Una técnica para evitar el colapso de las membranas utilizadas en los procedimientos de regeneración tisular guiada

RESUMEN
Se presenta una nueva técnica, que evita el colapso de las membranas utilizadas en los procedimientos de regeneración tisular guiada, y se ilustra con un caso clínico demostrativo de sus ventajas.

PALABRAS CLAVE
Tratamiento periodontal; Regeneración periodontal; Regeneración tisular guiada.

ABSTRACT
A new technique to avoid the collapse of membranes used in guided tissue regeneration is presented in this article. A clinical case illustrates the procedure here described.

KEY WORDS
Periodontal treatment; Periodontal regeneration; Guided tissue regeneration.
INTRODUCCIÓN

Diez años después del artículo original de Nyman y cols. (1982) describiendo la formación de nueva inserción periodontal mediante el uso de una membrana de Millipore, la regeneración tisular guiada (RTG) aparece como una técnica efectiva y fiable en el tratamiento de determinadas lesiones periodontales (Caffesse & Becker, 1991). Además, los principios biológicos en los que se basa la RTG (Minabe, 1991) han hecho que esta técnica se utilice también en el campo de la implantología (Lazzara, 1989) y como un sistema de preservación o crecimiento óseo en zonas maxilares desdentadas (Buser y cols. 1990). Esencial en el éxito de las técnicas de RTG es conseguir y preservar un espacio entre la membrana y la zona a partir de la cual se espera la obtención de nuevo tejido(s), de manera que tengan lugar donde madurar sin impedimentos. Sin embargo, el diseño de las membranas, que son blandas, y la forma de que el tejido gingival/mucosa alveolar se apoyen y descansen sobre la membrana no favorecen en absoluto ni la creación ni el mantenimiento de este espacio imprescindible. Diferentes materiales de relleno se han utilizado con objeto, entre otras razones, de conservar este espacio, especialmente el hloroxipatita. Sin embargo, sería preferible que ningún cuerpo extraño molestase la regeneración tisular (Seibert & Nyman, 1990). Otros autores, en una técnica reciente que busca mantener espacio bajo la membrana, han utilizado para ello una determinada sucesión de sutura, que sin embargo deja parte de ella entre la membrana y el plano subyacente (Tinti & Vincenzi, 1990). En otros casos, la membrana es mantenida en la posición deseada mediante la utilización de pequeños tornillos que la sujetan al hueso (Buser y cols., 1990). Como una alternativa mucho más sencilla, rápida y económica se presenta una técnica que, donde pueda utilizarse, puede favorecer las posibilidades de la RTG.

CASO CLÍNICO Y DESCRIPCIÓN DE LA TÉCNICA

Una niña de doce años es remitida a la consulta del periodoncista a causa de la extrusión de 11-21 producida al inicio de una manipulación ortodóncica llevada a cabo por un protésico dental (Fig. 1). La sospecha de un elástico que, para juntar ambos centrales, se colocó yuxtapongiéndose, para perderse a continuación subgingivalmente, se confirma durante el abordaje quirúrgico, encontrándose dos elásticos en una lesión intraósea, y observándose una pérdida de soporte vestibular de aproximadamente 6 mm en cada incisivo, y de 3 mm por palatino (Fig. 2). Tras la retirada de los elásticos y la cicatrización de los tejidos blandos, se inicia tratamiento ortodóncico, y a los siete meses se coloca un arco superior rectangular y pasivo, y se vuelve a levantar un colgajo vestibular, comprobándose que el tratamiento orto-
Una técnica para evitar el colapso de las membranas utilizadas en los procedimientos de regeneración tisular guiada.

dóncico no ha modificado el nivel de hueso alveolar en vestibular de 11-21 (Fig. 3). En este momento se coloca una membrana de polietileno expansiﬁdo Gore-Tex (W.L. Gore & Ass.) sobre las caras vestibulares de las superficies radiculares expuestas, que se sutura adecuadamente. Debido a la anatomía de la zona, el espacio entre la membrana y los dientes es muy limitado. En consecuencia, se comba ligeramente la membrana, dándole una convexidad externa, y esta convexidad se mantiene colocando en el espacio subyacente así creado una pequeña pelota de gasa mojada en suero salino. Las esquinas apicales (superiores) de la membrana, se mantienen temporalmente en contacto con el hueso alveolar mediante el extremo de dos sondas periodontales. Entonces, con un pequeño pincel, se pinta la superficie externa de la membrana, y sólo ella, cuidadosamente, con n-butil-2-cianoacrilato monómero (Histoacryl azul, B. Braun Melsungen AG), dando dos pasadas con un minuto de intervalo entre ellas. Un minuto después, la membrana está rígida, y se retira la gasa bajo la membrana (Fig. 4). El postoperatorio transcurre sin problemas (Fig. 5), y cuatro semanas después se abre.
Figura 7. Una vez retirada la membrana, se aprecia el nuevo tejido que cubre casi totalmente las zonas radiculares previamente desprovistas de soporte. Obsérvese la prominencia y características macroscópicas del nuevo tejido.

después de nuevo un colgajo vestibular (Fig. 6), y se retira la membrana, observándose las superficies radiculares previamente expuestas de los dos incisivos cubierta por un tejido que aparece duro a la percusión suave (Fig. 7), y con una convexidad similar a la de la membrana que las cubría (Fig. 8).

El colgajo vestibular es nuevamente repuesto, y la curación transcurre normalmente.

DISCUSIÓN

La presencia de lesiones periodontales graves de origen traumático, incluyendo el mal uso de ligaduras ortodóncicas ha sido repetidamente señalado en la bibliografía, y puede llegar a la pérdida dentaria. En la actualidad, sin embargo, la mejor comprensión de la biología y la patología de los tejidos periodontales permiten un adecuado tratamiento de estos problemas. En el caso presentado, se consideró prioritario, tras la retirada de las ligaduras (sin ninguna otra manipulación del periodonto), el introducir los incisivos centrales superiores y normalizar inicialmente la posición de los dientes. Luego, se consideró conveniente regenerar en lo posible el hueso alveolar perdido, para mejorar el pronóstico de ambos dientes y protruir ligeramente la zona vestibular antero-superior.

Las técnicas de regeneración guiada pretenden conseguir el crecimiento de determinados tejidos me-

diante la exclusión quirúrgica de otros. Así, al eliminar la competición por parte del epitelio y el conectivo gingival, células del espacio periodontal tienen la oportunidad de migrar, y dar origen a los diferentes componentes del periodonto de soporte (Melcher, 1976). Se acepta generalmente que un requisito para el éxito de estas técnicas es la creación y el mantenimiento de un espacio adecuado para la formación del nuevo tejido.

En el caso descrito, este requerimiento era aún más importante dada la topografía del defecto, aparentemente un caso poco favorable.

La elección del uso de cianoacrílato (Histoacryl) para endurecer la membrana vino determinada por la sencillez de su uso, su comportamiento (fácilmente observable en productos similares de uso casero como los pegamentos de cianoacrílato), y por haber sido utilizado en Medicina y Odontología (Herod, 1990) desde hace años, siendo bien tolerado por la mayoría de los tejidos. En esta paciente, el contacto del cianoacrílato con el conectivo gingival aparentemente no tuvo consecuencias indeseables, ni tampoco resultó aparentemente perjudicial para el nuevo tejido que, por el contrario, presentaba en el momento de la retirada de la membrana (cuatro semanas tras ser colocada) un aspecto inusualmente maduro.

Se concluye que esta innovación sencilla y no perjudicial para los tejidos vecinos, puede mejorar en determinados casos los resultados de las técnicas de regeneración guiada en periodoncia, implantología y crecimiento óseo en zonas desdentadas.
Una técnica para evitar el colapso de las membranas utilizadas en los procedimientos de regeneración tisular guiada.


