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Two issues are treated in this work. (i) The generic fact that, if a fermionic superfluid in the BCS regime

overflows from a narrow container into a much wider one, pairing is much suppressed at the overflow

point. Physical examples where this feature may play an important role are discussed. (ii) A Thomas-

Fermi approach to inhomogeneous superfluid Fermi systems is presented and shown to work well in cases

where the local density approximation breaks down.
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Superfluid fermions in finite systems can exist in traps of
cold atoms, in nuclear systems, in small metallic clusters,
etc. An interesting question arises as to what happens to the
superfluid if its Fermi level reaches the edge of a finite
container; i.e., either the fluid overflows into the continuum
or it pours into another container of much larger dimen-
sion. A trapping potential of this type has already been
generated experimentally for the study of cold bosonic
atoms [1]. It should also be possible to use it for fermionic
atoms [2].

In the inner crust of neutron stars, there also may occur
the situation where a superfluid neutron gas of variable
density coexists in between the lattice of (superfluid) nu-
clei [3,4]. This situation often is mimicked by a Wigner-
Seitz cell, where the single-particle potential has a pocket,
representing the nucleus, embedded in a large container.
Still other systems may exist with similar situations.

The purpose of this work is to study superfluidity of
fermions at the overflow (drip) in the BCS regime. Since
the quantal solution of BCS equations in geometries with
rapidly varying single-particle potentials with a large num-
ber of particles is numerically difficult, we will present, as
a second objective of this work, a Thomas-Fermi (TF)
approach to inhomogeneous superfluidity which shows
good performance in situations where local density ap-
proximation (LDA) fails.

For our study, we first will use a schematic model of slab
geometry with a transverse potential of large extension L
possessing at the origin a ‘‘pocket’’ of variable depth
and size R much smaller than the outer container.
Schematically, such a potential is shown in Fig. 1(a).
This slab configuration may roughly mock up one sheet
of a so-called Lasagne configuration in the inner crust of
neutron stars [5]. We, therefore, will use nuclear dimen-
sions for the slab model, but they can easily be replaced by
dimensions relevant for other systems. Our model and the

ensuing generalizations treated below, therefore, are be-
lieved to be generic. We will study the slab configuration
also because the quantal solution of the gap equation is
evaluated relatively directly and the quality of the TF
approach can thus be established. Once this is achieved,
we will also go over to other geometrical configurations.
We, for instance, will treat a second potential shown in
Fig. 1(b) with spherical symmetry, a kind of which, as
already mentioned, has been used for bosonic atoms in [1].
The wave functions and eigenenergies of a box, as

shown in Fig. 1(a) with a potential hole, are given in [6].
For pairing, we use a contact force with a cutoff �, to
make things simple. Integrating over momenta in the
slab direction the usual gap equation

�n ¼ P
n0
R d2p
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the quasiparticle

energy, �ðxÞ the step function, and "n and "p the discrete

single-particle energies in the transverse direction and the
kinetic energies in the slab direction, respectively—one
arrives at the following gap equation:
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FIG. 1. Schematic view of the potentials used in this work.
Panel (a) shows a perspective view of the slab potential which is
translationally invariant parallel to the slab direction. Panel (b)
represents a spherically symmetric container.
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�n ¼ �X
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with
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where m is the particle mass and the indices n stand
for the level quantum numbers in the confining
potential of Fig. 1(a). The matrix elements Vnn0 ¼
�g

RþL
�L j’nðzÞj2j’n0 ðzÞj2dz of the contact force �g�ðr�

r0Þ can be evaluated straightforwardly from the wave func-
tions ’nðzÞ given in [6].

For an example, we take as a cutoff � ¼ 50 MeV
counted from the edge of the pocket potential whose depth
is V0 ¼ �40 MeV. Its extension ranges from �R to þR,
with R ¼ 10 fm. The wide potential with infinite walls has
an extension from �L to þL, with L ¼ 100 fm. For the
coupling strength, we take g ¼ 150 MeV fm3.

Before we show the results, let us explain our TF ap-
proach for this problem. For this, we transform Eq. (1) into
a continuum version in the following way.We first consider
the Wigner transform of the density matrix corresponding
to the state jni—½�̂n�W ¼ ½jnihnj�W—and take the @ ! 0
limit of this expression (see [7–9]):

fEðz; pÞ ¼ 1

gTFðEÞ�ðE�HclÞ þOð@2Þ; (3)

where Hcl ¼ p2

2m þ VðzÞ is the classical Hamiltonian, with

VðzÞ the potential [Fig. 1(a)] in the transverse direction and
gTFðEÞ the corresponding level density to the lowest order
in @, i.e., the usual TF expression [9]. Quantum numbers
and energies are simply characterized by the continuous
energy variable E, which takes the place of the discrete
values "n in the quantal case.

The TF version of the gap equation (1) then reads

�ðEÞ ¼ �
Z �

V0

dE0gðE0ÞVðE; E0ÞKðE0Þ; (4)

with KðEÞ an obvious generalization of Kn. The matrix
elements VðE;E0Þ can be evaluated in replacing j’nðzÞj2 by
[7] �TF

E ðzÞ ¼ 1
gTFðEÞ

1
2� ð2m@2 Þ1=2½E� VðzÞ��1=2, the on-shell

TF density in the transverse direction. As the reader will
easily realize, the way of proceeding is very different from
usual LDA, where the finite-size dependence is put into the
(local) chemical potential, whereas here it is put into the
matrix elements of the pairing force.

We are now in a position to solve the quantal and TF gap
equations for the abovementioned parameter values of our
model. The result for the gap at the chemical potential� is
shown in Fig. 2 as a function of�. We start with� from the
bottom of the pocket well, i.e., with zero density. We then
increase �, i.e., the density. We see that, once the fillup of
the pocket reaches its top, the values of the gap sharply

drop and practically reach zero. In the continuum, the gaps
slowly rise again. We see that quantal and TF values are in
close agreement. The overshoot of the TF solution for
negative� is very likely due to the smallness of the pocket,
which only can accommodate nine bound levels. It may be
partially cured including @ corrections [9], which, however,
we do not consider here. Before we come to an explanation
of the drop of the gaps at overflow (drip), let us study
the gaps as a function of position in the transverse
direction: �ðzÞ ¼ �gKðzÞ, with KðzÞ ¼ P

Knj’nðzÞj2.
Semiclassically, this expression becomes KðzÞ ¼R
�
V0
dEgTFðEÞKðEÞ�TF

E ðzÞ.
In Fig. 3, we show the density profiles for three values of

�: � ¼ 40, 0.5, and�5 MeV. We see that quantal and TF
results agree, up to shell fluctuations, very well. We also
show the LDA results. We see that they can be as wrong as
by 50%. For other choices of system parameters, the LDA
error may even be worse. This stems from the fact that, in
TF (and, of course, also quantally), there is coupling
between inside and outside the pocket; i.e., the Cooper
pair wave function extends into both regions. This tends to
equilibrate the values of the gaps. In LDA, the contrast is
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FIG. 2 (color online). Quantal and TF pairing gap in the slab
geometry as a function of the chemical potential.
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FIG. 3 (color online). Position dependence of the gap in the
slab geometry for different values of the chemical potential.
Quantal, TF, and LDA results are shown. Notice that � for
� ¼ 0:5 and �5:0 MeV is practically zero in the gas region.
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much too strong. The drop of the gaps when crossing the
threshold can be explained by the fact that the single-
particle states are strongly delocalized in the outer con-
tainer, and, thus, their contribution to the pairing matrix
element Vn;n0 becomes very small.

Having gained faith in our TF approach, we now can
explore other geometries and other systems, which are
more difficult for quantal solutions. In Fig. 4, we show
the result for � in the spherical double harmonic oscillator
potential shown in Fig. 1(b) which may be realized with
cold fermionic atoms to study the overflow situation. A
zero range force with strength g ¼ �1:0 and cutoff � ¼
164:34 (in the corresponding optical trap units with!opt ¼
2�� 1000 Hz taken from [2]) is used. We see that the
result is qualitatively similar to the slab case, although, in
this spherical geometry, the dip does not quite reach zero
and also is shifted slightly to an energy above the break of
the potential. Note that this depends strongly on the choice
of the ratio !mag=!opt as it can be seen in Fig. 4. Also, the

gap starts to decrease towards the minimum quite early. It
shall be interesting to see whether our prediction can be
verified experimentally.

Let us now make a more realistic study of Wigner-Seitz
(WS) cells including electrons in� equilibrium to simulate
the inner crust of neutron stars [5]. To this end, the mean
field is computed self-consistently using the Barcelona-
Catania-Paris (BCP) energy density functional [10] to-
gether with the TF approach, as explained in [11]. The
semiclassical description of the WS cells including pairing
correlations at the TF level is obtained from this mean field
using the finite-range part of the Gogny D1S force [12] in
the pairing channel [13]. It must be pointed out that the
total energy per baryon obtained with our TF approach is in
very good agreement with the old quantal calculation of
Negele and Vautherin [14], as it is explicitly discussed in

Ref. [11]. In Fig. 5 are displayed the corresponding gaps
with their radius dependences. It is seen that, when the gap
is small outside the region of the nucleus, then the gap also
is small inside the nucleus. This stems from the very large
coherence length, where one neutron of a Cooper pair can
be in the huge volume of the gas and the other inside the
small volume of the nucleus (proximity effect). In this way,
the gas imprints its behavior for the gap also inside the
nucleus. Such a conclusion was also given in a quantal
Hartree-Fock-Bogoliubov (HFB) calculation by Grasso
et al. in [15], which shows that the here-employed BCS
approximation apparently yields very similar answers to
the ones from a full HFB calculation for WS cells [3,16].
Finally, in the lower panel of Fig. 5, we show a comparison
of LDA and present TF results for a particular WS cell. We
see a huge difference in the surface region of the nucleus.
This simply stems from the fact that, in the case of the 500

40 Zr
nucleus in the WS cell, the gap is very small, and, there-
fore, the coherence length is very large, invalidating LDA.
A study with examples a little less unfavorable for LDA is
given in [17].
For isolated nuclei at the neutron drip, the situation may

be different. It seems that, in this situation, the difference
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FIG. 5 (color online). Upper panel: radial dependence of the
TF gap in the considered WS cells. The end points indicate the
radius of the WS cells. Lower panel: comparison between TF
and LDA gaps as a function of the position in a WS cell
containing a single 500

40 Zr nucleus.
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FIG. 4 (color online). Average TF gaps at the Fermi energy as
a function of the chemical potential for the potential shown in
Fig. 1(b). In the completely filled optical trap (� ¼ U), we
accommodate 105 atoms in each spin state. The total number
of atoms in the trap with �=@!opt ¼ 40, 80, and 120 are

indicated in the upper horizontal axis.
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between HFB and BCS approaches may be significant.
Somewhat conflicting results in this respect exist in the
literature. In Ref. [18], very similar results to ours are
found for S-wave pairing. On the other hand, in [19], the
gap seems to rise towards the drip before it bends down.
Similar results have recently been found in [20].
Preliminary investigations show that these discrepancies
may be due to large shell fluctuations in isolated nuclei.
More studies in this direction seem to be necessary.

Summarizing, we have studied superfluid fermions in a
large container, either external (cold atoms) or created self-
consistently (nuclei) for situations where the top of the
fluid reaches the edge of a small pocket situated at the
origin of the wide confining potential. The gap drops to
zero at the edge before rising again when the density fills
up the outer container. This at first somewhat surprising
phenomenon can be explained quite straightforwardly.
Such situations, as already mentioned, can exist in cold
atoms and nuclei in the inner crust of neutron stars, two
examples treated here with their specific forms of contain-
ers. For small systems like isolated nuclei at the neutron
drip, the situation may be blurred by shell effects.

As an important second aspect of this Letter, we showed
that a novel Thomas-Fermi approach to inhomogeneous
situations can cope with situations where LDA fails. This
means that our TF approach is free of the restrictive
condition, prevailing for LDA, that the Cooper pair coher-
ence length must be shorter than a typical length l (the
oscillator length in the case of a harmonic container) over
which the mean field varies appreciably. On the contrary,
our TF theory has the usual TF validity criterion, namely,
that local wavelengths must be shorter than l.

The accuracy of our TF approach opens wide perspec-
tives for a treatment of inhomogeneous superfluid Fermi
systems, with a great number of particles not accessible for
a quantal solution of the BCS (HFB) equations. Such
systems may be cold atoms in deformed containers (even-
tually reaching millions of particles), superfluid–normal-
fluid interfaces, vortex profiles, etc. As a matter of fact, as
is well-known [9], the TF approach becomes the more
accurate, the larger the system. Thus, the TF approxima-
tion is complementary to the quantal one in the sense that
the former works where the latter is difficult or even
impossible to be obtained numerically.
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