccolotto (2003) and De Luca and Gallo 

(2004, 2009) models, the simplest formulation is the mixture of exponential distributions, 

which can be a finite mixture (if traders are assumed to be divided into a finite number of 

groups) or an infinite mixture (when each trader is considered to have their own 

behaviour). More recently, Gómez-Déniz and Pérez-Rodríguez (2016, 2017) proposed 

finite and infinite mixtures of inverse Gaussian distributions, which accommodate the 

non-exponential and non-monotonic hazard functions. 

 

 

3. Unobserved heterogeneity and the threshold ACD model 
 

Engle and Russell’s ACD models have been successful in modelling financial data 

that arrive at irregular intervals. 

The ACD model was developed by Engle and Russell (1998). These authors specify 

a model for the duration 1i i ix t t   , where it  is the time for period i. This model can be 

easily formulated in terms of the expected conditional duration for the i-th trade: 

 1 1 1,..., ;i i iE x x x  , where i i ix   . Therefore,  2~i
i

i

x
iid D 


 , where D is a 

general distribution defined within the interval  ,0  with   1iE   . i  can be expressed  

as a linear function of past durations and conditional durations and is called the 

conditional duration. Hence, the ACD(p,q) model can be written as: 

 

                                               
1 1

p q

i j i j j i j

j j

x     

 

                                            [1] 

 

where 0  , 0j   and 0j   for all j. Although not necessary, these sign restrictions 

are usuful to ensure the positivity of i  in the estimation.  

 

3.1. Fast and slow transacting periods: TACD 

 

Zhang et al. (2001) showed that simple TACD models can improve the analysis of 

stock transaction durations. Their model allows us to account for structural breaks in the 

trading process. 

A simple two-regime TACD(2;p,q) model for ix can be written as: 
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1

2

i i i d

i

i i i d

if x r
x

if x r

 

 






 


 

 

where d is a positive integer, i dx  is the threshold variable, r is a threshold, and  

 

10 1 1

1 1

20 2 2

1 1

p q

j i j j i j i d

j j

i p q

j i j j i j i d

j j

x if x r

x if x r

   



   

  

 

  

 


  


 
   



 

 

 

 

where s denotes the regime, and the parameters restrictions are 0 0s  , 0sj   and 
sj

and 
sj  satisfy the conditions of the ACD model for 1,2s  . The innovations { 1i } and 

{ 2i } are two independent i.i.d. sequences. 

 

3.2. Trading process and unobserved heterogeneity 

 

3.2.1. The finite-inverse Gaussian threshold ACD model (FIGM-TACD) 

 

Following Gómez-Déniz and Pérez-Rodríguez (2017) we use the finite mixture of 

inverse Gaussian model (FIGM) to estimate unobserved heterogeneity in the context of 

ACD models. This model allows us to account for two types of traders; i.e.,  liquidity and 

informed agents, with possible different duration times. 

The conditional density of the FIGM-TACD model can be written as: 

 
2

3 2

( )1
( | ) = exp ,

2 2

i i i i i
i i

i i i i

x x
f x

x x

    


     

  
 

  
 

 

where 
2

( ) = 1
(1 )

E X


 
 

 
  

 
. Note that   is the unobserved heterogeneity 

parameter, and represents the existence of two types of traders with different probability 

laws. This parameter is linked to the probability that the trade is immediately initiated in 

the market (no initial knowledge about the market is required), (1 p ) where

 p     . When 1p  , 0,   indicating that there is no unobserved heterogeneity. 

The absence of this unobserved heterogeneity may be related to the presence of low 

information flow (and, maybe, agents using only public information). However, when 

there is unobserved heterogeneity, 0p  . A high value of  1 p  could imply high 

information flow. This result may indicate that there are traders with different probability 

laws and, therefore, with different information about the stock (e.g., traders who might 

have both private and public information)4. Note that, given their superior information, 

informed traders have the incentive to trade a large quantity of the stock at a fixed price 

as suggested by Easley and O’Hara (1987), Easley and O’Hara (1992) and Lee et al. 

                                                 
4 Zhang et al. (2001) find evidence that fast transacting regimes are associated with agents trading based on private 

information. 
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(1993); therefore, the likelihood of informed trading is positively correlated with trading 

volume and fast transacting periods. 

The logarithm of the likelihood for the i-th observation can be written as: 

 

 

2

2

( )
= log log( ) log( )

2

1 3
log log log(2 ) log log

2 2

i i
i i i i

i i

i i

x
x

x

x

 
    

 

   


     

    

 

 

This model can be estimated by maximum likelihood and by using numerical methods 

such as BFGS. 

 

3.2.2. Mixture exponentials and threshold ACD models 
 

Another way to include unobserved heterogeneity into the modelling of trade 

durations is to consider infinite mixtures. In this section, we use two models proposed by 

Gómez-Déniz and Pérez-Rodríguez (2016), which extend the exponential mixtures of De 

Luca and Zuccolotto (2003).  

First, we consider an exponential duration model with an inverse scale parameter and 

unobserved heterogeneity and extend the model to the case of the Erlang distribution (a 

special case of the gamma distribution which also includes the exponential one). The 

exponential distribution is generally used when the practitioner wants to model the 

survival times of items. It is known that the survival function of the exponential 

distribution with an inverse scale parameter (failure rate) 0   is given by 

   expS t t   . Although the exponential model may be exact within a group of 

items, the hazard rate parameter frequently varies randomly across groups of items, 

reflecting some kind of heterogeneity in the population of items. 

If we allow that Θ follows a distribution function G(θ) we have the following 

unconditional (mixture) survival function:  

 

     
0

Pr exp
t

S t T t dG 


  
    

 
 . 

 

Continuous mixtures of exponential variables have been studied by, among others, 

Jewell (1982), and several distributions for  G  have been considered. For example, 

Lindley and Singpurwalla (1986) discussed the gamma mixtures of exponential 

distributions. Nayak (1987) extended Lindley and Singpurwalla’s results to the 

multivariate Lomax distribution. Roy and Mukherjee (1988) generalized Nayak’s work 

and examined properties of the resulting multivariate distribution. 

Many of the different models used in the statistical literature concerning duration 

models are based on a mixture of the exponential one. The probability density function 

(pdf) of the exponential distribution with mean 0  is given by: 

 

 
1

exp , 0
x

f x x
 

 
   

 
. 

 

The conditional duration model based on this distribution has a pdf given by: 
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 
1

| exp ,i
i i

i i

x
f x 

 

 
  

 
 

 

from which the log-likelihood function for the i-th observation is given by: 

 

 log | log i
i i i i

i

x
f x  


    , 

 

It is well known that the behaviour of economic agents differs depending on the 

information they have. Thus, those who are well informed will sell if they realize that the 

market price of an asset is above its real value, or buy if they believe it to be below its 

real value. This difference in behaviour is only one example of the different elements that 

can differentiate an individual from another, making the group of individuals usually 

treated as a heterogeneous population and in which there may be elements of contagion. 

Formally, this heterogeneity is treated by means of a discrete or continuous mixture of 

distributions. Some tools for studying the presence of heterogeneity in exponential 

models of duration can be found in Chesher (1984) and Kiefer (1984). The following are 

some of the mixtures of exponential models developed and studied in the field of 

duration.. 

In the case of classic models, we use the Weibull and Generalized Gamma threshold 

ACD models. The density function we use for the Weibull (Engle and Russell, 1998) or 

W-TACD is:  

 

 | expi i
i i

i i i

x x
f x

x

 




 

    
     
     

, where 

1

1
1i i 





  
    

  
 

 

and the logarithm of the duration model is written as:  

 

1

log log log
N

i i
i i

i i i

x x
x



 
 

  
      
   

  

 

In this regard, the conditional model based on the gamma and generalized gamma 

distribution (proposed by Stacy (1962)) can be viewed as a mixture of the exponential 

model (Gleser (1989) and Korolev et al. (2017)). Recall that the generalized gamma 

distribution has the gamma and Weibull distribution as a special one. .  

The Generalized Gamma (Bhatti, 2009), named GG-TACD, is written as: 

 

 
 

1

| expi i
i i

i i i

x x
f x

 




     

     
     
      

, where  
1

  


  
     

  
 

 

and its logarithm is: 

 

     
1

log log 1 log log log
N

i
i i i

i i

x
x



     
 

  
          
   

  
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Regarding mixture exponential duration models, we distinguish between finite and 

infinite mixtures. On the one hand, we use the finite mixture of De Luca and Zuccolotto 

(2003, FEXP-TACD) based on exponentials. The conditional density and logarithm of 

likelihood are written as: 

 

 
1

1 1
| exp

K
i

i i k

k k i k i

x
f x p

   

  
   
   
  

1 1 1

1
log exp log

N K N
i

i k i

i k ik i k

x
p 
    

  
    

   
    

 

where 0kp   are the mixing proportions such that 
1

1
K

k

k

p


 , and 
1

1
K

k k

k

p 


  is also 

needed. Note that kp is the proportion of agents in group k, and k is the instantaneous 

expected rate of transaction carried out by the agents belonging to the k-th group. For 

example, De Luca and Gallo (2004) consider that 1p represents informed traders for K=2. 

On the other hand, we use the infinite mixtures based on exponentials such as the 

model proposed by De Luca and Zuccolotto (2003, IEXP-TACD).  Also, the conditional 

density and logarithm of likelihood are written as: 

 

   
 2

1

| 1 i
i i

i i

x
f x




  
 

 
  

   
 

 

 

     
1

1 log log log 1 2 log
N

i
i i

i i

x
     



  
         

   
 , 

 

where   is the unobserved heterogeneity parameter and represents the existence of 

infinite agents with different probability laws. 

Following Gómez-Déniz and Pérez-Rodríguez (2016), in this paper we also consider 

as a mixing distribution the reciprocal of the inverse Gaussian distribution, which has 

been considered in the statistical literature as an alternative model to the classical inverse 

Gaussian distribution and in the discrete mixture when the data have large tails (see 

Gómez-Déniz and Calderín-Ojeda (2019). The reciprocal of the inverse Gaussian 

distribution has hardly ever been used by the statistical community. The expression 

 

                                   
 

2

exp , 0, 0, 0
22

z
g z z

zz

 
 



 
     
 
 

                            (1) 

 

is the probability density function (pdf) of the reciprocal of a random variable that follows 

an inverse Gaussian distribution with parameters γ > 0 and δ > 0. That is, if Y, Y > 0, is 

distributed according to an inverse Gaussian distribution with parameters γ > 0 and δ > 0, 

then the random variable Z = 1/Y follows the distribution given in (1). It is simple to see 

that the distribution belongs to the exponential family of distributions from which it is 

easy to obtain properties of the distribution such as its mean, which is given by: 
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                                                    
1 1

E Z  
 

 
   

 
.                                                   (2) 

 

The exponential-reciprocal inverse Gaussian (ERIG-TACD) distribution is easily 

obtained by mixing the exponential distribution with (1). The result is the following pdf:  

 

   
 

 
  

0

exp1
exp exp , , 0

,

i
i i i

i

f g d
 

      
    

  
     

 
  

where   2, 2i i      . By compounding, it is obvious that the mean of this 

distribution is just (2). 

From (3) it is easy to obtain the conditional pdf of the duration model. This is given 

by 

 

 
  

 

exp / ,
| ,

/ ,

i i

i i

i i i

x
f x

x

      


    

   
  

 

where the parameters 0, 0   . The logarithm of the likelihood of i-th observation is 

defined by: 

 

   log(1 ) log log / , log / ,i i i i i ix x                     

 

As in the model developed in Gómez-Déniz et al. (2012) where the gamma 

distribution was mixed with the inverse Gaussian distribution, a natural extension of the 

model above is the mixture of the gamma distribution with shape parameter σ > 0 and 

inverse scale parameter θ > 0 with the RIG given in (1). The result is a closed distribution 

which depends on the modified Bessel function of the second type. This special function 

can be overcome by starting with σ = 2, i.e., considering an Erlang distribution. Some 

computations provide the probability density function of this mixture model, which is 

given by: 

 

                         
 
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i ii
i i

i i i i i

xx
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x x

      
 

       

     
     

                (5) 

 

The main advantage of (5) with respect to (3) is that it can exhibit larger tails. It is 

called the Gamma-reciprocal inverse Gaussian (GRIG-TACD). The logarithm of the 

likelihood for i-th observation can be written as: 
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   
         

  

 

 

where 2 .    
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4. Empirical analysis 

 

4.1. Data 
 

We use the transaction durations of a listed stock of the Spanish commercial bank 

named Banco Popular on 21 consecutive trading days from 9 May to 6 June, 2017. Data 

were obtained from Bolsas y Mercados Españoles and represent positive transaction 

durations. We have 68486 intraday observations without zeros. Figure 1 shows the time-

path of the trade durations, but also their histogram and kernel density. 

 

Figure 1. Trade duration, histogram and kernel density. 

a) Observed durations 

 

b) Density 

 
 

As we can see, duration shows a structural break after day 17, corresponding to May 

31, 2017, and the histogram is clearly skewed to the right. Table 1 shows the descriptive 

statistics of the observed durations for the overall period and two subsamples. The first 

sample corresponds to the period May 9 up to May 30, 2017. It comprises 17 trading days. 

The second sample corresponds to the period May 31 up to June 6, 2017, and comprises 

four trading days. 

 

Table 1. Descriptive statistics of observed durations. 

 
Overall period 

(May 9-June 6, 2017) 

First sample 

(May 9-30, 2017) 

Second sample 

(May 31 - June 6, 2017) 

 Mean 7.8428 11.0523 4.3871 

 Median 4.0000 6.0000 2.0000 

 Maximum 59.0000 59.0000 59.0000 

 Minimum 1.0000 1.0000 1.0000 

 Std. Dev. 10.1481 12.1549 5.6356 

 Skewness 2.3747 1.7179 3.5507 

 Kurtosis 9.0117 5.5935 20.6225 

    

 Jarque-Bera 167490.5 27416.1 496005.4 

 Probability 0.00 0.00 0.00 

    

 Observations 68484 35507 32977 
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From Table 1, we observe that mean durations are clearly lower in the second sample, 

but they also present some variability. 

 

4.1.1. Diurnal patterns and adjusted durations  
 

In this section, we introduce adjustments by removing the deterministic component 

of observed durations. That is, we employ 2159 positive adjusted durations. To do this, 

we have used a simple method to adjust the diurnal pattern of intraday trading activities. 

Figure 2 shows the diurnal patterns. 

 

Figure 2. Transaction times measured in seconds from midnight. 

 

 
 

Figure 2 shows the time intervals from the market opening (9:00h) to the transaction 

time up to the market closing (17:35h). The vertical drops of the intervals signify the 

trading days. The diurnal pattern of trading activities is clearly seen. Besides, we also see 

that there are more durations/trading during the last four days until the end of trading on 

June 6, 2017.  

There are many ways to remove the diurnal pattern of transaction durations. Engle 

and Russell (1998) and Zhang et al. (2001) use some simple exponential functions of time 

and Tsay (2005) constructs some deterministic functions of time of the day to adjust the 

diurnal pattern. Let  if t  be the mean value of the diurnal pattern at time it , measured 

from midnight. Then, we define the adjusted duration as: 

 

 ˆ
i i ix x f t  

 

where ix  is the observed duration between the i-th and (i−1)th transactions. Following 

Tsay (2009), we construct  if t using two simple time functions. Define 

 

 
 34200 43200

0

i i

i

t if t
O t

otherwise

  
 


   and  
 61200 43200

0

i i

i

t if t
C t

otherwise

  
 


 

 

where it  is the time of the ith transaction measured in seconds from midnight, and 34200, 

43200, and 61200 denote, respectively, the market opening, noon, and market closing 

times measured in seconds. Once the variables are made, we estimate by OLS the model: 

 

30,000

35,000

40,000

45,000

50,000

55,000

60,000

65,000

10000 20000 30000 40000 50000 60000



11 

 

     0 1 2log i i i ix c t o t        

 

where     10000i ic t O t  and     10000i ic t C t . Notably, all estimates of  are 

statistically significant at the 5% significance level. Then, we construct the residual î  

and    ˆ ˆˆ expi i i íx x f t   .  

Figure 3 shows the adjusted trade duration. Compared with Figure 1, the diurnal 

pattern of the trade duration  is to a large extent removed. 

 

Figure 3. Adjusted trade duration. 

 
 

 

4.1.2. Average 5-minute durations 
 

Now that the diurnal pattern has been addressed, we create another database formed 

by an average of 5-minute intraday observations. This new database comprises 2159 

observations which are used to analyse durations empirically.  

This number is obtained taking into account that we have 12 5’ intervals in 1 hour. 

Hence, 12 x 8 hours + 7 intervals in the last hour (17:00-17:35h) = 103 intervals during a 

day. In 21 days, we have 103 x 21 = 2163. The difference is due to the fact that there were 

four intervals without trading. 

 

Figure 4. Average 5-minute trade duration. 

 
 

Table 2 shows results that maintain similar patterns as in Table 1, although the number 

of observations is considerably reduced. 

 

Table 2. Descriptive statistics of average 5 minute durations. 
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Overall period 

(May 9-June 6, 2017) 

First sample 

(May 9-30, 2017) 

Second sample 

(May 31 - June 6, 2017) 

 Mean 3.1898 3.6942 1.2525 

 Median 2.8925 3.3794 1.1114 

 Maximum 16.7231 16.7231 6.7423 

 Minimum 0.3117 0.5309 0.3117 

 Std. Dev. 1.9234 1.8156 0.7202 

 Skewness 1.0694 1.1560 2.4236 

 Kurtosis 4.9674 5.5862 15.2454 

    

 Jarque-Bera 759.73 858.93 3223.16 

 Probability 0.00 0.00 0.00 

    

 Observations 2159 1713 446 
 

 

4.2. Empirical results 
 

The financial theory provides hardly any basis for discriminating between competing 

models, and so sample information must be used for this purpose. Therefore, in this 

section, we compare finite (FIGM-TACD) and infinite (ERIG-TACD and GRIG-TACD) 

with other classic and mixture models in the empirical literature on trade durations (see 

section 3.2.2).  

Table 2 shows the results from the three models. In general, the ACD(1,1) 

specification can be used for each regime.  

The first two models are classic models: TACD model with Weibull distribution (W- 

TACD) and TACD with Generalized Gamma (GG-TACD). The finite mixtures are finite 

exponential TACD (FEXP-TACD) and the finite inverse Gaussian TACD (FIGM-

TACD). The infinite mixtures are infinite exponential TACD (IEXP-TACD), the model 

based on exponential and reciprocal inverse Gaussian (ERIG-TACD), and the Gamma-

reciprocal inverse Gaussian (GRIG-TACD). For each model, we consider two columns. 

One of them represents the first regime (fast transaction period) and the second column 

shows the second regime (slow transaction period).  

Model checking is investigated by analysing some statistics based on standardised 

durations, i.e., mean and standard deviation. On the other hand, if the ACD model is 

adequate  î should be an i.i.d. sequence of random variables. In particular, if the fitted 

model is adequate, both series  î  and  2

î  should have no serial correlation. In this 

connection, the Ljung-Box statistic can be used for both series. Therefore, Q(k) for k=10 

and 20 lags for autocorrelation (serial dependence) in the standardised residuals and their 

squares (Q2(k)) which are shown in Table 2.  

 

 

 



13 

 

Table 3. Maximum likelihood parameter estimates of duration models.  

 Classic models Finite mixtures Infinite mixtures 

  

 
W-TACD GG-TACD FEXP-TACD FIGM-TACD IEXP-TACD ERIG-TACD GRIG-TACD 

 
1st regime 2nd regime 1st regime 2nd 

regime 

1st regime 2nd 

regime 

1st 

regime 

2nd 

regime 

1st 

regime 

2nd 

regime 

1st 

regime 

2nd 

regime 

1st 

regime 

2nd 

regime 

  -- -- 167.04 19.587 -- -- 2.2399 3.8902 -- -- 178.665 133.71 0.9271 0.9388 

   (685.1) (642.9)   (7.61) (5.30)   (10.4) (1.74) (29.39) (29.02) 

  -- -- 0.2243 0.6593 -- -- 0.1623 0.4242 25820.6 210183.5 -- -- -- -- 

   (147.3 (68.05)   (10.47) (9.66) (46.7) (47.39)     

  -- -- -- -- -- -- -- -- -- -- 19102.45 3754.2 5.2480 5.6741 

           (106.9) (1.84) (6.46) (6.63) 

1  -- -- -- -- 0.0219 0.1604 1.0446 1.1161 -- -- -- -- -- -- 

     (0.19) (1.57) (9.17) (7.15)       

1p  -- -- -- -- 0.7242 0.7734 -- -- -- -- -- -- -- -- 

     (23.97) (14.98)         

0  -0.2548 1.2364 -0.0130 0.3608 -0.0025 0.0724 -0.0139 0.4518 -0.0076 0.3188 -0.0075 0.3678 -0.0159 0.4332 

 (-7.98) (6.14) (-1.23) (61.02) (-0.30) (1.92) (-1.23) (6.19) (-0.22) (2.54) (-0.29) (3.74) (-0.30) (1.61) 

1   1.5842 2.5513 0.5357 0.1199 0.1213 0.0281 0.5636 0.1272 0.4710 0.1206 0.4709 0.1202 0.5892 0.1349 

 (62.15) (48.83) (37.88) (150.7) (4.45) (2.55) (17.67) (6.04) (17.15) (4.60) (6.23) (2.31) (4.33) (1.69) 

1  -0.0333 0.7398 0.5243 0.8125 0.6118 0.8387 0.4879 0.7876 0.5768 0.8085 0.5769 0.8092 0.5509 0.8123 

 (-1.91) (16.18) (78.36) (215.4) (12.27) (23.99) (19.35) (34.16) (26.7) (58.38) (8.92) (18.48) (6.18) (10.9) 

Log L -3538.67 -2846.28  -4364.44  -2779.87  -4365.33  -4365.32  -4585.1  

Observations 2159 2159  2159  2159  2159  2159  2159  

Average duration 0.9540 1.0038  3.7167  1.0122  1.0002  1.0002  0.8625  

Standard deviation 0.4835 0.4222  1.5289  0.4309  0.4166  0.4166  0.3610  
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Q(10) 106.52 [0.00] 
11.60 

[0.31] 
 

13.51 

[0.19] 
 

16.81 

[0.08] 
 

10.57 

[0.39] 
 

10.53 

[0.39] 
 

10.55 

[0.39] 
 

Q(20) 194.35 [0.00] 
20.36 

[0.48] 
 

23.56 

[0.26] 
 

25.89 

[0.17] 
 

19.02 

[0.52] 
 

18.97 

[0.52] 
 

19.13 

[0.51] 
 

Q2(10) 1.32 [0.99] 
3.68 

[0.96] 
 

3.54 

[0.96] 
 

3.67 

[0.96] 
 

4.18 

[0.94] 
 

4.17 

[0.94] 
 

3.79 

[0.96] 
 

Q2(20) 2.01 [1.00] 
4.75 

[1.00] 
 

4.57 

[1.00] 
 

4.65 

[0.99] 
 

5.28 

[1.00] 
 

5.27 

[1.00] 
 

4.85 

[1.00] 
 

Notes: t-values appear bin parentheses, and p-values in square brackets. In all models, we have chosen 0.5oq   and 
0.5

ˆ 2.8925r x  seconds, in terms of maximum 

likelihood comparisons. 
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For our stock transaction durations in the TACD models, we have chosen d = 1. This 

is a reasonable choice, as trading activities tend to be highly serially correlated. For the 

threshold r, a simple approach is to use empirical quantiles. Following Tsay (2009), let 

q
x be the q-th quantile of the observed durations and we assume that 

 0.50,0.75,0.90,0.95,0.99
q

r x q  . For each candidate 
q

x , we estimate the 

TACD(2;1,1) model: 

 

10 11 1 11 1 1

20 21 1 21 1 1

i i i q

i

i i i q

x if x x

x if x x

   


   

  

  

  
 

  

 

 

and evaluate the log likelihood function of the model at the maximum likelihood 

estimates. Denote the resulting log-likelihood value by  q
x . The threshold is then 

selected by ˆ
oq

r x  such that     max 0.50,0.75,0.90,0.95,0.99
o qq

q
x x q  . In 

all models, we have chosen 0.5oq   and 
0.5

ˆ 2.8925r x  seconds, in terms of maximum 

likelihood comparisons. Values of durations above 
0.5

ˆ 2.8925r x  indicate slow 

transaction periods and those below indicate fast transaction periods. 

Classic models such as the W-TACD model show poor results. It has parameters 

which do not hold the positive restrictions, and for its part the Ljung-Box statistic for 

standardized residuals rejects the null hypothesis of zero autocorrelations. Therefore, this 

model is not adequate. However, GG-TACD shows a good statistical fit.  

In terms of finite mixtures which identify two types of traders,5 FEXP-TACD (K=2) 

model is less adequate than the FIGM-TACD in terms of Vuong’s test (-44.61, p-

value=0.00). We stress that the FEXP-TACD model suggests the existence of informed 

and uninformed traders. For example, results indicate that the proportions of agents 

representing informed traders in the first and second regimes are 0.72 and 0.77 

respectively. They are high proportions in both regimes, although higher in the slow 

transaction regime than the fast regime. This may be reasonable taking into account that 

the analysed period represents the last days of Banco Popular’s trading. On the other hand, 

the instantaneous expected rate of transaction carried out by the agents in this group is 

not statistically different from zero in either regime.  

Now, focusing on the FIGM-TACD, we can say the following. Unobserved 

heterogeneity,  , is statistically significant at the 5% significance level in both regimes. 

It also indicates the presence of both uninformed and informed traders in the negotiation 

of our analysed stock, although we cannot distinguish between informed and uninformed 

traders as in FEXP-TACD following De Luca and Gallo (2004). Besides, in the second 

regime, the unobserved heterogeneity parameter is, generally, higher than in the first 

regime. It indicates that both these traders are more important in the slow transaction 

period than in the fast transaction period, where all traders could have had the same 

                                                 
5 We also fitted the FIGM-ACD model to the overall period. It is the FIGM adjusted separately for each 

regime taking into account the Quandt-Andrews unknown breakpoint. This was calculated under the null 

hypothesis with no breakpoints within 15% trimmed data. In our case, observation 1714 (May 31, 2017) 

was identified using the maximum LR F-statistic. All parameters are statistically significant at the 5% 

significance level and the logarithm of likelihood is -2792.14. Comparing FIGM-ACD and FIGM-TACD 

in terms of the maximum value of the log-likelihood function, FIGM-TACD has a better fit than the other 

models using Vuong’s closeness test. 
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information, given that the SRB’s decision was known. Besides, the probability that trade 

is initiated immediately ( ˆ1 p ,  ˆ ˆ ˆp̂     ) is high in the two regimes (0.9 and 0.93 

respectively), which indicates the high information flow and the rapid response of traders 

to negotiating in both regimes, although it is slightly higher in the second regime (slow 

transaction periods). 

Finally, regarding the infinite mixtures, the results are similar to those of FEXP-

TACD in terms of the logarithm of likelihood. Therefore, although the infinite mixture 

summarizes a wide variety of agents or trading conditions and it allows for a complex 

unobserved heterogeneity, the estimated models do not perform better than their finite 

mixture counterparts. For example, IEXP-TACD and ERIG-TACD have similar values 

for the logarithm of likelihood, and both fit better than GRIG-TACD in terms of Vuong’s 

test. The interpretation of these results may indicate that the number of different groups 

of agents in the market is not extensive and that two groups (as supposed by finite 

mixtures) may be enough. Finally, it should also be noted that heterogeneity parameters 

in the second regime (slow transaction periods) are, in general, greater than the first 

regime, indicating that both informed and uninformed traders may also act/predominate 

in this regime. 

Overall, our results show two regimes in the Banco Popular’s last days of trading, and 

that the slow duration regime showed higher unobserved heterogeneity than fast 

transaction periods. This behaviour could be taken as evidence of the presence of private 

information in both the regimes detected. 

 

 

5. Concluding remarks 
 

In this paper, we have attempted to assess the potential importance of different types 

of traders (i.e., traders with public or private information) in the final trading days of 

Banco Popular, the first bank rescued by the European Single Resolution Board. To this 

end, we applied a simple specification to estimate TACD by using a mixture of inverse 

Gaussian distributions recently proposed in the financial literature to test for the existence 

of unobserved heterogeneity, thus shedding light on the dynamics of the transaction 

arrival process. 

Our results suggest the presence of informed traders with private information that 

was not available to the general public. We look forward to seeing more extended studies 

in future research when new case studies on SRB bank resolutions become available. 

Finally, our approach may be applicable to other contexts with high levels of 

information dispersion  – for instance, mergers and acquisitions or takeover bids. 
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