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Abstract 

Alternating treatments designs (ATDs) have received comparatively less attention than other 

single-case experimental designs in terms of data analysis, as most analytical proposals and 

illustrations have been made in the context of designs including phases with several consecutive 

measurements in the same condition. One of the specific features of ATDs is the rapid (and 

usually randomly determined) alternation of conditions, which requires adapting the analytical 

techniques. First, we review the methodologically desirable features of ATDs, as well as the 

characteristics of the published single-case research using an ATD, which are relevant for data 

analysis. Second, we review several existing options for ATD data analysis. Third, we propose 

two new procedures, suggested as alternatives improving some of the limitations of extant 

analytical techniques. Fourth, we illustrate the application of existing techniques and the new 

proposals in order to discuss their differences and similarities. We advocate for the use of the 

new proposals in ATDs, because they entail meaningful comparisons between the conditions 

without assumptions about the design or the data pattern. We provide R code for all 

computations and for the graphical representation of the comparisons involved. 

Key words: single-case designs; alternating treatments design; regression analysis; 

randomization test; trend 
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The field of single-case experimental designs (SCED) data analysis has seen an important 

growth in terms of proposals and publications, as can be seen from the summaries available in 

several special issues dedicated to the topic (e.g., Evans, Gast, Perdices, & Manolov, 2014; 

Shadish, 2014; Shadish, Rinsdskopf, & Hedges, 2008; see also Gage & Lewis, 2013). Most of 

the proposals for data analytical procedures are most easily (or only) applicable to what Onghena 

and Edgington (2005) refer to as “phase designs” in which “the whole sequence of repeated 

measurements is divided into treatment phases and several consecutive measurements are taken 

in each treatment phase” (p. 59). A reversal design, such as an ABAB design, is an example of 

such a phase design, as is the simple AB design, whereas a multiple baseline design is referred to 

as an instance of a “simultaneous replication design”. 

The illustrations of SCED data analysis from these special issues and from recent publications 

have also mainly focused on AB, ABAB, or multiple baseline designs – this is the case for 

nonoverlap indices (Vannest & Ninci, 2015), standardized mean difference indices (Beretvas & 

Chung, 2008; Shadish, Hedges, & Pustejovsky, 2014), multilevel models (Moeyaert, Ferron, 

Beretvas, & Van Den Noortgate, 2014), the one-level regression-based procedure (Swaminathan, 

Rogers, Horner, Sugai, & Smolkowski, 2014), simulation modelling analysis (Borckardt & Nash, 

2014), and interrupted time-series analysis (Harrington & Velicer, 2015). The fact that phase 

designs are the main focus of interest is understandable, given that multiple baseline designs 

have been shown to be most frequently used in applied research (used in 35% of the studies 

according to Hammond & Gast, 2010; 54% in Shadish & Sullivan, 2011, and 69% in Smith, 

2012), followed by reversal designs (used in 21% of the studies according to Hammond & Gast, 

2010; 8% in Shadish & Sullivan, 2011 and 17% in Smith, 2012). 
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Nevertheless, for certain types of behaviors and treatments, an alternating treatments design 

(ATD) can be (and has been) used successfully in applied behavioral analysis and related 

domains: in 16% of the studies according to Hammond and Gast (2010), 8% in Shadish and 

Sullivan (2011), and 6% (together with simultaneous treatment designs) in Smith (2012). ATDs 

are characterized by a rapid and frequent alternation of conditions, which entails the absence of 

phases (Barlow & Hayes, 1979). Usually only one or two consecutive measurements are made 

under each condition, before the next switch of conditions. Given that ATDs have received less 

attention in terms of data analysis, our main objective is to present the analytical techniques 

previously proposed for ATDs as well as two new proposals that overcome some of the 

limitations of the existing techniques. Thus, our main questions are: How can ATD data be 

analyzed? and, more importantly, How should ATD data be analyzed? In order to be able to 

comment on the applicability and informative value of the analytical techniques and to perform a 

comparison among them, it is necessary (a) to present the main desirable characteristics of ATDs 

from a theoretical perspective and (b) to review some characteristics of the designs and the data 

in real applied research conducted using ATDs. In that sense, we answer the questions When and 

for what purpose can the different analytical techniques be used?, which is intended to help us 

choose the most appropriate analyses. 

 

Characteristics of Alternating Treatments Designs 

Main Methodologically Desirable Characteristics 

In contrast to phase designs, alternation designs allow “any level of the independent variable 

[to] be present at each measurement occasion [and are] applicable in situations where rapid and 
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frequent alternation of treatments is possible” (Onghena & Edgington, 2005, p. 58). ATDs are 

referred to as comparative single-subject designs by Wolery, Gast, and Hammond (2010), 

allowing for fast comparison in readily reversible behavior. “Rapid and frequent alternation” 

usually means that few measurements are taken for a certain condition before changing to 

another condition; actually, a common restriction is a maximum of two consecutive 

measurements from the same condition (Heyvaert & Onghena, 2014; Kratochwill et al., 2013; 

Wolery, Gast, et al., 2010). 

ATDs are particularly well-suited to study the effect of more than one intervention. Moreover, 

Wolery, Gast, et al. (2010) indicate that a control condition can also be alternated with the 

condition(s) of main interest in what is called the “comparison phase”, instead of being only a 

separate initial phase. Additionally, Holcombe, Wolery, and Gast (1994) state that it is 

recommended to also have a final phase in which only the most effective condition is used. 

The different treatments are applied in different (but contiguous) moments in time, in contrast 

with simultaneous treatments designs in which these interventions are available at the same time 

and in which the participant chooses the desired treatment (Barlow & Hayes, 1979; Barlow, 

Nock, & Hersen, 2009). Moreover, an ATD should be distinguished from an adapted ATD 

(referred to as AATD), which is designed to deal with nonreversible behaviors (e.g., when a 

learning process is involved). In AATDs the different conditions are applied to independent 

behaviors, which are supposed to be novel and of equal difficulty (Holcombe et al., 1994). The 

distinction is relevant for the analytical options reviewed and proposed here, given that it is 

common in AATD to have measurements of the different behaviors subjected to different 

interventions during the same measurement occasion. Thus, the number of values for each 

intervention is equal and there are pairs of values taking place in the same session. 
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The alternation of treatments is usually determined in a random way (Barlow & Hayes, 1979; 

Barlow et al., 2009; Kazdin, 2011; Kratochwill & Levin, 2014b). However, because the number 

of consecutive applications of the same condition is constrained, the corresponding 

randomization scheme has been called “semi-random” (Barlow et al., 2009) or “restricted” 

(Onghena & Edgington, 1994). Actually, the inclusion of randomization is relevant for the 

internal validity of the study and also for boosting the scientific credibility of the results obtained 

using an ATD (Edgington, 1996; Heyvaert, Wendt, Van Den Noortgate, & Onghena, 2015; 

Kratochwill & Levin, 2010; Tate et al., 2013; Vohra et al., 2015). 

Actually, ATDs are distinguished from other designs that also include rapid and frequent 

alternation of treatments: the Completely Randomized Design (CRD) and the Randomized Block 

Design (RBD) (Edgington, 1967, 1980a; Onghena & Edgington, 1994, 2005), which perform 

randomization as in group-comparison experiments (see e.g., Hinkelmann & Kempthorne, 2008; 

Kirk, 1995), only replacing the participants by the measurement occasions as the experimental 

units. For example, in a CRD comparing two conditions with five measurement occasions each, 

there would be 252 randomization possibilities. In an RBD, the randomization possibilities are 

restricted to randomization within pre-specified blocks, for example by randomizing the two 

conditions in pairs, with one measurement occasion in the morning and one measurement 

occasion in the afternoon. For the comparison of two conditions with five measurement 

occasions, such an RBD contains only 32 randomization possibilities. This randomization 

scheme is identical to the randomized pair assignment that Levin, Ferron, and Kratochwill 

(2012) found to be associated with adequate performance of the randomization test in terms of 

Type I and Type II error rates, apart from representing a methodologically sound design. 
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CRDs are less appealing for single-case researchers because the set of randomization 

possibilities contains designs with undesirable properties. For the example with two conditions 

(A and B) and five measurement occasions each, one of the randomization possibilities for a 

CRD is AAAAABBBBB, precluding the necessary repeated attempts to demonstrate the 

intervention effect (Kratochwill et al., 2010; Onghena & Edgington, 1994). In that sense, a CRD 

may lead to a randomization that does not contain rapid or sufficient alternation of conditions 

(e.g., AAABBAABBB), or any alternation at all (e.g., BBBBBAAAAA). In some cases this lack 

of sufficient alternation might lead to not meeting the What Works Clearinghouse Standards 

(Kratochwill et al., 2010). Therefore, a researcher who uses a CRD may need to perform several 

random selections until a desirable sequence is obtained, actually performing restricted 

randomization. 

RBDs are more popular and often the first choice in the so-called “N-of-1 randomized 

controlled trials” of personalized evidence-based medicine (Guyatt et al., 1990; Guyatt, 

Jaeschke, & McGinn, 2002; Vohra et al., 2015). However, RBDs are overly restrictive if only 

rapid and frequent alternation is needed. In the example above, a design such as 

AABBABABBA is not possible using an RBD, whereas it would be an admissible ATD. For an 

ATD it is only needed to define a maximum number of consecutive measurement occasions 

under the same condition (Onghena & Edgington, 1994). 

Another option pointed out by a reviewer is to randomly choose between a sequence starting 

with A (e.g., ABABABAB) and a sequence starting with B (e.g., BABABABA) and then 

systematically alternating conditions after the first measurement occasion, but counterbalancing 

the two possible orders across cases. Finally, it is also possible to systematically alternate 

conditions, as in ABABABABAB (e.g., Morgan & Morgan, 2009). Both these options, however, 
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would not allow benefiting from randomization as a means of increasing internal validity 

(Kratochwill & Levin, 2010). 

In sum, the first distinctive characteristic of ATDs is the absence of long sequences of 

measurements in the same condition (a minimum of three and a recommendation of five are 

currently endorsed for phase designs as per Kratochwill et al., 2013, and Tate et al., 2013,). This 

characteristic implies that levels and trends are to be estimated in a different way as compared to 

phase designs, as we will discuss later. Moreover, ATDs should be distinguished from RBDs, as 

in the former the comparison of adjacent conditions is less straightforward because there are not 

necessarily clear pairs to be compared. For example, in an ATD with an AABBABABBA 

sequence, this sequence can be split into different sets of comparisons, AABB-AB-AB-BA or 

AAB-BA-BA-BBA, and the analytical challenge is even greater if the number of measurement 

occasions for A and B is not equal. The second distinctive characteristic of ATDs is the common 

presence of random determination of the alternation of conditions, which makes randomization 

tests a natural analytical option, as discussed in a later section called “Inference”.  

Design Analysis 

In relation to the previously presented desirable characteristics of ATDs, Kratochwill et al. 

(2010, 2013) and Brossart, Vannest, Davis, and Patience (2014) stress the importance of using a 

design that helps ruling out threats to internal validity so that it can provide evidence for the 

functional relation between the behavior of interest and the manipulated variable (treatment 

condition).  

Regarding the number of alternations, Kratochwill et al. (2010, 2013) recommend that an 

ATD should include five repetitions of the alternating sequence in order to meet the design 
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standards for providing solid evidence. Another requirement is that there are at least five data 

points per condition (see also Wolery, Gast, et al., 2010, who even recommend collecting data 

until a clear pattern is identified). The demonstration of a functional relation would, thus, require 

a behavioral change in the predicted direction each time that the conditions are alternated. 

Regarding threats to internal validity, several threats need to be taken into account. First, 

“history” refers to external events occurring at the same time as the intervention and is relevant 

for studies gathering data longitudinally and comparing measurements before and after the 

change(s) in the conditions. The fact that conditions change more than once in an ATD and that 

the sequence of conditions is usually randomly determined, makes it less likely that external 

events occur always at the same moment as the change in conditions. Second, order effects (also 

called sequence effects) refer to the possibility that the outcomes obtained depend on the 

conditions being applied systematically in the same order. The random determination of the 

order also allows addressing this potential threat (Barlow & Hayes, 1979; Edgington, 1967, 

1996), leading to many possible orders as combinations of conditions being compared (e.g., AB, 

AC, BA, BC, CA, CB when comparing three conditions). A systematic improvement during only 

one of the conditions would be a demonstration of its superiority regardless of the sequence of 

conditions. Third, carryover effects refer to the influence of one treatment on another subsequent 

treatment. This threat can be dealt with by alternating the control condition together with the 

intervention conditions in the comparison phase, so that it can be verified whether there are any 

systematic changes even in absence of an active intervention (Holcombe et al., 1994). If the 

behavior shows worse levels during the control condition, carryover effects are less likely. 

Fourth, multiple treatment interference refers to the question of whether the effect of an 

intervention applied in frequent alternation with another intervention would be the same if the 
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former is presented alone (or compared to a control condition). For dealing with this threat, it has 

been suggested to increase the amount of time between sessions (wash-out periods; Barlow & 

Hayes, 1979; Barlow et al., 2009; Kazdin, 2011). In general, internal validity threats can be 

tackled by including randomization and by having a large number of opportunities for a 

predicted effect to manifest itself or not.  

Review of Alternating Treatments Designs Empirical Published Research 

Aim of the review. We performed a review of published ATD studies in order to answer the 

following questions: (a) what are the characteristics of the design: presence or absence of 

randomization in determining the sequence of conditions (relevant for the performance of 

randomization tests; Levin et al., 2012); number of studies in which the conditions have the same 

number of measurement occasions (relevant for a modification of the Percentage of 

nonoverlapping data; PND-W); presence or absence of a baseline phase before the comparison 

phase (relevant for piecewise regression); (b) what are the characteristics of the data: presence or 

absence of overlap (relevant for visual analysis), presence or absence of linear trend (relevant for 

mean difference and measures of scatter based on the mean), presence or absence of nonlinear 

trend (relevant for mean difference and for linear regression and the possibility to apply local 

regression); (c) how have the data been analyzed: before reviewing and developing proposals 

made for analyzing ATD data, we consider that it is necessary to be acquainted with the actual 

practice. Additional aspects coded (which could be useful for simulation studies), but not 

presented here are: number of replications
1
, number of conditions being compared, the average 

                                                           
1
 Note that in this paper, following Kratochwill et al. (2010), we use the term “repetitions” when referring to the 

alternation of conditions within a single ATD. We use “replication” when talking about several ATDs – across 
participants or across behaviors.  
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number of data points per condition; number of data points in each ATD; number of individual 

ATDs in which there were at least five measurement occasions per condition, as suggested by 

Kratochwill et al. (2013) and Wolery, Gast, et al. (2010). 

Bibliographic search. The bibliographic search was performed in the PsycINFO database up 

to January 1, 2016 with the term “alternating treatments design” (in quotation marks) to be 

present in any field of the text. We focused on the articles published in the years 2010 to 2015, 

given that 2010 is the year when the What Works Clearinghouse Standards for SCED were 

published (Kratochwill et al., 2010) and it is also the year when the chapter by Wolery, Gast, et 

al. (2010) was published, being one of the very few recent texts explicitly discussing both the 

methodological and analytical possibilities for ATDs. The number of hits obtained was as 

follows: 23 for 2010, 26 for 2011, 29 for 2012, 28 for 2013, 27 for 2014, and 27 for 2015. We 

critically examined each publication to assess whether the design was actually an ATD, with the 

papers meeting this criterion being 8 in 2010, 7 in 2011, 10 in 2012, 7 in 2013, 6 in 2014, and 9 

in 2015 (two of these nine studies were available online in 2015, but their definitive versions 

were published in 2016). The 47 studies reviewed represent a convenience sample in the sense 

that online journal articles (but not book chapters or dissertations) are included. 

Operational definitions. The following operational definitions were used. For assessing 

whether randomization was present in the design, we read the design sections of the manuscript 

looking specifically for the word “random” (and its derivatives including “semi-random”, e.g., 

Sil et al., 2013) when describing the choice of the sequence of conditions. Moreover, 

randomization was also judged to be present when drawing conditions from a hat (e.g., Sabielny 

& Cannella-Malone, 2014; Schneider et al., 2013) or when flipping a coin (e.g., Yakubova & 

Bouk, 2014). In contrast, when no details were provided about the order or sequence of the 
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conditions (e.g., Pane et al., 2015) or when only a “counterbalanced sequence” without further 

specification was reported (e.g., McLay et al., 2015; Mong & Mong, 2012), we considered that 

the design does not entail randomization.  

Regarding other characteristics of the design, identifying whether the conditions had the same 

amount of measurements required counting the number of data points per condition. Identifying 

whether the ATD included an initial baseline phase consisted in inspecting the graphs for initial 

phases in which the behavior of interest is measured in absence of an intervention. 

Regarding the characteristics of the data, overlap was defined as per Wolery, Gast, et al. 

(2010): only if the lines that connect the points belonging to different conditions cross, then there 

is overlap. Figures 1A and 1B show no overlap according to this definition, whereas Figures 1C 

to 1F do show overlap. In that sense, overlap was not defined as in the Nonoverlap of all pairs 

(NAP; Parker & Vannest, 2009): whether any data point from a control condition represents an 

improvement over any other data point of the intervention condition, regardless of the order in 

the sequences. 

The presence of any kind of trend, linear or nonlinear was assessed visually, instead of fitting 

regression straight or curve lines to assess their degree of fit. In that sense, our procedure was 

subjective, but we also avoided the need to compare several nonlinear models, without a clear 

justification for the use of any of them. Linear trend was defined as a systematic pattern of 

increase or decrease, meaning that, in general all measurements headed in a specific direction 

and did not change this direction until the end of the series or of the comparison phase. For 

instance, the conditions marked with an empty square on Figures 1A and 1D shows a downward 

linear trend, whereas 1B shows an upward linear trend. A nonlinear trend was judged to be 
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present when an upward trend or a downward is flattened (see the conditions marked with empty 

circles and empty squares in Figure 1E; see also Figure 2 of Sil et al., 2013) or when stable data 

initiated a trend (see the condition marked with empty squares on Figure 1C), or when there is 

one or more alternations between data going upwards and downwards (e.g., Figure 1F; see also 

Figures 2 and 3 in Yakubova and Bouck, 2014; Figure 4 in Losinski et al., 2015). Our coding 

reflects whether there was any replication of the ATD for which linear trend, nonlinear pattern, 

or overlap was present, as we wanted to explore what proportion of the studies (rather than of the 

individual data sets) present analytical challenges. 
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Figure 1. Examples of real data gathered via alternating treatments designs. 
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Regarding the analytical indices and techniques reported in the studies reviewed, we have 

grouped all qualitative references to different aspects of the data (e.g., level, trend, overlap) not 

accompanied by numerical values into the category “visual analysis”. We used the label “Mean 

and mean difference” for the studies comparing the level of the behavior of interest across 

conditions, given that some of them only mentioned the individual means, whereas others 

actually computed the difference between the means in the different conditions. Additionally, we 

separated “percentage change” from “mean difference” for those studies in which the difference 

is expressed in percentages (in relation to the baseline condition level) rather than in raw 

measures. We also grouped the different indices for dispersion (e.g., range, standard deviation) 

into the category “variability”. In one occasion, we used the terms of the authors of the article in 

which it is stated that “trend analysis” was used and a quantification was provided. Finally, 

intervention effectiveness was assessed in some ATD studies by counting the number of sessions 

needed to achieve a pre-established criterion. For instance, Coleman, Cherry, Moore, Park, and 

Cihak (2015) implemented the following criterion: “100% accuracy for two consecutive sessions 

out of three consecutive sessions in which 80% or higher responding was obtained in one 

condition” (p. 202). This analytical option was counted as present in our review only when the 

authors explicitly mentioned how many sessions were required to reach a predefined criterion. 

Results. Regarding design features, the alternation of conditions is randomly determined in 

25 studies (53.19%): 7 studies used an RBD, 5 incorporated a restriction about the number of 

consecutive implementations of the same condition, 3 mentioned counterbalancing, and 10 did 

not provide further information. Concerning other design features, the number of measurement 

occasions is the same for all conditions in all replications in 17 studies (36.17%), and an initial 

baseline phase is present in 25 studies (53.19%). Regarding data features, overlap was present in 
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an ATD dataset in 44 of the studies (93.62%), linear trend was present in 41 studies (87.23%), 

and nonlinear trend was present in 42 studies (89.36%). These design and data features will be 

referenced when commenting on the different possible analyses of ATD data. Regarding the 

types of analysis actually applied in the published research reviewed here, Table 1 includes a 

summary. Specifically, visual analysis is the most commonly applied way of assessing the data; 

average levels and variability were present in more than half of the studies. 

Table 1. Summary of the data analysis characteristics of the alternating treatments designs in the 

published empirical research (47 studies) we reviewed for the period 2010-2015. 

Analyses performed in the studies Frequency Percentage 

Visual analysis 36 76.60 

Mean and mean difference 34 72.34 

Variability (e.g., range) 24 51.06 

Sessions to attain criterion 15 31.91 

Percentage of nonoverlapping data 5 10.64 

Percentage change 2 4.26 

Standardized mean difference 2 4.26 

Randomization test 1 2.13 

Trend analysis 1 2.13 

 

Alternating Treatments Designs Data Analysis 

In the present section we focus on: detailing how ATD data can be analyzed, on the basis of 

actual practice (i.e., as found in the review presented previously) and on the basis of previously 

available analytical developments suggested for ATD. Additionally, after presenting all currently 

existing options, we propose two new analytical techniques. For all data analysis options, we 

provide the following information: (a) the name of the technique and description of its 

application; (b) authors who have developed, adapted or proposed the technique; (c) the research 

question that the technique helps answering; (d) requirements about the measurement scale of the 
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variables; (e) design requirements; (f) data patterns for which the technique is most easily 

interpreted; (g) possibility to compare more than two conditions; (f) possibility to compare 

values across studies or across replications within the same study, in case different measurement 

units are used; (h) relation to the information obtained in the review of published research; (i) 

summary of the main strengths and limitations. 

Existing Analytical Techniques: Visual Analysis. 

Research question and application. Visual analysis is the classical way of analyzing single 

case data and the most frequently applied technique, present in 75% of the studies included in 

our review. In fact, Barlow et al. (2009) suggest that in most cases visual analysis is expected to 

be sufficient for ATD data, especially if large effects (more likely to be clinically significant) are 

sought for. Regarding the research questions that visual analysis can help answering, Kratochwill 

et al. (2010) focus on its application for demonstrating evidence of a relation between an 

independent variable and an outcome variable. 

Requirements about measurement scale of the variables, design, and data pattern. For 

applying the technique, the measurements should be in an ordinal, interval or ratio scale and 

there are no specific design requirements. Regarding the data patterns for which visual analysis 

is most easily applicable, Kazdin (1978) mentions that the data should not be very variable. 

However, as per Kratochwill et al. (2010), variability is one of the data aspects suggested to be 

inspected visually, together with level, trend, immediacy of the effect, overlap, and consistency 

of data patterns across similar phases. Actually, in terms of applying visual analysis, Barlow et 

al. (2009) state that nonoverlap should be the criterion for establishing the difference between 

conditions, whereas levels and trends are less relevant in ATDs. In contrast, Holcombe et al. 
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(1994) stress the importance of considering level and trend. Finally, in terms of the design 

features required from an ATD to apply visual analysis, and considering the usual aim of 

demonstrating a functional relation, we refer the reader to the “Design analysis” section 

presented earlier in the text. 

Comparing more than two conditions in the same design and comparing values across 

studies. In terms of the comparison of more than two conditions represented on the same graph, 

the four steps of visual analysis described to the What Works Clearinghouse Standards 

(Kratochwill et al., 2010) can be applied to all pairs of conditions. In terms of comparing the 

results obtained across studies, the outcome of visual analysis is qualitative: according to 

Kratochwill et al. (2010) there is either strong, moderate or no evidence for a functional relation 

in an individual study. This evaluation only makes it possible to use vote-counting techniques for 

integrating and comparing the findings of several studies. Actually, it has been suggested that 

once strong or moderate evidence is obtained, statistical analysis can be applied (Kratochwill et 

al., 2013; Parker, Cryer, & Byrns, 2006). In the Discussion section we comment on the ways in 

which we consider that visual analysis can be used jointly with statistical analysis. 

Summary of the main strengths and limitations. Regarding the strengths of visual analysis, 

the possibility to take into account all six abovementioned data features is noteworthy. However, 

a limitation is that applying the four steps detailed in Kratochwill et al. (2010) to ATD requires 

some adaptations: the first step has to refer to the measurements in the control condition 

providing a clear basis for comparison, even though a baseline phase may not be present (as was 

the case for 46% of the studies reviewed here). For the assessment of within-phase level, trend, 

and variability in the second step, the use of visual aids for representing variability (e.g., standard 

deviation bands; Pfadt, Cohen, Sudhalter, Romanczyk, & Wheeler, 1992) or trend and a trend 
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stability envelope (Gast & Spriggs, 2010; Manolov, Sierra, Solanas, & Botella, 2014) may lead 

to the ATD graphs becoming unreadable due to an excess of superimposed lines, as the 

measurements belonging to the same condition are usually connected to allow for comparisons. 

In the third step, a comparison between conditions is performed in terms of level, trend, and 

variability, as well as overlap, immediacy of the effect, and consistency of patterns in similar 

phases. In the ATD context, this would mean comparing the lines representing the different 

conditions. Whereas level and trend are relatively straightforward to compare, overlap is a more 

delicate issue. It was already mentioned that overlap can be defined as the crossing of the lines of 

different conditions, which is different with how overlap is defined for phase designs. Moreover, 

the immediacy of the effect is also not a clear criterion, as it is apparently insufficient to judge 

the effect of the intervention for the first alternation of conditions. Finally, the consistency in 

similar phases cannot be assessed in an ATD, given that there are no phases. In the fourth step, it 

is determined whether there are enough demonstrations of an effect at different points in time. 

For ATDs, at least five (rather than three) repetitions are needed, given the fast alternation of 

conditions. However, further clarification is required because the AABBAABBAABB example 

provided by Kratochwill et al. (2010, 2013) as a valid design does not apparently meet the 

criterion of “five repetitions of the alternating sequence” unless we understand these repetitions 

as “short phase transitions” (AAB-BA-AB-BA-ABB). In contrast, Kratochwill et al. (2010, 

2013) also provide an example of a design with five measurement occasions for each condition 

(BCBCBCBCBC) but this is only an acceptable randomized design with predetermined and 

fixed number of measurement occasions for only one of the random assignment possibilities. 

Obviously, a decision about the number of measurement occasions cannot be based on the 

desired randomization outcome. 



21 
 

Running head: ATD DATA ANALYSIS 

As a final limitation, the performance of visual analysts has generally been assessed with 

phase designs (Danov & Symons, 2008) and it is unclear to what degree visual analysts would 

agree when inspecting more complicated graphs (e.g., Figures 1C, 1D and 1E) or graphs that do 

not show clear patterns (e.g.,  Figures 1A and 1B). 

Existing Analytical Techniques: Percentage of Nonoverlapping Data. 

Research question and application. One of the six data features mentioned above as critical 

for visual analysis has received more attention that the rest – overlap, specifically quantified via 

the Percentage of Nonoverlapping Data (PND; Scruggs & Mastropieri, 2013; Scruggs, 

Mastropieri, & Casto, 1987). In the context of ATDs, Wolery, Gast, et al. (2010) adapt it to the 

features of the design and advocate for its use. (In what follows we refer to their procedure as 

PND-W.) Despite the fact that other nonoverlap indices exist (see Parker, Vannest, & Davis, 

2011, for a review), we only deal here with PND-W, as no other indices have been specifically 

discussed in relation to ATDs, nor used in any of the studies included in our review, where PND 

was used four times and PND-W once in the 47 studies. 

In terms of obtaining the numerical value, the first measurement for condition A is compared 

to the first measurement for condition B, the second measurement for condition A is compared to 

the second measurement for condition B, and so forth, performing 𝑛𝑚𝑖𝑛 comparisons: 𝑛𝑚𝑖𝑛 =

𝑚𝑖𝑛{𝑛𝐴, 𝑛𝐵}, where 𝑛𝐴 and 𝑛𝐵 are the number of measurements in each condition. The technique 

quantifies the superiority of one condition as compared to another, with the quantification 

referring to the percentage of comparisons for which this superiority is observed and not 

referring to the amount of superiority in each of the comparisons (Solomon, Howard, & Stein, 

2015). 
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Requirements about measurement scale of the variables, design, and data pattern. 

Regarding the measurement scale of the variables, ordinal or higher-scale data can be used. 

Regarding design requirements, the PND-W is best applicable when the conditions compared 

take place the same number of times, as in RBDs or in AATDs. For such data PND-W would 

allow obtaining block-by-block information about the superiority of one condition over the other. 

If one condition is present more than the other (according to our review only 36% of the studies 

included datasets in which the conditions were measured the same number of times), some data 

remain unused, as there is no clear indication how to proceed. 

Given that PND-W does not entail estimating level or trend it does not require any specific 

data pattern in order for the quantification to be readily interpretable. Nevertheless, Wolery, Gast 

et al. (2010) recommend computing separate PND-W values for the different fractions of the 

data when trend is present, which makes the index in such cases ill-defined. 

Comparing more than two conditions in the same design and comparing values across 

studies. PND-W can be applied for a comparison between all conditions pairs when more than 

two conditions are available, but if there is an unequal number of measurements per condition or 

the measurements are too distant in time (see Figure 1E) the usefulness of this index is 

compromised. The fact that PND-W provides a quantification in terms of a percentage means 

that it can be used for comparing or integrating the results across studies. Although not all 

features of classical meta-analysis would be possible due to lack of knowledge regarding the 

sampling distribution of the index (Shadish, Hedges, et al., 2014), it is possible to use the number 

of data points as a weight in the meta-analysis (Shadish, Rindskopf, & Hedges, 2008). 
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Summary of the main strengths and limitations. The main strength of PND-W is its 

applicability to ordinal data and the attainment of a summary measure comparable across studies. 

The main limitations refer to the restricted set of conditions to which it is applicable and the lack 

of knowledge regarding the sampling distribution. 

Existing Analytical Techniques: Mean Difference. 

Research question and application. As illustrated in our review, computing means and 

mean differences is the most common form of quantification in ATDs, present in 72% of the 

studies reviewed. It is also common to accompany this quantification by some measure of 

dispersion (usually range): this was the case in 70% of the studies reporting means. The research 

question answered by using the mean difference is the magnitude of the difference between the 

conditions, when all values are used and no attention is paid to the sequence of the values, any 

existing trends, or the amount of overlap. This difference measure, expressed in the same units as 

the dependent variable, is usually accompanied by reporting data variability in each condition, 

but still without considering possible trends. 

Requirements about measurement scale of the variables, design, and data pattern. 

Regarding measurement scale, means are meaningful for interval and ratio scale data. There are 

no specific design requirements for computing a mean difference. In terms of the data pattern for 

which the technique is most easily interpreted, a mean may summarize the data in a given 

condition, but it provides a poor model of the data when trends are present. Means are reasonable 

as a summary measure of central tendency when trends are almost identical across conditions. In 

that sense, the summary provided by a mean may be missing relevant aspects of the data, such as 

general trends affecting the whole data series or different trends in different portions of the data. 
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The suggestion we make here is to offer quantifications that provide information more specific 

than the one provided by mean. This suggestion, later formalized in our two proposals, is well-

aligned with the emphasis on the importance of data variability and the fact that the average 

eliminates it as unimportant (Normand, 2016).  

Comparing more than two conditions in the same design and comparing values across 

studies. Comparing more than two conditions is straightforward because each condition has its 

own mean. Comparability of means obtained in different studies is possible if the outcome 

measures are expressed in the same units or by computing a standardized mean difference (see 

Busk & Serlin, 1992). Two aspects need to be kept in mind when using the standardized mean 

difference for SCED data. First, the regular standardized mean difference for SCED data is not 

comparable to the standardized mean difference for group-comparison data because a measure of 

intra-individual variability is used as the denominator in the former and a measure of inter-

individual variability is used as the denominator in the latter (Van Den Noortgate & Onghena, 

2008). Smaller variability is expected when the measurements are obtained from the same 

individual (Beretvas & Chung, 2008). Second, the recently developed measure for standardized 

mean difference for SCED data, which is compatible and comparable to the standardized mean 

difference for group-comparison data, is not applicable to ATDs (Shadish, Hedges, et al., 2014). 

Summary of the main strengths and limitations. The main strength of the mean difference 

is that it is straightforward to compute and interpret, allowing for comparison across studies, 

when standardized. The main limitation is that means provide a model that is adequate only for 

stable data and a summary that would also be reasonable when the conditions compared exhibit 

identical linear on nonlinear patterns. 
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Existing Analytical Techniques: Piecewise regression. 

Research question and application. Data modelling in an ATD could be considered to 

follow the same parametric regression-based options available for other SCEDs, so that trends 

can be modelled in the same step of the analysis or by first controlling for trend and then 

performing subsequent analysis with the residuals. However, note that none of the studies 

included in our review used a regression-based model. 

Focusing first on simpler models, Moeyaert, Ugille, et al. (2014), and Moeyaert et al. (2015) 

comment on how the piecewise regression equation of Center, Skiba, and Casey (1985-1986) can 

be extended to be applicable to ATD. The research questions answered by piecewise regression 

are: (a) what is the immediate effect of introducing an intervention in the comparison phase, after 

a baseline phase has terminated; (b) what is the trend for each intervention; and (c) what is the 

difference in trends between the baseline phase and the interventions in the comparison phase. In 

the example provided by Moeyaert, Ugille, et al. (2014), the immediate intervention effect is 

estimated at two different time points after the baseline phase has finished: when conditions B 

starts and when condition C starts. For designs with no baseline phase (e.g., Figures 1A, 1E, and 

1F), a more reasonable alternative is to perform the comparison for the last measurement time, as 

proposed by Shadish et al. (2013), which is also consistent with proposals for analyzing ABAB 

data (Olive & Franco, 2008). According to the design matrix that makes such a comparison 

possible, the intercept would be the fitted value for the control condition for the last 

measurement occasion and it would be compared to the fitted value for the intervention condition 

at the same (last) moment. 
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Requirements about measurement scale of the variables, design, and data pattern. 

Regarding the requirement about the measurement scale of the variables, parametric regression is 

meaningful for interval and ratio scale data. In terms of design requirements, the adaptation of 

piecewise regression, as described by Moeyaert et al. (2014), requires an initial baseline phase. 

Regarding the data pattern for which the technique is most easily interpreted, the illustrations 

by Moeyaert, Ugille, et al. (2014) and Moeyaert et al. (2015) deal with linear trends, but 

modelling could also be performed via generalized additive models in such a way that different 

trends and different data patterns are taken into account (Shadish, Zuur, & Sullivan, 2014), with 

the use of a Poisson model specifically suggested for count data (Shadish, Kyse, & Rindskopf, 

2013). In terms of most suitable data patterns, in some cases the interpretation of results 

expressed as an immediate change in intercept at the beginning of the comparison phase and a 

difference in slopes can be challenging: (a) when the intercept is higher (desirable) for one of the 

conditions but the trend is decreasing (see Figure 1C); and (b) when the lines connecting the 

measurements belonging to different conditions cross (Figure 1D). Moreover, if the last 

measurement occasion is chosen for comparing levels, the difference observed for the data may 

not represent the complete data patterns in an adequate way (e.g., Figures 1C and 1D). 

Comparing more than two conditions in the same design and comparing values across 

studies. Regarding application for comparing more than two conditions, it is possible to compute 

the change in intercept (whichever point it is defined for) for all comparisons between pairs of 

conditions; it is also possible to perform pairwise comparisons between estimated trends. For 

comparing values obtained in different studies using different measurement units for the 

dependent variable, Van Den Noortgate and Onghena (2008) proposed standardizing the effects 
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by dividing them by square root of the mean square error
2
, that is dividing by 

√∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛
𝑖=1 (𝑛 − 1)⁄ , where 𝑦𝑖 are the actual observations and 𝑦̂𝑖 are the predicted values. 

These standardized values can be compared and used in meta-analysis via multilevel models. 

Summary of the main strengths and limitations. The main strengths of piecewise 

regression are modeling flexibility and possibility to compare and integrate results across studies. 

The main limitations are the relative complexity of the models (i.e., the definition of the design 

matrix), the applicability limited to data patterns for which a comparison of intercepts in one 

measurement occasion (which may not be the same across studies) is meaningful and not 

misleading, and due to the lack of single overall quantification, the interpretation may not be 

straightforward when differences in intercepts and slope are in opposite directions. 

Existing Analytical Techniques: Local Regression. 

Research question and application. The use of local regression (LOESS) is motivated by 

the fact that observed trends may not be sufficiently well represented by a straight line or a 

second-order (quadratic) polynomial model (see Figure 1F and illustration 6 from the online 

supplementary material). Specifically, Solmi, Onghena, Salmaso, and Bulté (2014a) propose to 

use nonparametric smoothers for fitting curves to the measurements in each condition and 

comparing those curves; LOESS allows surpassing the need to specify a priori the type of 

relation between time and measurements (Jacoby, 2000). LOESS requires choosing a linear or a 

quadratic model as the basis for each local regression and to deciding the fraction of the data to 

use (see R. A. Cohen, n.d.; Hurvich, Simonoff, & Tsai, 1998) in each local regression via the 

                                                           
2
 Obtained in R via the command sqrt(sum((residuals(reg)^2))/df.residual(reg)) on a previously saved object “reg” 

including the results from the piecewise regression analysis, or for the polynomial or LOESS regression analysis for 
the data in each condition separately.  
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smoothing parameter. Regarding the research question that the technique helps answering, 

LOESS quantifies the difference between the conditions represented by straight or curved lines 

that capture some of the observed variability in the data, but not potential outliers, or all of the 

variability in the data, if the model provides a perfect fit to the measurements.  

Requirements about measurement scale of the variables, design, and data pattern. 

Regarding measurement scale, given that each local regression could be linear or quadratic, it is 

necessary that the data are measured in an interval or a ratio scale. In terms of design 

requirements, it is not necessary that there is the same number of measurements per condition. 

However, the evidence provided by Solmi et al. (2014a) indicating appropriate performance in 

terms of Type I error and statistical power refers to the series lengths (30-100) that are longer 

than the ones observed in the current review of ATD research (values ranging from 2.83 to 17.5 

average measurements per condition in a study, with an overall mean of 6.60 and median of 

5.38). Thus, it is not clear whether the procedure will perform well with typical ATD data. This 

uncertainty as well as the fact that the proposal for applying LOESS to ATD data is recent could 

be among the reasons for not finding any applications of LOESS among the 47 studies reviewed 

here. In terms of the data pattern for which the technique is most easily interpreted, a 

theoretically-supported model for the relation between time and measurements is not necessary, 

nor is it required to assume a specific form of this relation before the analysis. 

Comparing more than two conditions in the same design and comparing values across 

studies. Regarding the application of LOESS for comparing more than two conditions, a 

separate curve is fitted to the data from each condition before comparing them in a pairwise 

fashion. Regarding the possibility to compare effects across studies, for piecewise regression the 

differences in intercept and slope can be standardized on the basis of the variability of the 
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residuals. For LOESS, however, there are as many sets of residuals as conditions. In this case, it 

is possible to standardize each value using the same procedure mentioned before (Van Den 

Noortgate & Onghena, 2008). Running the analyses again with the standardized data will lead to 

mean differences between predicted values that are comparable across ATD replications. For the 

combination of results obtained via the nonparametric smoother, see Solmi, Onghena, Salmaso, 

and Bulté (2014b). 

Summary of the main strengths and limitations. The main strength of LOESS is the 

possibility to model the data in each condition without assuming any specific data pattern a priori 

and without requiring the same number of measurement occasions per condition. The main 

limitations of the procedure are the subjective and potentially not replicable decisions made for 

choosing among different possible models.  

 

New Proposal: ADISO 

Rationale, research question and formal representation. In the present paper we propose a 

new analytical procedure consisting in comparing adjacent conditions, each of which usually 

contains one or two measurement occasions, and in obtaining the weighted average of the 

differences observed in all comparisons. We refer to this proposal as “average difference 

between successive observations” (ADISO) and we offer R code for its computation and 

graphical representation in the online supplementary material, apart from a user-friendly website 

that also incorporates ADISO (http://manolov.shinyapps.io/ATDesign). 

http://manolov.shinyapps.io/ATDesign
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The research question answered refers to the average difference between the conditions, when 

the comparisons are performed on the basis of actually obtained measurements and include only 

measurements of adjacent conditions. As an example, consider that data from Figure 1F, 

representing an AABBAABBABABBABB design. One possible set of comparisons between 

adjacent conditions would be AABB-AABB-AB-ABB-ABB. In such a situation, the mean of the 

first AA pair can be compared to the mean of the second BB pair and so forth until the last 

comparison comprising the last A measurement with the mean of the last two B measurements 

(see the graphical representation on Figure 2A). There would be five differences (8.15, 6.75, 

6.60, 24.95, and 9.80) and the value of ADISO is their weighted average (11.07), with weights 

representing the number of measurements involved in the comparison (4, 4, 2, 3, and 3 in the 

AABB-AABB-AB-ABB-ABB partition). The differences for each comparison show how the 

distance between the conditions varies as the data series progresses; a piece of information not 

provided by the mean difference or by PND-W. 

Another way of conceptualizing ADISO is as a difference between the weighted averages of 

the measurements belonging to the conditions being compared, with the weights representing the 

importance of the value in the comparison. If positive signs are arbitrarily assigned to the values 

of the A condition and negative signs to the values of the B condition, without affecting the final 

result, the weights for the AABB-AABB-AB-ABB-ABB partition represented in Figure 2A 

would be, as follows: the first comparison AABB entails 4 values, there are two A condition 

values each of which is assigned a weight of 4/2 =  2 and two B condition values, each of 

which is assigned a weight of – (4/2) = – 2; the second comparison is identical to the first one; 

the third comparison is AB, entailing 2 values, and the weight for the A condition value is 

2/1 =  2 and for the B condition value is – (2/1) = −2; the fourth and fifth comparisons are 
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identical, ABB, including 3 values, and the weight for the A condition value is 3/1 =  1 and for 

each of the B condition value is – (3/2) = −1.5. 

For the AAB-BA-ABB-AB-ABB-ABB partition represented in Figure 2B the weights would 

be as follows: the first comparison AAB entails 3 values, there are two A condition values each 

of which is assigned a weight of 3/2 =  1.5 and the B condition value is assigned a weight of 

– (3/1) = – 3; the second and the fourth comparisons both entail two values, one per condition, 

the weight for the A condition value is 2/1 =  2 and for the B condition value is – (2/1) = −2; 

the third, fifth, and sixth comparisons are all ABB,  including 3 values, and the weight for the A 

condition value is 3/1 =  3 and for each of the B condition value is – (3/2) = −1.5.  

In general: 

𝐴𝐷𝐼𝑆𝑂 =
∑ 𝑦𝐴𝑖 × 𝑤𝐴𝑖

𝑛𝐴
𝑖=1

∑ 𝑤𝐴𝑖
𝑛𝐴
𝑖=1

−
∑ 𝑦𝐵𝑗 × 𝑤𝐵𝑗

𝑛𝐵
𝑗=1

∑ 𝑤𝐵𝑗
𝑛𝐵
𝑗=1

,  

𝑤ℎ𝑒𝑟𝑒 {
𝑤𝐴𝑖 = (𝑛𝑐𝑜𝑚𝑝(𝐴) + 𝑛𝑐𝑜𝑚𝑝(𝐵)) 𝑛𝑐𝑜𝑚𝑝(𝐴)⁄

𝑤𝐵𝑗 = −(𝑛𝑐𝑜𝑚𝑝(𝐴) + 𝑛𝑐𝑜𝑚𝑝(𝐵)) 𝑛𝑐𝑜𝑚𝑝(𝐵)⁄
 , 

where 𝑛𝐴 and 𝑛𝐵 represent respectively the number of measurements in conditions A and B, 

𝑛𝑐𝑜𝑚𝑝(𝐴) and 𝑛𝑐𝑜𝑚𝑝(𝐵) represent respectively the number of measurements from conditions A 

and B that that are used in the comparison in which the values 𝑦𝐴𝑖 and 𝑦𝐵𝑗 participate, and 𝑤𝐴𝑖 

and 𝑤𝐵𝑗 represent the weights assigned to each value from condition A (𝑦𝐴𝑖) and each value 

from condition B (𝑦𝐵𝑗). Considering this expression, the simple mean difference refers to the 

case in which all 𝑤𝐴𝑖 are equal among themselves and all 𝑤𝐵𝑖 are equal among themselves, 

which makes the weight of each A value equal to 1 𝑛𝐴⁄  and the weight of each B value equal to 



32 
 

Running head: ATD DATA ANALYSIS 

1 𝑛𝐵⁄ . In that sense, ADISO assigns a greater weight to a value that is critical (i.e., the only one 

from its condition) in the context of the comparison in which it is involved, while also taking into 

account the number of values used in this specific comparison. In contrast, the simple mean 

difference assigns greater weights to values from conditions with fewer measurements in 

general. This is an illustration of the more specific emphasis that ADISO has on the comparisons 

actually being performed. 

Possibility for an ordinal comparison. So far ADISO has been presented as a way, 

alternative to the simple mean difference, for quantifying the distance between two conditions, 

focusing on the comparisons between measurements pertaining to adjacent conditions rather than 

using overall averages. Nevertheless, ADISO can also be considered as an alternative to PND-W, 

given that for each comparison, it is possible to only count whether the A or the B condition is 

superior in ordinal terms, without computing the difference in the measurement units of the 

dependent variable. Thus, the overall ordinal quantification, ADISO-O, would be the percentage 

of comparisons for which B is superior to A; only focusing on adjacent comparisons (rather than 

comparing values that are in the same position in the sequence of values from their own 

condition, like PND-W) and being applicable also to data for which nA ≠ nB (unlike PND-W). In 

that sense, ADISO-O for condition B being superior to condition A could be formally defined as 

#(𝑦̅𝐴 < 𝑦̅𝐵)

𝑐
× 100%, 

where c is the number of comparisons performed, 𝑦̅𝐴 is the average of A condition values that are 

used in a given comparison, 𝑦̅𝐵 is the average of B condition values that are used in the same 

comparison, and # represents counting the number of comparisons for which the condition is 

met. 
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For the AABB-AABB-AB-ABB-ABB partition represented in Figure 2A, the B values are 

lower than the A values in all five comparisons leading to 100% superiority. In contrast, in the 

AAB-BA-ABB-AB-ABB-ABB partition represented on Figure 2B, the B condition has lower 

values for 5 of the 6 comparisons, leading to 83.33% superiority. 

 

 

Figure 2. Application of ADISO (average difference between successive observations)  to the 

data gathered by Eilers and Hayes (2015) on the intervals of problem behavior by Jacob, 

comparing a control condition including exposure and a condition including both exposure and a 

cognitive defusion exercise: (A) performing comparisons only in one direction (all AB or all 

BA); (B) a user-defined set of comparisons.  
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Partitioning the data sequence. As the previous examples have shown, there is not always a 

single way of defining which adjacent comparisons to perform. In that sense, there are four 

options for choosing how to segment the sequence of data. First, it is possible to choose a 

segmentation that is meaningful according to substantive criteria, as when an RBD is used 

(blocks representing the natural segmentation points) or using the information about when the 

measurements were taken (e.g., comparing data points from different conditions obtained on the 

same day). We recommend this criterion as the first option as it is based on the design actually 

used or, when the day of measurement is used as a basis, it allows for more control of a 

potentially extraneous variable such as whether the individual had a good or a bad day. 

Second, it is possible to perform all comparisons of conditions being present in the same 

order: for the Figure 1F data, this would lead to five comparisons AABB-AABB-AB-ABB-ABB 

(Figure 2A); for the Figure 1E data comparing empty squares (C) and filled triangles (B), this 

would lead to CBBB-CCBB-C. The interpretative advantage is that all quantifications refer to 

switching from condition A to condition B. However, there are two issues: (a) the rapid (and 

frequently randomly determined) alternation of conditions is supposed to make the order of the 

conditions irrelevant and to counter sequence effects; and (b) as in the example for the Figure 1E 

data, this approach might lead to some unused measurements. 

Third, it is possible to choose a segmentation that leads to more comparisons being 

performed: for the Figure 1F data, the segmentation AAB-BA-ABB-AB-ABB-ABB (shown on 

Figure 2B) leads to six comparisons and, for the Figure 1E data, the segmentation CBB-BC-CB-

BC leads to four comparisons. As illustrated, the advantage of such an approach that it could 

favor meeting the What Works Clearinghouse Standards of five repetitions of the alternation or 

meeting the standards with reservations – four repetitions (Kratochwill et al., 2010). 
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Fourth, it is possible to avoid making a decision, by applying ADISO for all possible 

segmentations (or only for those meeting design standards, if one or several do) and exploring 

the extent to which the value of ADISO differs according to the quantification. In that sense, a 

sensitivity analysis would be performed, as suggested for multilevel models (Ferron et al., 2008). 

If results do not differ greatly, a reasonable approach would be to compute the average value of 

ADISO across all segmentations. In contrast, if the results are very different, reporting all 

ADISO values and tentatively interpreting them is the only option. We consider that this latter 

approach is the second best option, in case the features of the design cannot be used for 

determining the partition of the sequence. 

Requirements about measurement scale of the variables, design, and data pattern. Given 

that ADISO entails computing means an interval or ratio scale is required for the measurements 

of the dependent variable. However, ADISO-O can be computed for ordinal data as well. In 

terms of design, there are no specific requirements about series length or the number of 

measurements per condition, or the necessity of an initial baseline phase. For AATD in which 

there are measurements for each intervention available for the same measurement occasions, it is 

not necessary to choose a partition of the sequence because the natural comparison is between 

values from the same session. Regarding the data pattern for which ADISO is most suitable, the 

fact that no specific relation between time and the measurements is assumed, ADISO is 

applicable to stable data, as well as to data exhibiting linear or nonlinear trends. 

Application of ADISO when comparing more than two conditions. In case more than two 

conditions are being alternated, there are two possible approaches. The first approach is to 

compare each occurrence of the preceding condition with each subsequent occurrence of another 

condition. For instance, for the data in Figure 1A (ABCBCABACCBA), it is possible to compare 
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AB three times, AC or CA four times, and BC or CB four times. The second approach is to 

perform only the comparisons between contiguous measurements (i.e., AB-CB-CA-BA-CCB-A 

for the data in Figure 1A). The advantage of this second approach is that it involves comparisons 

that are better aligned with ADISO’s logic of comparing only adjacent conditions, but the 

drawback is that there are fewer comparisons and, as in the example, it is possible that some 

measurement remains unused. We advocate for the second approach in order to avoid comparing 

conditions separated by other conditions in the sequence. According to our review of published 

research using ATD, it is most common to compare two or three conditions (resp. 47% and 49% 

of the studies); in 4% of the studies four conditions were compared. If pairwise comparisons are 

performed, this would lead to six possible comparisons, which could be problematic if these 

comparisons were accompanied by multiple unadjusted statistical tests (i.e., randomization tests) 

because it would increase the probability of obtaining a statistically significant result by chance. 

In such cases, a Holm-Bonferroni or a Dunn-Sidák adjustment could be used to control for the 

family-wise Type I error rate (Edgington & Onghena, 2007; Westfall & Young, 1993). However, 

the descriptive use of ADISO would not be compromised. 

Comparing values across studies. The main outcome of ADISO is expressed in the same 

measurement units as the dependent variable, which limits the comparison across studies using 

different operative definitions of the same constructs. The standardization we propose here for 

making values comparable consists in dividing the ADISO value by the standard deviation of the 

differences computed for each comparison, which are averaged to obtain the ADISO value itself. 

For instance, for the Figure 2A data, the comparisons led to the following differences 8.15, 6.75, 

6.60, 24.95, and 9.80, whose standard deviation is 6.95, which would lead to a standardized 

ADISO of 1.59. In comparison, the standardized mean difference using 
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√((𝑛𝐴 − 1)𝑠𝐴
2 + (𝑛𝐵 − 1)𝑠𝐵

2) (𝑛𝐴 + 𝑛𝐵 − 2)⁄ ≈ 9.80 in the denominator yields 1.15. ADISO-O 

is expressed as a percentage and thus is comparable across studies. In terms of meta-analysis, the 

sampling distribution of ADISO and ADISO-O have not been derived, and thus classical meta-

analysis is not possible, but weighted averages can be obtained using the series length as a 

weight (as was the case for PND-W). 

Summary of the main strengths and limitations of ADISO. The main advantages of 

ADISO are the use of meaningful comparisons between adjacent values, the lack of design and 

data pattern requirements, and the possibility of quantifying distance for interval or ratio scale 

variables and quantifying superiority for ordinal variables. Thus, ADISO is more generally 

applicable than PND-W. The main limitation of ADISO is the choice of how to segment the 

sequence, although some recommendations were provided, and the unknown standard error of 

the values. The segmentation problem also entails a practical issue that limits its use as a test 

statistic in a randomization test, described later in the “Inference” section, as R code has still not 

been developed for performing all possible segmentations for the actual sequence of conditions 

and for all conditions that could have been obtained at random, according to the randomization 

scheme. 

 

New Proposal: ALIV 

Rationale, research question and formal representation. In the present paper we propose a 

second novel analytical procedure consisting of numerically comparing the values that are 

represented by the lines used to connect the measurements belonging to different conditions. 
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These values include both actually obtained values (i.e., the dots in a graph) and linearly 

interpolated values (i.e., the dots that could be placed on the line, representing possible values in 

case the condition had taken place during a measurement occasion in which the other condition 

was present). We refer to this procedure as ALIV (actual and linearly interpolated values), with 

the main quantification being the differences for the 𝑛 =  𝑛𝐴 + 𝑛𝐵  measurement occasions. An 

illustration is provided on Figure 3, created with the R code we offer in the online supplementary 

material. 
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Figure 3. Application of ALIV (average difference between linearly interpolated values) to the 

data gathered by Eilers and Hayes (2015) on the intervals of problem behavior by Jacob, 

comparing a control condition including exposure and a condition including both exposure and a 

cognitive defusion exercise. The arrows show the values that are actually being compared after 

linear interpolation (pointing up is deterioration, pointing down is improvement); the portion of 

the measurement occasions for which the comparisons are performed are marked by the vertical 

lines. 
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Whereas ADISO and ADISO-O were proposed as alternatives to the mean difference and 

PND-W, ALIV is proposed as an alternative to the mean difference and to linear, quadratic or 

LOESS regression models. Specifically, in contrast with the mean and similarly to ADISO, 

ALIV provides quantifications that illustrate how the difference between conditions varies across 

different portions of the data series. Additionally, in comparison to LOESS, ALIV allows 

avoiding the subjective decision of how well the LOESS model should fit the data, a decision 

that cannot be aided statistically via an F test or a Bayesian Information Criterion. Actually, in 

case a perfect fit is desired from LOESS, the result would be identical to ALIV. In that sense, we 

consider that a simple linear interpolation would be more parsimonious and in certain cases 

equivalent to a LOESS model (compare illustrations 1, 3, 4, 5 to illustration 2 and 6 in the online 

supplementary material). Therefore, the research question answered is: how much is the 

difference between the lines connecting the points belonging to different conditions. Another 

way of conceptualizing the research question is: what would be the average difference between 

conditions, if the actually obtained measurements in one condition are compared to 

counterfactual values from the other condition, estimated via linear interpolation. 

Note that ALIV is different from ADISO, given that in ALIV the comparisons are performed 

for the same measurement occasions, comparing actual with interpolated values in an alternating 

way. In contrast, for ADISO adjacent actually obtained values are being compared. Moreover, 

ALIV does not include the first and the last measurement occasions in the comparison because 

the data points for these measurement occasions cannot be interpolated for the condition that is 

not taking place. However, the first and the last measurements are used in the interpolation of the 

contiguous values for the condition(s) that take place during these measurement occasions. For 

instance, in Figure 1C, condition A takes place on sessions 1 and 3 and, thus, the value for 
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session 1 is not used in the comparison, but it is used (together with the measurement for session 

3) to interpolate the A condition value for session 2. 

Formally, ALIV can be understood as a difference between the weighted averages of the 

measurements belonging to the conditions being compared. Specifically, the weights reflect 

whether the specific measurement is included in the comparison (𝑚 = 1 if it is not outside of the 

fraction of measurement occasions used in the comparisons; see Figure 3) and the number 𝑘 of 

values that are interpolated using the specific measurement. Formally: 

𝐴𝐿𝐼𝑉 =
∑ 𝑦𝐴𝑖 × 𝑤𝐴𝑖

𝑛𝐴
𝑖=1

∑ 𝑤𝐴𝑖
𝑛𝐴
𝑖=1

−
∑ 𝑦𝐵𝑗 × 𝑤𝐵𝑗

𝑛𝐵
𝑗=1

∑ 𝑤𝐵𝑗
𝑛𝐵
𝑗=1

,  

where {
𝑤𝐴𝑖 = 𝑚 + 0.5 𝑘

𝑤𝐵𝑗 = −(𝑚 + 0.5 𝑘) 

and {
𝑚 = 0  𝑓𝑜𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑏𝑒𝑓𝑜𝑟𝑒 𝑜𝑟 𝑎𝑓𝑡𝑒𝑟 𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑜𝑡ℎ𝑒𝑟 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 

𝑚 = 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 

where 𝑛 is the total number of measurement occasions in the comparison phase (𝑛 = 𝑛𝐴 + 𝑛𝐵), 𝑘 

is the number of interpolated values in the determination of which the specific actually obtained 

value (𝑦𝐴𝑖 or 𝑦𝐵𝑗) participates. In the previous expressions, we have arbitrarily assigned negative 

signs to the B condition values and positive signs are assigned to the A condition values, but this 

does not change the final results. 

For instance, for the data from Figure 3, the weight of the first value is equal to 𝑚 = 0 plus 

0.5 times 𝑘 = 0, 𝑤𝐴1 = 0, as it is outside of the fraction used for the comparisons and not used 

for linearly interpolating any value; the weight of the second value is 𝑚 = 0 plus 0.5 times 

𝑘 = 2, 𝑤𝐴2 = 2, as it is outside the fraction used for the comparisons, but it is used for linearly 
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interpolating the following two A condition values. Analogously, all 𝑛 weights are obtained: 0, 

1, −1, −2, 2, 2, −2, −1.5, 2.5, −2, 2.5, −1.5, −1.5, 2, −0.5, and 0. 

In comparison to the simple mean difference, ALIV assigns greater weight to measurements 

farther away from other measurements in the same condition. Such measurements are considered 

more important as they serve as pivotal points for assessing the performance in a given condition 

at that point in time, because they are the only piece of information available (see the first filled 

triangle in Figures 1C and 1D). A potential drawback of such greater weights assigned to values 

isolated from other values of the same condition would be assigning a greater weight to isolated 

values that could be outliers (e.g., the penultimate empty circle in Figure 1F). 

Requirements about measurement scale of the variables, design, and data pattern. Given 

that ALIV entails computing means, variables in an interval or ratio scale are required. In terms 

of design, there are no specific requirements about series length or the number of measurement 

occasions per phase. As ALIV entails not using the first and/or the last values of a series, in case 

these values are followed and preceded, respectively, by measurements from the same condition, 

more data would be lost for cases such as the ones depicted on Figure 1D and Figure 1F, in 

comparison, for instance to sequences such as the ones from Figures 1B and 1C. Regarding the 

applicability to AATD in which there are measurements for each intervention available for the 

same measurement occasions, it is not necessary to interpolate values and, thus, no data points 

remain unused. Actually, the ALIV value would be equal to ADISO and to the simple mean 

difference. Regarding the most easily interpretable data patterns, the application of ALIV does 

not assume stable data, or linear or any specific nonlinear trend. 
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Application of ALIV when comparing more than two conditions. In case an ATD 

compares more than two conditions (e.g., Figures 1A and 1E), the ALIV can be applied by 

comparing all pairs of conditions (e.g., AB, AC, and BC, when there are three conditions). 

However, researchers should be cautious when interpolating several values only on the basis of 

the straight line that connects only two actually obtained measurements (see the distance 

between the first and second empty square in Figure 1D). 

Comparing values across studies. As was the case for ADISO, the main outcome is 

expressed in the same measurement units as the dependent variable. For making comparisons 

across studies possible, we propose standardizing by dividing the ALIV value by the standard 

deviation of the differences computed for each comparison, which are averaged to obtain the 

ALIV value itself. For instance, for the Figure 3 data, the comparisons led to the following 

differences 12.2, −2.5, −3.4, −6.9, −5.7, 5.7, 5.1, 21.5, 29.9, 14.4, 8.9, and 4.9, whose standard 

deviation is 10.72, which would lead to a standardized ALIV of 0.65. 

Summary of the main strengths and limitations. The main strengths of ALIV are: (a) it 

enables a quantitative analysis that mimics the visual inspection of the data, based on the lines 

connecting points from the same condition, representing the comparison between  observed and 

projected patterns across all data (Kratochwill et al., 2010); (b) the only assumption is that the 

neighboring values are the best option for estimating the measurements that could have been 

obtained between them; (c) no model has to be specified a priori; (d) no decision is required 

regarding the measurement occasion for which a comparison in intercept can be performed 

(unlike piecewise regression); and (e) the application does not require subjective decisions as 

would be the case when using LOESS. The main limitation of ALIV is not using the first and last 



44 
 

Running head: ATD DATA ANALYSIS 

values in the sequence for the comparison, although such values can be used for interpolating 

other values.  

 

Inference 

In the previous sections we reviewed several quantifications of the magnitude of difference 

between conditions and proposed two new such quantifications. All these quantifications could 

be labelled “effect size” measures to be used as descriptive measures for a specific data set, 

similar to the use of an arithmetic average or a median, to describe the central tendency of a data 

set without invoking any additional assumptions. Actually, in relation to the term “effect size”, 

several definitions have been provided regarding what constitutes an effect size index (e.g., 

strength of relationship between an independent and a dependent variable, the magnitude of the 

impact of a treatment on an outcome measure). After a thorough review of such definitions, 

Kelley and Preacher (2012) define an effect size as “a quantitative reflection of the magnitude of 

some phenomenon that is used for the purpose of addressing a question of interest” (p. 140) and 

the effect size index is the equation that defines the dimension of interest in an operational way. 

Following the discussion by Kelley and Preacher (2013) and Carter (2013), it is crucial that the 

effect size index quantifies a specific dimension, despite the fact that it may not be sensitive to 

other kinds of effect. An effect size can be unstandardized, when a common and meaningful 

metric is used across studies (e.g., weight loss in kilograms) or standardized when the response 

variable is not measured in the same measurement units (Lipsey & Wilson, 2001), with 

nonoverlap indices not requiring standardizing as they already entail a common metric. 
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When the focus is put on the actually obtained data, these constitute the population of interest. 

In recent publications about these effect size measures, their statistical properties as effect size 

“estimates” have been discussed (Kratochwill et al., 2010, 2013; Shadish, Rindskopf, & Hedges, 

2008). In an estimation context, the measures are used to obtain information about an unobserved 

value, conceptualized as a population parameter. In this case, it is crucial to know which 

population is at stake (a certain population of similar cases or the population of past, present, and 

future outcomes of a particular case) and which random processes are assumed or involved to 

quantify the uncertainty surrounding the estimate. Usually, an assumption of random sampling is 

needed to firmly ground the statistical inferences from the sample to the population (Edgington 

& Onghena, 2007; Kempthorne, 1979). 

Because true random samples are rare in applied research and seem difficult to reconcile with 

single-case research, we could take another approach, and focus on the functional relation 

between the manipulated independent variable (X) and the outcome variable (Y). The inferential 

question in this approach is whether the relation is causal. In other words, we are considering 

“causal inference” instead of “sample-to-population inference”. In causal inference we derive a 

probabilistic statement, conditional on the null hypothesis that there is no causal relation between 

X and the outcome variable Y. This statement is made possible by the joint use of randomization 

in the design and a randomization test for data analysis. A tentative (i.e., a probabilistic and 

cautious) causal inference is possible thanks to the confluence of: (a) using an experimental 

design that controls for as many known confounding factors as possible, (b) incorporating 

randomization in this design to control for known and unknown confounding factors that are 

time-related, (c) using a test statistic that is sensitive to the predicted effect, and (d) using a 

randomization test for quantifying the probability of obtaining a difference as large as the one 
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obtained only by chance (Dugard, File, & Todman, 2012; Edgington & Onghena, 2007; Ferron 

& Levin, 2014; Kratochwill & Levin, 2010). 

Suppose that X has only two levels (Treatment A and Treatment B), then the causal effect of 

X on outcome Y in an SCED can be defined as the difference in Y between Treatment A and 

Treatment B at any given measurement occasion. However, just as it is impossible in a between-

subjects group comparison study to observe a subject in the experimental and the control 

condition simultaneously, it is equally impossible to have a measurement occasion in an SCED 

in which both Treatment A and Treatment B are implemented and can be compared 

independently. In technical terms: only one of the Y scores is observed; the other one is missing. 

This missing Y score is called the counterfactual or potential outcome. Now the interesting part 

is that we know this counterfactual outcome in a randomized design if the null hypothesis is true: 

the Y score would just have been the same if another assignment was selected. Consequently, we 

can validly use a randomization test in a randomized design to derive a p-value, given that the 

null hypothesis is true (Edgington & Onghena, 2007; Holland, 1986; Rubin, 1974, 2005). 

Such a causal inference has limited but clear ambitions. Its focus is on internal validity and 

statistical-conclusion validity. In the absence of random sampling, external validity cannot be 

based on statistical inference. For external validity one must rely on theoretical argument 

(Eisenhardt, 1989; Yin, 2014), comparison of the context and circumstances of the experiment 

and abduction (Evers & Wu, 2006), replication, falsification, and corroboration (Barlow et al., 

2009; Flyvbjerg, 2006), or systematically ruling out the major threats to external validity, of 

which the “Interaction of the Causal Relationship with Units” is probably most relevant for 

single-case research (Shadish, Cook, & Campbell, 2002). 
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Taking into account the way in which the treatment conditions are assigned to the 

measurement occasions, such a causal inference accompanied by a randomization test is a natural 

analytical option for ATD data (Edgington, 1980b; Onghena & Edgington, 1994). Even with 

short data series, the randomization test remains valid and with an ATD the number of possible 

and acceptable random assignments is large enough to ensure the possibility to obtain 

statistically significant results (Onghena & Edgington, 2005). Actually, the validity of the 

randomization test is based on the requirement of random assignment in the design (e.g., random 

choice of the points of change in phase in an ABAB design, random choice of the sequence of 

conditions in an ATD) prior to collecting the data. The randomizations performed after the data 

are gathered, needed for obtaining the reference distribution to which the test statistic is 

compared, have to correspond to the random assignment scheme actually used (Edgington, 

1980b). For example, in the Sil et al. (2013) study, the conditions were determined “semi-

randomly” (p. 332), meaning that a restriction of a maximum of two consecutive administrations 

of the same condition was introduced when randomly determining the order of conditions. 

Considering the researchers’ decision that 𝑛𝐴 = 𝑛𝐵 = 5, this leads to 84 possible sequences, for 

instance, not including randomizations such as AAABBABABB, which would stem from a 

completely randomized design, but which could not have been obtained by the random 

assignment procedure followed by the researchers. 

An assumption necessary for performing the randomizations after the data are collected is the 

exchangeability of the data (Hayes, 1996). In a randomized ATD this exchangeability is 

guaranteed by the actual random assignment procedure. If the null hypothesis is true, the same 

measurements would have been obtained, whatever treatment condition was applied at each 

measurement occasion. Serial dependencies that are common in time series data do not pose a 
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problem for randomization tests because these serial dependencies are constant for all possible 

random assignments if the null hypothesis is true. 

The main output of a randomization test is a p-value for the null hypothesis that there is no 

causal effect (i.e., no difference between the conditions). The effect itself is quantified using a 

test statistic. Regarding the choice of a test statistic, randomization tests are flexible enough to 

allow choosing it according to the aims of the researcher and the effect expected. For instance, it 

is possible to use a nonoverlap index, a difference in means, or a difference in trends (Heyvaert 

& Onghena, 2014). In the current paper, we argue for using ADISO or ALIV to test for a 

difference in average level between the conditions in an ATD. Furthermore, if an assumption can 

be made about the form of the causal effect (e.g., a constant additive effect), then also a 

confidence interval around the effect size can be constructed based on randomization test 

inversion (Heyvaert & Onghena, 2014; Michiels, Heyvaert, Meulders, & Onghena, 2016). 

Finally, the p-values yielded by randomization tests can be combined using several different 

approaches (Rosenthal, 1978). A practical approach included in the SCDA plug-in for R (Bulté 

& Onghena, 2012) is Edgington’s (1972) additive method. Technically, the combined p-value 

that results from this additive method represents the probability, under the null hypothesis of no 

difference between the conditions, of getting such a small sum of probabilities as the sum 

actually obtained. This probability can be used to assess whether it is likely that the differences 

(across replications) observed between the conditions is only due to chance variations. 

In sum, the main strengths of randomization tests are: (a) the possibility of valid inference 

about causality; (b) the flexibility in choosing the test statistic according to the effect of interest 

or what is expected on the basis of previous knowledge; and (c) the possibility to integrate the 
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results of several studies via combining p values. The main limitations of randomization tests 

are: (a) the requirement of random assignment in the design, but our review shows that the 

alternation of conditions in the ATDs was decided at random in more than 50% of the studies; 

and (b) the fact that they are computer-intensive, which could be the reason for their underuse 

observed in our review of ATD studies, but with present-day availability of fast computers and 

user-friendly software, this problem has been largely overcome (see e.g., Bulté & Onghena, 

2012, 2013; Levin, Evmenova, & Gafurov, 2014). 

 

Applying the Analytical Options 

In Table 2 we provide a summary (and, thus, a simplified representation) of the main features of 

the analytical procedures discussed and proposed in the present text and we have also applied the 

analytical techniques to the ATD datasets from Figure 1 and we provide the results of the 

analyses and graphical representations in color in the online supplementary material. We also 

mention the randomization scheme used for determining the alternation of conditions and 

provide the results for randomization tests for some of the examples in which different schemes 

are used. 

  



50 
 

Running head: ATD DATA ANALYSIS 

Table 2. Data patterns and possibilities for analysis in an alternating treatments design. 

Analytical 

technique 

Author Data 

used 

Focus of 

analysis 

Strengths Limitations 

Mean 

difference 

Common 

approach 

(see review)  

Actual Level Simplicity. Hand 

calculation. 

Quantifies distance. 

Represents well stable data. 

Sensitive to outliers. 

Does not represent well data 

patterns with trends or high 

variability. 

PND-W Wolery, 

Gast et al. 

(2010) 

Actual Overlap Applicability to ordinal 

data. 

Easy application with equal 

number of measurements 

per condition. 

Hand calculation. 

Quantifies only ordinal 

superiority, but not distance 

Less justified application 

when measurements are not 

near in time. 

Values may be omitted if the 

number of measurements per 

condition is unequal. 

Piecewise 

regression 

Center et 

al., (1985-

1986); 

Moeyaert, 

Ugille et al. 

(2014) 

Fitted (Change in) 

Slope 

 

Difference in 

level 

Represents well stable data 

or data presenting linear 

trend. 

Possibility to choose 

intercept moment. 

Separate quantification of 

trend per condition. 

The difference in level is 

computed for a single point in 

time (e.g., for the last 

session). 

Does not provide a single 

overall quantification.  

Local 

regression 

(LOESS) 

Discussed in 

Jacoby 

(2000); 

applied by 

Solmi et al. 

(2014a, 

2014b) 

Fitted Average 

difference 

based on 

smoothed 

trend lines  

Expected to provide better 

fit than linear and quadratic 

regression. 

No assumptions about the 

data pattern or number of 

data points per condition. 

Requires subjective decisions 

(e.g., about the fraction of 

data). 

Values at the beginning and 

end of the series may be 

omitted from the comparison, 

but not from the interpolation 

ALIV New 

proposal 

from the 

current text 

Actual 

and 

fitted 

Average 

difference 

based on 

linear 

interpolation 

Mimics visual inspection, 

based on graphs connecting 

data points from the same 

condition. 

No assumption about data 

pattern or number of data 

points per condition. 

No need for subjective 

decisions. 

Values at the beginning and 

end of the series may be 

omitted from the comparison, 

but not from the interpolation 

Applicable only to alternating 

treatments designs data. 

ADISO New 

proposal 

from the 

current text 

Actual Average 

difference 

based on 

comparing 

contiguous 

data points 

Point by point comparison 

with closer in time data 

points. 

Comparison in terms of 

distance and ordinal 

superiority. 

No assumption about data 

pattern or number of data 

points per condition. 

 

Requires that the researcher 

decide how to segment the 

data sequence before carrying 

out the comparisons. 

Software to be developed for 

its use as a test statistic in a 

randomization test. 

Applicable only to alternating 

treatments designs data. 

Note. PND-W: Percentage of nonoverlapping data as applied to alternating treatments design data. ALIV: 

A point-by-point comparison involving actual and linearly interpolated values. ADISO: Weighted average 

difference between successive observations . 
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In case the data are relatively stable and show no overlap (e.g., the Andersen, Daly III, and 

Young, 2013, data for Terrance represented in Figure 1A; illustration 1 from the online 

supplementary material), all techniques are readily applicable and lead to very similar results. 

Therefore, simple procedures such as the mean difference can be computed, although the fact 

that trends are not identical suggests that piecewise regression, providing a good fit to these data, 

can offer more nuanced information about trends and difference in intercept. When the data 

pattern is straightforward, the choice of an analytical technique is not critical. In the Andersen et 

al. (2013) study the random assignment procedure can be conceptualized as an RBD, given that 

“all conditions were administered in random order before they were readministered a second, 

third, and then a fourth time, each time in random order” (p. 407). For pairwise comparisons of 

conditions, this leads to only 24 = 16 possible randomizations, as there are four occasions for 

randomly choosing between two possible orders (AB or BA). With 16 randomization it is 

impossible to attain 𝑝 ≤ .05 because the minimum p-value is 1/16 = 0.0625. 

In case the data show no overlap, but there are markedly different trends for the different 

conditions (e.g., the Coleman et al., 2015, data for Alice represented on Figure 1B; illustration 2 

from the online supplementary material), the results between the procedures quantifying mean 

differences are still very similar. Nevertheless, simple models like the mean and first and second-

order polynomial regression may not be appropriate when data are so variable. In contrast, 

LOESS, using a fraction of 60% and a linear model for each regression, provides better fit and its 

results are practically identical to the ones obtained by ALIV, which does not require making any 

arbitrary decisions. Finally, in this case ADISO provides more conservative results than the 

mean difference based on actual data and the mean differencing arising from regression analysis. 

In terms of the percentage of comparisons for which one condition is superior to the other, the 
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results of ADISO-O and PND-W are similar. In terms of the application of a randomization test, 

the procedure followed in the Coleman et al. (2015) is equivalent to an RBD, given that, for each 

participant, an online randomization tool generated sets of two numbers (1 and 2, translated to 

conditions A and B), randomly ordered. With the Figure 1C data, in which 𝑛𝐴 = 𝑛𝐵 = 13, this 

leads to 8192 randomizations, which represent 8192 sequences of the 13 A and 13 B labels that 

could have been obtained with the random assignment procedure followed, which means that the 

test statistic of choice is to be applied 8192 times to the same data sequence, which under the 

null hypothesis could have been obtained regardless of the conditions in each measurement 

occasion. (The same interpretation for the number randomizations is warranted for the remaining 

applications of randomization tests presented in this section.) The randomization test applied 

with the SCDA plug-in for R (Bulté & Onghena, 2013) yields a one-tailed p = .000244 for the 

simple mean difference and the R code we developed for ALIV yields a one-tailed p = .000122 

for ALIV. 

In case the data show overlap and different slopes and intercepts for the different conditions 

(e.g., the Yakubova and Bouck, 2014, data for Rick represented on Figure 1C; illustration 3 from 

the online supplementary material), the mean difference yields the greatest value and linear 

regression yields the smallest one, but these are also the procedures that represent the data worse. 

The remaining procedures, which show less extreme results, actually provide a better fit to the 

data. The randomization scheme followed was based on flipping a coin to decide which 

condition takes place when, with a restriction of a maximum of two consecutive sessions with 

the same condition. The actual data consist of the same number of measurements per condition 

(𝑛𝐴 = 𝑛𝐵 = 5), but it is not clear whether this was decided a priori. Therefore, we will illustrate 
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the application of a randomization test for the following example in which such a specification is 

available. 

In case the data show different intercepts and opposite slopes for the different conditions (e.g., 

the Sil, Dahlquist, and Burns, 2013, data for child cooperation as reported by the nurses 

represented on Figure 1D; illustration 4 from the online supplementary material), all procedures 

yield similar average differences, as both linear and quadratic trend fit the data reasonably well. 

In this case, the mean levels do not represent the data well and the mean difference provides the 

smallest value. The projection made by piecewise regression for the last measurement occasions 

does not seem to be justified, given the large (observed and expected) difference. For this data 

set it is relevant to note that ADISO assigns more weight to the first value (47.6) of the 

interactive distraction condition (filled triangle) and to the last value (19.7) of the passive 

distraction condition (empty square), given that these are the only data points for the 

corresponding condition, surrounded by four measurements of the other condition. This 

weighting scheme is reasonable, because the isolated data points are crucial for the comparison 

between conditions. Complementarily, ALIV and ADISO assign less weight to data points which 

cannot be compared with a contiguous measurement from the other condition, in particular, the 

first measurement of the passive distraction condition (empty square) and the last measurement 

of the interactive distraction condition (filled triangle). We consider that these weights 

correspond more closely to the assessment likely to be performed by visual analysts, who would 

compare the lines connecting the points belonging to the same condition. Therefore, the focus in 

visual analysis and in ALIV is likely to be placed on the same portion of the data. In terms of the 

application of a randomization test, in the Sil et al. (2013) study, a semi-random order is used, 

with 10 measurement occasions, 5 per each condition, and no more than 2 consecutive 
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applications of the same condition. This leads to 84 possible randomizations. The randomization 

test applied with the SCDA plug-in for R (Bulté & Onghena, 2013) yields a one-tailed p = .0952 

for the simple mean difference and the R code we developed for ALIV yields a one-tailed p = 

.1071 for ALIV. 

In case the data show very different trends in different conditions, including linear, quadratic, 

and another difficult to identify trend (e.g., the Bryant et al., 2015, data for John represented on 

Figure 1E; illustration 5 from the online supplementary material), the results of the procedures 

quantifying average difference agree less than for the previous data patterns. The mean level, 

piecewise, linear and quadratic regression models represent either one condition or all conditions 

insufficiently well. When the data for the different conditions are so diverse, neither of these 

methods is recommended. LOESS and ALIV provide very similar results for the fractions of data 

to which the local regressions are applied, although this is not necessarily certain for other 

fraction parameters for LOESS. The results of ADISO are very different, probably in relation to 

the specific segmentation chosen. In case the segmentation of the data sequence is not clear, the 

variation of results according to the segmentation is a drawback, given that trying several 

different options is a time-consuming task. Note that some of the comparisons for PND-W entail 

very distant measurement occasions (e.g., the second and the seventh, which represent the 

second data point for conditions 1 and 3, respectively), which may not be justified. The 

randomization scheme followed in the Bryant et al. (2015) study consisted in randomly 

determining the sequence of three treatments, each appearing five times over a period of 15 

measurement occasions. From the text it appears that no further restrictions were imposed (i.e., a 

completely randomized design is followed), evidence for which is the fact that one of the 

conditions represented on Figure 1E is present on three consecutive measurement occasions. 
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Thus, there are 15! (5! 5! 5!)⁄ = 756 756  possible random orders. For pairwise comparisons 

between conditions, there would be 10! (5! 5!)⁄ = 252 possible random orders. However, for 

John, whose data is depicted on Figure 1E, there are only 13 measurement occasions, with one 

condition appearing 5 times and the remaining two 4 times each, leading to 13! (5! 4! 4!)⁄ =

90 090 random orders for the three conditions and 8! (4! 4!)⁄ = 70 or 9! (45! 4!)⁄ = 126 

random orders for the pairwise comparisons. Due to space limitations we do not present these 

pairwise comparisons here. 

In case the data show a large degree of overlap and nonlinear trends (e.g., the Eilers and 

Hayes, 2015, data for Jacob represented on Figure 1F; illustration 6 from the online 

supplementary material), mean level, piecewise, linear and quadratic regression models provide 

poor fit to the data. The mean difference is the procedure that shows most distant results. Even 

the LOESS model chosen does not provide fit as good as for the previous examples, suggesting 

that the same fraction and the same degree of polynomial may not be useful for all data sets. The 

segmentation chosen for ADISO provides slightly larger values than ALIV and the regression-

based models, but the percentage of comparisons for which one condition is superior to the other 

is consistent with the value of PND-W. However, the PND-W omits the last two data points, as 

𝑛𝐴 ≠ 𝑛𝐵, and the first two comparisons are actually not between adjacent values. Comparing the 

new proposals with the simple mean difference, ALIV and ADISO assign less weight to the first 

two and last two measurements. We consider that this weighting scheme is more appropriate, 

given that these initial and final values represent repetitions of the same condition without the 

possibility of knowing what the results would have been in case condition B (filled triangle)  

took place before A (empty circle) in the beginning of the sequence or in case condition A took 

place after condition B in the end of the sequence, because it is not reasonable to extend the 
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clearly nonlinear trends beyond the measurements occasions for which data were actually 

obtained. Moreover, the graphical representation provided jointly with ALIV illustrates better 

than the simple mean difference the fact that the difference between conditions is not uniformly 

in the same direction or in the same magnitude, if interpolated values are considered. In that 

sense, if it is judged that there is a difference between conditions which is increasing with time 

(i.e., more visible for the later part of the data sequence), such information is more clearly 

illustrated by the ALIV graph and quantifications than by the simple mean difference. Even if the 

focus is put only on the actually obtained values, as in ADISO, the differences between 

conditions are still illustrated to be clearly variable and not even systematically increasing or 

decreasing. Thus, the information provided by ALIV and ADISO is more specific, as compared 

to the simple mean difference. 

In terms of the application of a randomization test in the Eilers and Hayes (2013) study, a 

semi-random order was used, with 16 measurement occasions, and no more than 2 consecutive 

applications of the same condition. However, in this case there is apparently no restriction about 

both conditions being equally represented, as in the actual data sequence there are seven 

measurement occasions condition A and nine for condition B. If we focus on designs in which 

both measurements are equally represented, there would be 1296 possible random assignments 

(obtainable from the SCDA software; Bulté & Onghena, 2013) plus 786 possible randomizations 

in case condition A had seven measurements and condition B had nine plus 786 possible 

randomizations in case condition B had seven measurements and condition A had nine 

(obtainable via the executable files available in the CD accompanying the book by Edgington & 

Onghena, 2007). The randomization test performed via the SCDA plug-in for R (Bulté & 

Onghena, 2013) on the basis of these 2868 randomizations yields one-tailed p = .0146 for the 
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mean difference and the R code created for ALIV yields one-tailed p = .0948, which would lead 

to different statistical decisions being made on the basis if the common .05 alpha level. 

In sum, the examples shown in the present section suggest that ALIV and ADISO can be 

applied to a variety of data sets, presenting the following positive features: (a) a good 

representation of the data (unlike the mean level and linear or quadratic regression which 

oversimplify certain data patterns), (b) no need for specifying a priori the type of trend (unlike 

piecewise regression) or assuming it is absent (unlike the mean difference), (c) comparisons 

between values that are close in the sequence (unlike PND-W in some cases), (d) no need for 

making decisions about how well the model should fit the data and no need for varying 

modelling parameters for each specific data set (unlike LOESS), (e) provide an overall 

quantification without the need for collating the information about slope and the comparison for 

a single measurement occasion (unlike piecewise regression), (f) ADISO-O can also provide 

information similar to PND-W, but without the restriction for having the same number of 

measurement occasions in all conditions, and (g) a graphical representation that provides 

information about the differences between the conditions at different points of the sequence, 

apart from yielding an overall quantification. 

It may be argued that, given the similarity in results (in some cases), the mean difference 

could be preferred as a simpler and more parsimonious option to either ALIV or ADISO, when 

justified. However, given that the new proposals (a) can be applied with the free R code, (b) 

entail more meaningful and more specific comparisons mimicking visual analysis (ALIV) or 

focusing on contiguous conditions (ADISO), and (c) represent the data better for a wide variety 

of data patterns, we consider that they should be the preferred option. Nevertheless, the potential 

limitations of ALIV and ADISO mentioned in Table 2 need also be taken into account. 
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Moreover, simulation studies would be useful to show whether ALIV or ADISO present a 

statistical power advantage over the mean difference when used as a test statistic in a 

randomization test. 

Discussion 

How can ATD data be analyzed? Analytical Techniques Reviewed and New Proposals 

The possibility to identify evidence-based practice through SCEDs is related to both using 

appropriate design structures (Kratochwill et al., 2013) and summarizing the results of the 

studies with adequate quantifications of intervention effect (Jenson, Clark, Kircher, & 

Kristjansson, 2007). In the context of ATDs, determining the alternations at random provides 

another basis for obtaining solid evidence, apart from ensuring a sufficient number of 

comparisons between conditions. In terms of analyzing the data and summarizing the results to 

make them available for documenting treatment effects, in the first part of the paper we 

discussed existing techniques suggested for application to ATD designs in relation to the specific 

features of these designs that distinguish them from phase designs. We also reviewed recent 

published research to identify which of these techniques have been most commonly used. 

On the one hand, the most commonly used analytical strategy in the published research 

reviewed was visual analysis, which enables taking into consideration several features of the 

data, but the application of the analytical steps detailed in Kratochwill et al. (2010) is not as 

straightforward for ATDs and, additionally, comparison and integration of results across studies 

is limited. On the other hand, the most common quantification used is mean difference between 

conditions, accompanied by reporting a measure of data variability in each condition. Both these 

quantifications, as well as the third most used one (PND), do not take trend into account. In that 
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sense, we want to raise awareness about the importance of trend, which has been found to be 

present in real data, despite being heterogeneous across studies (Solomon, 2014), and also 

encountered, in a linear or nonlinear form, in most studies included our review. Actually, 

controlling for trend has received a lot of attention when discussing SCED analytical techniques 

(Parker et al., 2006) and is part of simple procedures such as graph rotation (Parker, Vannest, & 

Davis, 2014), nonoverlap indices (Wolery, Busick, Reichow, & Barton, 2010) and more complex 

techniques such as multilevel models (Moeyaert, Ferron et al., 2014). In that sense, the current 

paper fills a gap in SCED analysis literature regarding ATDs, especially given that our review 

suggests that little attention is paid to trend when analyzing ATD data. 

In relation to enabling comparisons between conditions without assuming any specific data 

pattern, local regression has been suggested, but it entails subjective decisions leading to the 

model finally selected and its application may also be problematic for the relatively short data 

series encountered in our review of published research. In order to deal with these limitations, 

and still not assuming any specific data pattern, we propose a technique comparing actual and 

linearly interpolated values (ALIV). ALIV quantifies, for each measurement occasion, the 

differences between the lines connecting the values for the same condition, which are the 

common way of representing ATD data graphically. 

Apart from possible linear or nonlinear trends, another relevant data feature in ATDs is that 

the number of measurements per condition is not always equal, as suggested by our review. This 

limits the applicability of PND-W, which also does not guarantee that adjacent values are being 

compared. In order to deal with these limitations, we propose a technique for computing the 

average difference between successive observations (ADISO). ADISO also offers the possibility 
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to quantify the amount of difference between the conditions, apart from superiority as quantified 

by PND-W. 

How should ATD data be analyzed? Considerations regarding Statistical Analysis 

Both for ALIV (as alternative to the simple mean difference and to local regression) and for 

ADISO (as alternative to the simple mean difference and to PND-W), we have stressed the 

importance of what is conceptually being compared in an ATD rather than the numerical 

differences between alternative analyses, as well as the need to focus on more generally 

applicable procedures that make less assumptions and require fewer subjective decisions by the 

researchers. Specifically, we consider that it is more logical to compare adjacent conditions 

(Graham, Karmarkar, & Ottenbacher, 2012), as is also suggested for other SCED designs 

(Maggin et al., 2013; Parker & Vannest, 2012). In that sense, ADISO quantifies the effect in a 

way that is more compatible with the ATD structural logic than the overall within-condition 

means. Additionally, ADISO-O quantifying the percentage of comparisons for which one of the 

conditions is superior is an indicator of the degree to which the effect is consistent across all 

repetitions, as suggested by Kratochwill et al. (2010). 

We also consider that ATDs offer the possibility to construct the counterfactual of a 

measurement (i.e., what value would have been obtained if the other condition were administered 

on that occasion) via the randomization model and/or the appropriate regression model. An 

additional option is to carry out interpolations that refer to a measurement occasion in between 

the occasions for which data are available, which means that unreasonable projections are not 

that likely as for phase designs where projections may refer to some distant point in time (see 

Parker, Vannest, Davis, & Sauber’s, 2011, comments on Allison & Gorman’s, 1993, regression 
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model projections). In that sense, ALIV reflects the spirit of interpolating and allows modeling 

data on the basis of the neighboring values, bringing the statistical analysis closer to the visual 

inspection of the data. Specifically, the size of arrows as visual aids indicates difference in level 

(see illustration 6 in the online supplementary material), whereas in case the arrows become 

longer in time it would indicate difference in slope (illustration 2). Moreover, the direction and 

color of the arrows help assessing overlap (illustration 6) or lack thereof (illustration 2). Finally, 

ALIV entails a comparison between actual and projected data, as suggested in the What Works 

Clearinghouse Standards (Kratochwill et al., 2010). 

The fact that the alternation sequence is frequently determined at random in an ATD makes 

possible the application of randomization tests. The test statistic can be chosen according to the 

predicted effect and the expected data pattern. We consider ALIV to be more generally 

applicable across data sets than the mean difference, which assumes data without trend. 

An aspect that needs to be taken into account when choosing an analytical technique is 

whether it is preferred to use quantifications that are generally applicable across a variety of 

SCEDs (e.g., the mean difference) or quantifications that have been created specifically for 

certain designs, as is the case of ADISO and ALIV. The former option offers an advantage at the 

across-studies level, as it ensures comparability of results and the possibility to integrate the 

results of SCED studies regardless of the specific design used. Nevertheless, we consider that 

options such as ADISO and ALIV are more informative at the within-study level as they 

quantify aspects of interest (i.e., adjacent values in ADISO, the lines connecting the values 

belonging to different conditions in ALIV) and they are also meaningful regardless of whether 

any type of trend is present in the data. Moreover, the fact that the same quantification (e.g., a 

standardized mean difference) can be obtained across designs does not ensure that it is 
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conceptually justified to pool the information, as the behaviors and interventions subjected to 

ATDs can be expected to be different from the ones studied via phase designs and especially 

multiple-baseline designs, employed, among other reasons, for nonreversible behaviors (in 

contrast with ATDs). 

Finally, if the new proposals that we advocate for are to be used by applied researchers, hand 

calculations are possible, but may become cumbersome for longer data series. For that purpose 

we offer a user-friendly webpage (http://manolov.shinyapps.io/ATDesign) and R code 

(indications on the use of the latter are available in the supplementary online material). The 

website is free and menu-driven, requiring only loading a previously prepared data file. Part of 

the output are data plots in which the color of the graphical elements indicates whether the 

difference observed in each of the ADISO and ALIV comparisons is in the same or in the 

opposite direction to what is desired. The website and the R code also incorporate the existing 

analytical techniques discussed in this manuscript. 

Considerations regarding the Joint Use of Visual and Statistical Analyses 

On the basis of the alternatives presented in the previous section, we concur with Parker et al. 

(2006) that visual analysis is a necessary part of the analysis in order to carry out a general 

assessment of the data pattern and also to evaluate specifically whether the data series are 

stationary or present trends, and to identify any outlying values. It has already been stressed that 

visual and statistical analyses need to be seen as complementary (Fisch, 2001; Franklin, Gorman, 

Beasley, & Allison, 1996; Harrington & Velicer, 2015; Houle, 2009), for instance, in relation to 

the importance of making SCED studies’ results available for meta-analysis (Burns, 2012; 

Maggin & Chafouleas, 2013). However, it has to be considered whether visual analysis has to be 

http://manolov.shinyapps.io/ATDesign
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carried out as an initial step that determines subsequent descriptive or inferential statistical 

analyses or whether it should be one of the ingredients that helps making sense of the data 

obtained. 

Some researchers who argue to carry out visual analysis as an initial step use this kind of 

analysis as a filter indicating whether statistical analysis is necessary. If statistical analysis is 

performed only after visual analysis suggests a functional relation between conditions and the 

target behavior (as recommended by Kratochwill et al. 2010, 2013), then it can be expected that 

the numerical values obtained would only represent part of the empirical evidence and a 

subsequent meta-analysis would include a biased sample of all research carried out (i.e., larger 

effects). If statistical analysis is performed only after visual analysis is unable to identify a clear-

cut effect or when visual analysis can be considered unreliable (as recommended by Kazdin, 

1978), then the numerical values would only represent part of the empirical evidence – in this 

case the research with smaller effects – leading to a biased sample in posterior meta-analysis. An 

alternative would be to always use statistical analysis and visual analysis jointly. 

The initial step could also refer to the idea that visual analysis can inform us about the most 

salient features of the data and thus help choosing the statistical technique that would represent 

such data best. However, such a two-stage procedure does not guarantee that the Type I error is 

controlled at the nominal level. It might nearly always be possible to find some distinction 

between the measurements from different conditions, potentially capitalizing on chance. After 

data transformation or data fitting it might nearly always be possible to find intervention effects, 

defined as either change in level, or in slope, or in variability, or in the amount of overlap 

(Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 2012). An alternative way of 

proceeding would be to select a way of analyzing the data according to the type of effect 
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expected before the data are collected or before the results are revealed (e.g., according to 

whether an abrupt and sustained or a slower and more progressive change is expected for a 

specific behavior treated with a specific intervention). Afterwards, visual analysis can be used to 

give meaning to the obtained results and to assess to what extent the data at hand match previous 

expectations. Such evidence can be used for adjusting the expectations for future research. 

This issue is similar to the concern expressed, albeit in a footnote, by Kratochwill and Levin 

(2014a) that repeatedly adapting statistical models to represent the data and to estimate the 

intervention effect can lead to specifying models without further basis than the data at hand, 

which is a problem both in terms of the causal inferences that can be made and in terms of the 

ethics of data analysis. We extend Kratochwill and Levin’s (2014a) concern beyond the 

application of multilevel modelling to SCED data, as we consider that a similar caution has to be 

expressed when choosing the type of analysis to be carried out on the basis of the data at hand 

and not on theoretical and/or empirical grounds (see also Simmons, Nelson, & Simonsohn, 

2011). Additionally, a parallelism can be drawn between, on the one hand, the increase in Type I 

errors in response-guided experiments in which the incoming data are assessed continuously and 

used to make decisions about the changes in the conditions (Ferron & Jones, 2006) and, on the 

other hand, the problems that can arise from a conditional or repetitive process of data analysis in 

response to the data at hand. Similarly, just like it has been suggested not to ground the analytical 

process on the specific characteristics of the data, it has also been suggested not to decide when 

to end data collection on the basis of the data themselves (Howard, Best, & Nickels, 2015). 

Moreover, the concerns expressed here are also well-aligned with the broader statistical 

literature on the effects of using preliminary tests (in the current case, performed visually) for 

deciding for choosing the predictors in regression analysis (increase in bias of the regression 
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coefficients estimates; Bancroft, 1944) or whether to use a pooled estimate of the variance or not 

(increase in bias of the variance estimate; Bancroft, 1944, increase in Type I error rates, 

Zimmerman, 2004). It has also been pointed out that, in some realistic situations, the imperfect 

performance of the first-stage test can lead to worse results for the main second-stage test 

(Shuster, 2005). This could be extended to the imperfect performance of visual analysts (e.g., 

Danov & Symons, 2008; Ninci, Vannest, Willson, & Zhang, 2015) as a possible first-step in the 

data analysis process. Another recommendation from the general statistical literature is to use 

analytical procedures whose validity is not based on assuming or testing for specific data 

features: randomizations tests were specifically mentioned (Schucany & Ng, 2006) and we add 

ALIV and the weighted ADISO as another alternative following this recommendation. 

To summarize, we consider that SCED data analysis is not that different from data analysis in 

general. Despite the specific characteristics of SCED data (i.e., repeated and potentially serially 

dependent measurements from a single unit under different conditions), the same families of 

analyses have been suggested: standardized mean difference (Busk & Serlin, 1992; Hedges et al., 

2012, 2013), regression-based models (Allison & Gorman, 1993; Swaminathan et al., 2014) and 

hierarchical linear models as extensions of the piecewise regression (Moeyaert, Ferron et al., 

2014), randomization tests (Edgington & Onghena, 2007) and even some of the apparently 

SCED-specific nonoverlap indices are closely related or equivalent to effect size measures used 

in between-groups designs (see NAP; Parker & Vannest, 2009 and Tau-U; Parker, Vannest, 

Davis, & Sauber, 2011). Therefore, the considerations regarding two-stage data analysis made 

outside of the SCED context can also be extendable to SCEDs, especially in relation to how 

visual and statistical analysis are applied together on the same data. 

Considerations regarding Causal Relations 
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In the present article we stressed the importance of assessing the effects in ATDs not only in 

terms of effect sizes for the outcome measure, but also according to the characteristics of the 

design, such as the way in which the conditions are alternated (preferably at random), the 

number of repetitions of the alternations, the number of measurements per condition, and the 

spacing between sessions. The appropriateness of the design for demonstrating a causal relation 

between the type of condition and the behavior of interest is an initial requirement (Kratochwill 

et al., 2010), whereas the visual inspection of the data can help assessing whether such a relation 

has actually been demonstrated. Focusing on four of the six data aspects highlighted in the What 

Works Clearinghouse Standards (the two others: within-condition variability and immediacy of 

the effect are less straightforward criteria in presence of rapid alternation of conditions), visual 

analysis, visual aids, and quantifications such as the means, regression intercepts and slopes, and 

nonoverlap indices can all be useful. Visual analysis is especially useful for evaluating the 

general data pattern and assessing the consistency between the measurements obtained in 

different conditions and the changes between conditions, whereas the comparison between fitted 

values arising from regression analysis and ALIV is especially useful as an approximation to the 

comparison between actual and projected data. Actually, regression analysis can be useful for 

exploring the type of functional relation between time and measurements within each condition 

(e.g., a stationary process, linear, quadratic or more complex model). 

Another consideration when assessing causal effects is that both the effect size for the 

outcome variable and the size of the manipulation in the independent variable have to be taken 

into account. Or in other words: the effect size has to be evaluated proportional to the 

manipulation size. Looking at the design and the effects in this way, even small effects may be 

impressive (Prentice & Miller, 1992). Furthermore, if we want to know the “functional relation” 
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between the independent variable and the outcome variable, as is implied in the What Works 

Clearinghouse Standards and some of the commentaries (Hitchcock et al. 2014; Kratochwill et 

al., 2010, 2013; Maggin, 2015; Maggin, Biesch, & Chafouleas, 2013; Wolery, 2013), then we 

have to do more than just study the effects of a dichotomous independent variable or exploring 

the functional relation between time and the outcome variable. If we want to map the functional 

relation between the independent variable and the outcome variable, then even more firm 

evidence for a causal effect can be obtained by systematically varying the levels of the 

independent variable, for example in a so-called parametric variation design (Barlow et al., 2009; 

Kazdin, 2011; Kratochwill & Levin, 2014b; Onghena, 1992). 

Limitations and Future Research 

Regarding the limitations of the current article, we here presented, discussed and illustrated 

some analytical alternatives for ATDs, whereas a formal evaluation via simulation should be 

done in subsequent research. Specifically, the evaluation can focus on how well the different 

regression models represent ATD data with and without several types of trend for varying 

amount of measurements available per condition. To inform about the range of measurements 

usually available in an ATD and that need to be represented in a simulation study, the 

information from previous reviews (e.g., Shadish & Sullivan, 2011) can be used, as well as the 

more specific information obtained in the review included in the present paper. 

In terms of data analysis for ATDs, further software implementations for ADISO are 

necessary in order to make its use as a test statistic in a randomization test feasible. Moreover, 

additional discussion and research is required regarding the analysis of ATDs beyond the 
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comparison phase of rapid alternation of conditions, that is, when there is an initial baseline 

phase and/or a final phase where only the best intervention is implemented. 
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1 Initial information about this document

In the present document we o�er some R code we created �or analyzing alternating treatments designs (ATDs)
data and represinting visually the data being analyzed. The document accompanies a manuscript on the
topic and serves as its online supplemental material. R (R Core Team, 2013) is a free software, available at
https://cran.r-project.org/. We indicate how the code can be used (i.e., what part of the code has to be
modi�ed so that users can analyze their own data) and we also o�er the default output of the code.

Nevertheless, we do not claim that this is the only code available for ATD data. Speci�cally, the SCDA plug-
in for R (Bulté & Onghena, 2012, 2013; https://cran.r-project.org/web/packages/RcmdrPlugin.SCDA/
index.html) o�ers the possibility to represent the data graphically and also the apply randomization tests.
Moreover, in the CD accompanying the book by Edgington and Onghena (2007) there are randomization tools
relevant for ATDs. NAP and Tau-U can implemented using the R code developed by Kevin Tarlow and available
at (Brossart, Vannest, Davis, & Patience, 2014; https://dl.dropboxusercontent.com/u/2842869/Tau_U.R)
or via the website singlecaseresearch.org.

Regarding the software implementations of extensions of piecewise regression, several commercial options
exist (e.g., HLM, Stata, SAS) and SAS code has been provided in di�erent articles for multiple baseline designs
(e.g., Baek & Ferron, 2013; Moeyaert, Ferron, et al., 2014; Moeyaert, Ugille, et al., 2014), or using R (Manolov,
Moeyaert, & Evans, 2015) but none is focused on ATD data. The same is the case for the standardized
mean di�erence by Hedges, Pustejovsky, Shadish (2012, 2013), which is applicable to single-case experimental
designs di�erent from ATDs. The the scdhlm package for R implementing these d-statistics is available at
https://github.com/jepusto/scdhlm. Finally, free software is also available for simulation modeling analysis
(Borckardt Nash, 2014; http://clinicalresearcher.org/software.htm), but this analytical technique has
not been discussed in the context of ATDs either.
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R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org/.

Further information on single-case data software can be consulted from the following sources:
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The second part of the document o�ers the numerical and graphical results of applying the analytical tech-
niques to real data obtained using alternating treatments designs. The data sets chosen are all part of the
review presented in the main text of the manuscript. Moreover, the data sets are represented on Figure 1 of
the manuscript. The idea was to progress from simpler data patterns in the �rst illustrations to more complex
data patterns in the last illustrations, in order to explore how well the di�erent models �t the data and how
much do the quanti�cations di�er.

The references of the articles from which the data sets were extracted are:

Andersen, M. N., Daly, III, A. J., & Young, N. D. (2013). Examination of a one-trial brief experimental
analysis to identify reading �uency interventions. Psychology in the Schools, 50, 403−414.
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technology-mediated interventions: A preliminary investigation. Journal of Behavioral Education, 24, 255−272.
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elementary students with intellectual disability and autism: A comparison of teacher-directed versus computer-
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2 New proposals



2.1 Average di�erence between successive observations: ADISO

2.1.1 Performing all comparisons in the same order

First, note that the code is created for performing comparisons in the AB order, whereas A and B can be
the labels speci�ed for any condition. Second, the values obtained are speci�ed, separated by commas, after
score <- c(. The labels for the conditions are provided in quotation marks ("") and separated by commas
after condi<- c(.In order for the code to work without further modi�cations, one of the conditions should
be called "A" and the other one "B". It is necessary also to specify the aim after aim <- using the words
(within quotation marks) "reduce" or "increase" target behavior. The remaining part of the code is copied
and pasted in the R console, which leads to obtaining the results.

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

# Specify aim

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

aim <- "reduce"

# Copy and paste the rest of the code in the R console

# Objects needed for the calculations

changes<- 0

for (i in 1:(length(score)-1))

if (condi[i]!=condi[i+1]) changes <- changes + 1

groups<- changes + 1

count_nonA<- 0

Aends<- rep(0,groups/2)

for (i in 2:length(score))

if ((condi[i]!="A") && (condi[i]!=condi[i-1]))

{

count_nonA<- count_nonA + 1

Aends[count_nonA] <- i-1

}

count_nonB<- 0

Bends <- rep(0,groups/2)

Bends[groups/2] <- length(score)

for (i in 2:length(score))

if ((condi[i]!="B") && (condi[i]!=condi[i-1]))

{

count_nonB<- count_nonB + 1

Bends[count_nonB] <- i-1

}

Astarts<- rep(0,groups/2)

Astarts[1] <- 1

for (i in 2:(groups/2))

Astarts[i] <- Bends[i-1] + 1

Bstarts<- rep(0,groups/2)

for (i in 1:(groups/2))

Bstarts[i] <- Aends[i] + 1

mean_dif<- rep(0,groups/2)

weights<- rep(0,groups/2)

B_greater<- 0

A_greater<- 0

for (i in 1:(groups/2))

{



mean_dif[i] <- mean(score[Astarts[i]:Aends[i]])-mean(score[Bstarts[i]:Bends[i]])

weights[i] <- Aends[i]-Astarts[i]+1 + Bends[i]-Bstarts[i]+1

if ((aim=="reduce") && (mean_dif[i] > 0)) B_greater<- B_greater + 1

if((aim=="increase") && (mean_dif[i] < 0)) B_greater<- B_greater + 1

if ((aim=="reduce") && (mean_dif[i] < 0))A_greater<- A_greater + 1

if ((aim=="increase") && (mean_dif[i] > 0)) A_greater<- A_greater + 1

}

num<- 0

den<- 0

for (i in 1:(groups/2))

{

num<- num + mean_dif[i]*weights[i]

den<- den + weights[i]

}

average<- num/den

A_superiority<- A_greater/(groups/2)

B_superiority<- B_greater/(groups/2)

print("Differences"); print(mean_dif)

print("Weights per difference"); print(weights)

paste("ADISO = ", round(average,2))

paste("Percentage of comparisons with A superiority = ", round(A_superiority*100,2))

paste("Percentage of comparisons with B superiority = ", round(B_superiority*100,2))

Code ends here. Default output of the code below:

## [1] "Differences"

## [1] 8.15 6.75 6.60 24.95 9.80

## [1] "Weights per difference"

## [1] 4 4 2 3 3

## [1] "ADISO = 11.07"

## [1] "Percentage of comparisons with A superiority = 0"

## [1] "Percentage of comparisons with B superiority = 100"



The following code allows obtaining the graphical representation of what is being compared

indep<- 1:length(score)

par(mfrow=c(2,1))

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(min(score),max(score)), xlab="Measurement occasions",

ylab="Score", font.lab=2, pch=" ")

points(indep[condi=="B"], score[condi=="B"], pch=24,

bg="orange", col="orange")

points(indep[condi=="A"], score[condi=="A"], pch=20,

bg="blue", col="blue")

for (i in 1: (groups/2))

{ if (Astarts[i] != Aends[i])

lines(c(Astarts[i],Aends[i]),c(score[Astarts[i]],

score[Aends[i]]),col="blue");

if (Bstarts[i] != Bends[i])

lines(c(Bstarts[i],Bends[i]),c(score[Bstarts[i]],

score[Bends[i]]),col="orange")

}

for (i in 1: (groups/2))

{

if ( (aim == "reduce") &&

(mean(score[Astarts[i]:Aends[i]]) >= mean(score[Bstarts[i]:Bends[i]])) )

arrows(mean(c(Astarts[i],Aends[i])),mean(score[Astarts[i]:Aends[i]]),

mean(c(Bstarts[i],Bends[i])),mean(score[Bstarts[i]:Bends[i]]), col="green", lwd=2);

if ( (aim == "reduce") &&

(mean(score[Astarts[i]:Aends[i]]) < mean(score[Bstarts[i]:Bends[i]])) )

arrows(mean(c(Astarts[i],Aends[i])),mean(score[Astarts[i]:Aends[i]]),

mean(c(Bstarts[i],Bends[i])),mean(score[Bstarts[i]:Bends[i]]), col="red", lwd=2);

if ( (aim == "increase") &&

(mean(score[Astarts[i]:Aends[i]]) >= mean(score[Bstarts[i]:Bends[i]])) )

arrows(mean(c(Astarts[i],Aends[i])),mean(score[Astarts[i]:Aends[i]]),

mean(c(Bstarts[i],Bends[i])),mean(score[Bstarts[i]:Bends[i]]), col="red", lwd=2);

if ( (aim == "increase") &&

(mean(score[Astarts[i]:Aends[i]]) < mean(score[Bstarts[i]:Bends[i]])) )

arrows(mean(c(Astarts[i],Aends[i])),mean(score[Astarts[i]:Aends[i]]),

mean(c(Bstarts[i],Bends[i])),mean(score[Bstarts[i]:Bends[i]]), col="green", lwd=2);

}

title(main="Forwards comparisons for ADISO")

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(min(score),max(score)), xlab="Measurement occasions",

ylab="Score", font.lab=2, pch=" ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="orange", col="orange")

points(indep[condi=="A"], score[condi=="A"], pch=20, bg="blue", col="blue")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed",col="orange")

lines(indep[condi=="A"],score[condi=="A"],lty="solid",col="blue")

title(main="Data")



The default graphical output is:
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2.1.2 Performing comparisons in a user-de�ned order

This code refers to the same procedure, but instead of carrying out the comparisons in the same order (AB,
regardless of which condition is labelled "A" and which "B") it allows comparing conditions according to
segmentation points de�ned by the user. In that sense, it is necessary to mark after which measurement
occasion should a segmentation take place. In the current example, the segmentation point 3 means that the
�rst three values will be compared, with the software comparing the A and B conditions' measurements included
in this segment. Segmentation point 5 means that what is compared are the A and B conditions' values recorded
up to measurement occasion 5, but excluding the �rst three measurement occasions, which were already part
of the previous comparison.

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

# Specify the measurement occasions after which the segmentation is performed

# Specify aim

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

cutsentry <- c(3,5,8,10,13,16)

aim<- "reduce"

# Copy and paste the rest of the code in the R console

# Objects needed for the calculations

ends <- c(0,cutsentry)

starts <- (ends[1:length(cutsentry)]+1)

difs <- rep(0,length(cutsentry))

weights <- rep(0,length(cutsentry))

for (i in 1:length(cutsentry))

{

difs[i] <- mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) -

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE);

weights[i] <- length(c(score[starts[i]:ends[i+1]]))

}

num<- 0

den<- 0

B_greater<- 0

A_greater<- 0

for (i in 1:length(cutsentry))

{

num<- num + difs[i]*weights[i]

den<- den + weights[i]

if ((aim=="reduce") && (difs[i] > 0)) B_greater<- B_greater + 1

if((aim=="increase") && (difs[i] < 0)) B_greater<- B_greater + 1

if ((aim=="reduce") && (difs[i] < 0))A_greater<- A_greater + 1

if ((aim=="increase") && (difs[i] > 0)) A_greater<- A_greater + 1

}

average<- num/den

A_superiority<- A_greater/length(cutsentry)

B_superiority<- B_greater/length(cutsentry)

print("Differences"); print(difs)

print("Weights per difference"); print(weights)

paste("ADISO = ", round(average,2))

paste("Percentage of comparisons with A superiority = ", round(A_superiority*100,2))

paste("Percentage of comparisons with B superiority = ", round(B_superiority*100,2))



Code ends here. Default output of the code below:

## [1] "Differences"

## [1] 13.30 -6.80 3.30 6.60 24.95 9.80

## [1] "Weights per difference"

## [1] 3 2 3 2 3 3

## [1] "ADISO = 9.6"

## [1] "Percentage of comparisons with A superiority = 16.67"

## [1] "Percentage of comparisons with B superiority = 83.33"



The following code allows obtaining the graphical representation of what is being compared

par(mfrow=c(2,1))

indep <- 1:length(score)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(min(score),max(score)), xlab="Measurement occasions",

ylab="Score", font.lab=2, pch=" ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="orange", col="orange")

points(indep[condi=="A"], score[condi=="A"], pch=20, bg="blue", col="blue")

for (i in 1: (length(cutsentry)))

{

if ( (aim == "reduce") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) >=

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) <

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

col="green", lwd=2);

if ( (aim == "reduce") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) >=

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) >

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

col="green", lwd=2);

if ( (aim == "reduce") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) <

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) <

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

col="red", lwd=2);

if ( (aim == "reduce") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) <

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) >

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

col="red", lwd=2);



if ( (aim == "increase") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) >=

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) <

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

col="red", lwd=2);

if ( (aim == "increase") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) >=

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) >

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

col="red", lwd=2);

if ( (aim == "increase") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) <

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) <

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

col="green", lwd=2);

if ( (aim == "increase") &&

(mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE) <

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE)) &&

(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) >

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"])) )

arrows(mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"],na.rm=TRUE),

mean(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]),

mean(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"],na.rm=TRUE),

col="green", lwd=2);

}

for (i in 1: length(cutsentry))

{ if (length(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"]) == 2)

lines(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="A"],

c(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="A"]),col="blue");

if (length(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"]) == 2)

lines(c(starts[i]:ends[i+1])[condi[starts[i]:ends[i+1]]=="B"],

c(score[starts[i]:ends[i+1]][condi[starts[i]:ends[i+1]]=="B"]),col="orange")

}

title(main="A set of comparisons for ADISO")



plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(min(score),max(score)), xlab="Measurement occasions",

ylab="Score", font.lab=2, pch=" ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="orange", col="orange")

points(indep[condi=="A"], score[condi=="A"], pch=20, bg="blue", col="blue")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed",col="orange")

lines(indep[condi=="A"],score[condi=="A"],lty="solid",col="blue")

title(main="Data")

The default graphical output is:
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2.2 A comparison of actual and linearly interpolated values: ALIV

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(. In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The aim of
the study is speci�ed after aim <- via either "reduce" or "increase".

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

# Specify aim

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

aim <- "reduce" # Alternatively aim <- "increase"

# Copy and paste the rest of the code in the R console

indep<- 1:length(score)

time_B<- indep[condi=="B"]

score_B<- score[condi=="B"]

time_A<- indep[condi=="A"]

score_A<- score[condi=="A"]

# Create necessary objects

interp.A.temp <- rep(0,length(score))

interp.B.temp <- rep(0,length(score))

interp.A.temp[time_A] <- score[time_A]

interp.B.temp[time_B] <- score[time_B]

# Linear interpolation for condition A

for (i in 1:(length(time_A)-1))

if (time_A[i] != time_A[i+1] - 1)

{

if ((time_A[i] == time_A[i+1] - 2))

interp.A.temp[time_A[i]+1] <- interp.A.temp[time_A[i]] +

(interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/2

if ((time_A[i] == time_A[i+1] - 3))

{

interp.A.temp[time_A[i]+1] <- interp.A.temp[time_A[i]] +

(interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/3;

interp.A.temp[time_A[i]+2] <- interp.A.temp[time_A[i]] +

2*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/3)

}

}

# Linear interpolation for condition B

for (i in 1:(length(time_B)-1))

if (time_B[i] != time_B[i+1] - 1)

{

if ((time_B[i] == time_B[i+1] - 2))

interp.B.temp[time_B[i]+1] <- interp.B.temp[time_B[i]] +

(interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/2

if ((time_B[i] == time_B[i+1] - 3))

{

interp.B.temp[time_B[i]+1] <- interp.B.temp[time_B[i]] +

(interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/3;

interp.B.temp[time_B[i]+2] <- interp.B.temp[time_B[i]] +

2*((interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/3)

}



}

# Exclude initial and final measurement occasions

start <- max(time_A[1],time_B[1])

end <- min(time_A[length(time_A)],time_B[length(time_B)])

interp.A <- interp.A.temp[start:end]

interp.B <- interp.B.temp[start:end]

# Compare all values for the same measurement occasions

diff.interp <- interp.B-interp.A

print("ALIV Differences"); print(round(diff.interp),digits=3)

## [1] "ALIV Differences"

## [1] -12 2 3 7 6 -6 -5 -22 -30 -14 -9 -5

paste("ALIV Mean difference = ", mean(diff.interp))

## [1] "ALIV Mean difference = -7"

Code ends here. Default output of the code below:

## [1] "ALIV Differences"

## [1] -12 2 3 7 6 -6 -5 -22 -30 -14 -9 -5

## [1] "ALIV Mean difference = -7"



The following code allows obtaining the graphical representation of what is being compared

indep<- 1:length(score)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),ylim=c(0,40),

xlab="Sessions", ylab="% intervals problem behavior", font.lab=2)

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

abline(v=max(time_A[1],time_B[1])-0.5,col="blue",lwd=2)

abline(v=min(time_A[length(time_A)],time_B[length(time_B)])+0.5,

col="blue",lwd=2)

sharedtime <- start:end

for (i in 1:length(sharedtime))

{

if ( (aim == "reduce") && (interp.A[i] >= interp.B[i]) )

arrows(sharedtime[i],interp.A[i],sharedtime[i],interp.B[i],

col="green", lwd=2)

if ( (aim == "reduce") && (interp.A[i] < interp.B[i]) )

arrows(sharedtime[i],interp.A[i],sharedtime[i],interp.B[i],

col="red", lwd=2)

if ( (aim == "increase") && (interp.A[i] >= interp.B[i]) )

arrows(sharedtime[i],interp.A[i],sharedtime[i],interp.B[i],

col="red", lwd=2)

if ( (aim == "increase") && (interp.A[i] < interp.B[i]) )

arrows(sharedtime[i],interp.A[i],sharedtime[i],interp.B[i],

col="green", lwd=2)

}

The default graphical output is:
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2.3 Randomization test using ALIV as test statistic

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(. In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The aim of
the study is speci�ed after aim <- via either "reduce" or "increase".

# First: copy and paste the ALIV function

aliv <- function(score, condi, aim) {

indep<- 1:length(score)

time_B<- indep[condi=="B"]

score_B<- score[condi=="B"]

time_A<- indep[condi=="A"]

score_A<- score[condi=="A"]

# Create necessary objects

interp.A.temp <- rep(0,length(score))

interp.B.temp <- rep(0,length(score))

interp.A.temp[time_A] <- score[time_A]

interp.B.temp[time_B] <- score[time_B]

# Linear interpolation for condition A

for (i in 1:(length(time_A)-1))

if (time_A[i] != time_A[i+1] - 1)

{

if ((time_A[i] == time_A[i+1] - 2))

interp.A.temp[time_A[i]+1] <- interp.A.temp[time_A[i]] +

(interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/2

if ((time_A[i] == time_A[i+1] - 3))

{

interp.A.temp[time_A[i]+1] <- interp.A.temp[time_A[i]] +

(interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/3;

interp.A.temp[time_A[i]+2] <- interp.A.temp[time_A[i]] +

2*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/3)

}

if ((time_A[i] == time_A[i+1] - 4))

{

interp.A.temp[time_A[i]+1] <- interp.A.temp[time_A[i]] +

(interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/4;

interp.A.temp[time_A[i]+2] <- interp.A.temp[time_A[i]] +

2*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/4);

interp.A.temp[time_A[i]+3] <- interp.A.temp[time_A[i]] +

3*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/4)

}

if ((time_A[i] == time_A[i+1] - 5))

{

interp.A.temp[time_A[i]+1] <- interp.A.temp[time_A[i]] +

(interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/5;

interp.A.temp[time_A[i]+2] <- interp.A.temp[time_A[i]] +

2*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/5);

interp.A.temp[time_A[i]+3] <- interp.A.temp[time_A[i]] +

3*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/5);

interp.A.temp[time_A[i]+4] <- interp.A.temp[time_A[i]] +

4*((interp.A.temp[time_A[i+1]]-interp.A.temp[time_A[i]])/5)

}

}



# Linear interpolation for condition B

for (i in 1:(length(time_B)-1))

if (time_B[i] != time_B[i+1] - 1)

{

if ((time_B[i] == time_B[i+1] - 2))

interp.B.temp[time_B[i]+1] <- interp.B.temp[time_B[i]] +

(interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/2

if ((time_B[i] == time_B[i+1] - 3))

{

interp.B.temp[time_B[i]+1] <- interp.B.temp[time_B[i]] +

(interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/3;

interp.B.temp[time_B[i]+2] <- interp.B.temp[time_B[i]] +

2*((interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/3)

}

if ((time_B[i] == time_B[i+1] - 4))

{

interp.B.temp[time_B[i]+1] <- interp.B.temp[time_B[i]] +

(interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/4;

interp.B.temp[time_B[i]+2] <- interp.B.temp[time_B[i]] +

2*((interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/4);

interp.B.temp[time_B[i]+3] <- interp.B.temp[time_B[i]] +

3*((interp.B.temp[time_B[i+1]]-interp.B.temp[time_B[i]])/4)

}

}

# Exclude initial and final measurement occasions

start <- max(time_A[1],time_B[1])

end <- min(time_A[length(time_A)],time_B[length(time_B)])

interp.A <- interp.A.temp[start:end]

interp.B <- interp.B.temp[start:end]

# Compare all values for the same measurement occasions

if (aim =="increase") diff.interp <- interp.B-interp.A

if (aim =="reduce") diff.interp <- interp.A-interp.B

return(mean(diff.interp))

}

# Second:

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

# Specify aim

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi <- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

aim <- "reduce" # Alternatively aim <- "increase"

# Third:

# Locate a previously created file including all possible randomizations

# For situations in which n_A = n_B the SCDA plug-in (Bulté \& Onghena, 2013) can be used

# Otherwise the executable file from the CD accompanying the book by Edgington \& Onghena (2007) can be used.

sequ <- read.table(file.choose(),header=FALSE,sep=",")



# Fourth:

# Copy and paste the rest of the code in the R console

actualALIV <- aliv(score,condi,aim)

if (aim=="reduce") actualMD <- mean(score[condi=="A"])-mean(score[condi=="B"]) else

actualMD <- mean(score[condi=="B"])-mean(score[condi=="B"])

md <- rep(0,dim(sequ)[1])

alivs <- rep(0,dim(sequ)[1])

for (i in 1:dim(sequ)[1])

{

if (aim=="reduce") md[i] <- mean(score[sequ[i,]=="A"])-mean(score[sequ[i,]=="B"])

if (aim=="increase") md[i] <- mean(score[sequ[i,]=="B"])-mean(score[sequ[i,]=="A"])

alivs[i] <- aliv(score,sequ[i,],aim)

}

count_md <- 0

count_alivs <- 0

for (i in 1:dim(sequ)[1])

{

if (actualMD <= md[i]) count_md <- count_md +1

if (actualALIV <= alivs[i]) count_alivs <- count_alivs +1

}

p_md <- count_md/dim(sequ)[1]

p_aliv <- count_alivs/dim(sequ)[1]

paste("Mean difference = ", round(actualMD,2))

paste("p value for the Mean difference = ", round(p_md,4))

paste("ALIV = ", round(actualALIV,2))

paste("p value for ALIV = ", round(p_aliv,4))



# Example of 50 possible randomizations for the Eilers and Hayes (2015) data

## V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

## 1 A A B A A B B A B B A B B A B B

## 2 A A B A B A B A B B A B B A B B

## 3 A A B A B A B B A B A B B A B B

## 4 A A B A B A B B A B B A B A B B

## 5 A A B A B A B B A B B A B B A B

## 6 A A B A B B A A B B A B B A B B

## 7 A A B A B B A B A B A B B A B B

## 8 A A B A B B A B A B B A B A B B

## 9 A A B A B B A B A B B A B B A B

## 10 A A B A B B A B B A A B B A B B

## 11 A A B A B B A B B A B A B A B B

## 12 A A B A B B A B B A B A B B A B

## 13 A A B A B B A B B A B B A A B B

## 14 A A B A B B A B B A B B A B A B

## 15 A A B A B B A B B A B B A B B A

## 16 A A B B A A B A B B A B B A B B

## 17 A A B B A A B B A B A B B A B B

## 18 A A B B A A B B A B B A B A B B

## 19 A A B B A A B B A B B A B B A B

## 20 A A B B A B A A B B A B B A B B

## 21 A A B B A B A B A B A B B A B B

## 22 A A B B A B A B A B B A B A B B

## 23 A A B B A B A B A B B A B B A B

## 24 A A B B A B A B B A A B B A B B

## 25 A A B B A B A B B A B A B A B B

## 26 A A B B A B A B B A B A B B A B

## 27 A A B B A B A B B A B B A A B B

## 28 A A B B A B A B B A B B A B A B

## 29 A A B B A B A B B A B B A B B A

## 30 A A B B A B B A A B A B B A B B

## 31 A A B B A B B A A B B A B A B B

## 32 A A B B A B B A A B B A B B A B

## 33 A A B B A B B A B A A B B A B B

## 34 A A B B A B B A B A B A B A B B

## 35 A A B B A B B A B A B A B B A B

## 36 A A B B A B B A B A B B A A B B

## 37 A A B B A B B A B A B B A B A B

## 38 A A B B A B B A B A B B A B B A

## 39 A A B B A B B A B B A A B A B B

## 40 A A B B A B B A B B A A B B A B

## 41 A A B B A B B A B B A B A A B B

## 42 A A B B A B B A B B A B A B A B

## 43 A A B B A B B A B B A B A B B A

## 44 A A B B A B B A B B A B B A A B

## 45 A A B B A B B A B B A B B A B A

## 46 A B A A B A B A B B A B B A B B

## 47 A B A A B A B B A B A B B A B B

## 48 A B A A B A B B A B B A B A B B

## 49 A B A A B A B B A B B A B B A B

## 50 A B A A B B A A B B A B B A B B



Code ends here. Default output of the code below:

## [1] "Mean difference = 11.27"

## [1] "p value for the Mean difference = 0.0143"

## [1] "ALIV = 7"

## [1] "p value for ALIV = 0.0994"



3 Previously available analytical options



3.1 Percentage of nonoverlapping data by Wolery et al.

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(.In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The remaining
part of the code is copied and pasted in the R console, which leads to obtaining the results. The aim of the
study is speci�ed after aim <- via either "reduce" or "increase".

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

# Specify aim

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

aim <- "reduce" # Alternatively: "increase"

# Copy and paste the rest of the code in the R console

Adata <- score[condi=="A"]

Bdata <- score[condi=="B"]

indep <- 1:length(score)

comparisons <- min(length(Adata),length(Bdata))

A.super <- 0

B.super <- 0

for (i in 1:comparisons)

{

if ((aim=="reduce") && (Bdata[i] < Adata[i])) B.super <- B.super + 1

if ((aim=="reduce") && (Bdata[i] > Adata[i])) A.super <- A.super + 1

if ((aim=="increase") && (Bdata[i] > Adata[i])) B.super <- B.super + 1

if ((aim=="increase") && (Bdata[i] < Adata[i])) A.super <- A.super + 1

}

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),ylim=c(min(score),max(score)),

xlab="Sessions", ylab="Measurements", pch="")

abline (v=(length(Adata)+0.5))

points(indep[condi=="A"], Adata, bg="black")

points(indep[condi=="B"], Bdata, pch=0, bg="black",cex=1.6)

lines(indep[condi=="A"], Adata,lty="dotted")

lines(indep[condi=="B"], Bdata,lty="dashed")

title (main="PND-W comparisons")

for (i in 1:comparisons)

arrows(indep[condi=="A"][i], Adata[i],

indep[condi=="B"][i],Bdata[i],col="blue",length=0.10)

title(sub=list(paste("Superiority B vs A:",

round((B.super/comparisons)*100,2),"%"),col="darkgreen"))



Code ends here. Default output of the code below:
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3.2 Nonoverlap all pairs

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(.In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The remaining
part of the code is copied and pasted in the R console, which leads to obtaining the results. The aim of the
study is speci�ed after aim <- via either "reduce" or "increase".

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

# Specify aim

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

aim <- "reduce" # Alternatively: "increase"

# Copy and paste the rest of the code in the R console

control<- score[condi=="A"]

intervention<- score[condi=="B"]

probsup<-function (x1,x2,aim){

n1 <- sum(!is.na(x1))

n2 <- sum(!is.na(x2))

if (aim=="reduce") mayor<- sum(unlist(lapply(x1,x2,FUN='>')),na.rm=TRUE)

if (aim=="increase") mayor<- sum(unlist(lapply(x1,x2,FUN='<')),na.rm=TRUE)

igual<- 0.5*sum(unlist(lapply(x1,x2,FUN='==')),na.rm=TRUE)

prob_sup <- (mayor+igual)/(n1*n2)

cat('NAP= ', prob_sup,'\n')

}

probsup(control,intervention,aim)

Code ends here. Default output of the code below:

## NAP= 0.77



3.3 Monotonic trends using Tau-U

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(.In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The remaining
part of the code is copied and pasted in the R console, which leads to obtaining the results. The aim of the
study is speci�ed after aim <- via either "reduce" or "increase".

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

aim <- "reduce" # Alternatively: "increase"

# Copy and paste the rest of the code in the R console

score_c <- score[condi=="A"]

length_c <- length(score[condi=="A"])

count_up <- 0

count_down <- 0

counter <- 0

for (i in length_c:1)

for (j in 1:(length_c-1))

if (i > j)

{

counter <- counter + 1

if (score_c[i] > score_c[i-j]) count_up <- count_up + 1

if (score_c[i] < score_c[i-j]) count_down <- count_down + 1

}

print("Condition A")

if (count_up > count_down)

paste("Positive monotonic trend:", round((count_up-count_down)*100/counter,2), "% increase")

if (count_up < count_down)

paste("Negative monotonic trend:", round((count_down-count_up)*100/counter,2), "% decrease")

score_c <- score[condi=="B"]

length_c <- length(score[condi=="B"])

count_up <- 0

count_down <- 0

counter <- 0

for (i in length_c:1)

for (j in 1:(length_c-1))

if (i > j)

{

counter <- counter + 1

if (score_c[i] > score_c[i-j]) count_up <- count_up + 1

if (score_c[i] < score_c[i-j]) count_down <- count_down + 1

}

print("Condition B")

if (count_up > count_down)

paste("Positive monotonic trend:", round((count_up-count_down)*100/counter,2), "% increase")

if (count_up < count_down)

paste("Negative monotonic trend:", round((count_down-count_up)*100/counter,2), "% decrease")



indep <- 1:length(score)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),ylim=c(min(score)-1,max(score)+1),

xlab="Sessions", ylab="Measurements", pch="")

points(indep[condi=="A"], score[condi=="A"], bg="black")

points(indep[condi=="B"], score[condi=="B"], pch=0, bg="black",cex=1.6)

lines(indep[condi=="A"],score[condi=="A"],lty="dotted")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

title (main="Monotonic trend example: condition A")

Atimes <- 1:length(score[condi=="A"])

where1 <- floor(quantile(Atimes, probs = 0.25, names = FALSE))

for (j in 1:length(score[condi=="A"]))

if (j > where1)

{

if ((score[condi=="A"][where1] > score[condi=="A"][j]) && (aim=="increase"))

arrows(indep[condi=="A"][where1],score[condi=="A"][where1],

indep[condi=="A"][j],score[condi=="A"][j],

col="red",length=0.1)

if ((score[condi=="A"][where1] < score[condi=="A"][j]) && (aim=="increase"))

arrows(indep[condi=="A"][where1],score[condi=="A"][where1],

indep[condi=="A"][j],score[condi=="A"][j],

col="green",length=0.1)

if ((score[condi=="A"][where1] < score[condi=="A"][j]) && (aim=="reduce"))

arrows(indep[condi=="A"][where1],score[condi=="A"][where1],

indep[condi=="A"][j],score[condi=="A"][j],

col="red",length=0.1)

if ((score[condi=="A"][where1] > score[condi=="A"][j]) && (aim=="reduce"))

arrows(indep[condi=="A"][where1],score[condi=="A"][where1],

indep[condi=="A"][j],score[condi=="A"][j],

col="green",length=0.1)

if (score[condi=="A"][where1] == score[condi=="A"][j])

arrows(indep[condi=="A"][where1],score[condi=="A"][where1],

indep[condi=="A"][j],score[condi=="A"][j],

col="blue",length=0.1)

}



Code ends here. Default output of the code below:

## [1] "Condition A"

## [1] "Negative monotonic trend: 33.33 % decrease"

## [1] "Condition B"

## [1] "Negative monotonic trend: 58.33 % decrease"
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3.4 Compare means

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(.In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The remaining
part of the code is copied and pasted in the R console, which leads to obtaining the results.

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

# Copy and paste the rest of the code in the R console

paste("Average for control condition = ", round(mean(score[condi=="A"]),2))

paste("Average for intervention condition = ", round(mean(score[condi=="B"]),2))

paste("Difference in means = ", round(mean(score[condi=="A"])- mean(score[condi=="B"]),2))

Code ends here. Default output of the code below:

## [1] "Average for control condition = 20.84"

## [1] "Average for intervention condition = 9.58"

## [1] "Difference in means = 11.27"



The following code allows obtaining the graphical representation of what is being compared

# Objects needed for the calculations

indep<- 1:length(score)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions",

ylab="% intervals problem behavior", font.lab=2)

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title(main="Data with mean lines per condition")

time_B<- indep[condi=="B"]

time_A<- indep[condi=="A"]

score_A<- score[condi=="A"]

score_B<- score[condi=="B"]

mean_A<- rep(mean(score[condi=="A"]),length(score_A))

mean_B<- rep(mean(score[condi=="B"]),length(score_B))

lines(time_B,mean_B,lty="dashed",col="orange")

lines(time_A,mean_A,col="blue")

The default graphical output is:
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3.5 Carry out two separate linear regressions

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(.In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The remaining
part of the code is copied and pasted in the R console, which leads to obtaining the results.

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

# Copy and paste the rest of the code in the R console

indep<- 1:length(score)

time_B<- indep[condi=="B"]

score_B<- score[condi=="B"]

reg_B<- lm(score_B ~ time_B)

time_A<- indep[condi=="A"]

score_A<- score[condi=="A"]

reg_A<- lm(score_A ~ time_A)

b <- reg_B$coefficients[1] + reg_B$coefficients[2]*indep

a <- reg_A$coefficients[1] + reg_A$coefficients[2]*indep

start<- max(time_A[1],time_B[1])

end<- min(time_A[length(time_A)],time_B[length(time_B)])

d <- a[start:end]-b[start:end]

paste("R-squared for A = ", round(summary(reg_A)$r.squared,2))

paste("R-squared for B = ", round(summary(reg_B)$r.squared,2))

paste("Average difference between predicted values = ", round(mean(d),2))

Code ends here. Default output of the code below:

## [1] "R-squared for A = 0.16"

## [1] "R-squared for B = 0.54"

## [1] "Average difference between predicted values = 7.74"



The following code allows obtaining the graphical representation of what is being compared

indep<- 1:length(score)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions",

ylab="% intervals problem behavior", font.lab=2)

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title(main="Data with straight OLS lines per condition")

lines(time_B,reg_B$fitted,lty="dashed",col="orange")

lines(time_A,reg_A$fitted,col="blue")

The default graphical output is:
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3.6 Carry out two separate quadratic regressions

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(.In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B". The remaining
part of the code is copied and pasted in the R console, which leads to obtaining the results.

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

# Copy and paste the rest of the code in the R console

indep<- 1:length(score)

indep_sq<- indep*indep

time_B<- indep[condi=="B"]

time_Bsq<- time_B * time_B

score_B<- score[condi=="B"]

reg_q_B<- lm(score_B ~ time_B + time_Bsq)

time_A<- indep[condi=="A"]

time_Asq<- time_A * time_A

score_A<- score[condi=="A"]

reg_q_A<- lm(score_A ~ time_A + time_Asq)

b <- reg_q_B$coefficients[1] + reg_q_B$coefficients[2]*indep +

reg_q_B$coefficients[3]*indep_sq

a <- reg_q_A$coefficients[1] + reg_q_A$coefficients[2]*indep +

reg_q_A$coefficients[3]*indep_sq

start<- max(time_A[1],time_B[1])

end<- min(time_A[length(time_A)],time_B[length(time_B)])

d <- a[start:end]-b[start:end]

paste("R-squared for A = ", round(summary(reg_q_A)$r.squared,2))

paste("R-squared for B = ", round(summary(reg_q_B)$r.squared,2))

paste("Average difference between predicted values = ", round(mean(d),2))

Code ends here. Default output of the code below:

## [1] "R-squared for A = 0.19"

## [1] "R-squared for B = 0.55"

## [1] "Average difference between predicted values = 7.44"



The following code allows obtaining the graphical representation of what is being compared

indep<- 1:length(score)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions",

ylab="% intervals problem behavior", font.lab=2)

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title(main="Data with quadratic OLS lines per condition")

lines(time_B,reg_q_B$fitted,lty="dashed",col="orange")

lines(time_A,reg_q_A$fitted,col="blue")

The default graphical output is:
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3.7 Carry out two local regression analyses (LOESS)

The values obtained are speci�ed, separated by commas, after score <- c(. The labels for the conditions are
provided in quotation marks ("") and separated by commas after condi<- c(. In order for the code to work
without further modi�cations, one of the conditions should be called "A" and the other one "B".

# Input data: values in score <- c() separated by commas

# Specify conditions using the labels A and B

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi<- c("A","A","B","B","A","A","B","B","A","B","A","B","B","A","B","B")

The fraction of data (smoothing parameter) to be used can be modi�ed after fraction1 <- and score <-,
with the defaults used being 0.6 and 0.8. The remaining part of the code is copied and pasted in the R console,
which leads to obtaining the results. But they can be changed in the following lines:

fraction1 <- 0.60

fraction2 <- 0.80

# Copy and paste the rest of the code in the R console

indep<- 1:length(score)

time_B<- indep[condi=="B"]

score_B<- score[condi=="B"]

time_A<- indep[condi=="A"]

score_A<- score[condi=="A"]

reg_B1 <- loess(score_B~time_B,span=fraction1,degree=1)

reg_B2 <- loess(score_B~time_B,span=fraction2,degree=1)

reg_A1 <- loess(score_A~time_A,span=fraction1,degree=1)

reg_A2 <- loess(score_A~time_A,span=fraction2,degree=1)

reg_B1.q <- loess(score_B~time_B,span=fraction1,degree=2)

reg_B2.q <- loess(score_B~time_B,span=fraction2,degree=2)

reg_A1.q <- loess(score_A~time_A,span=fraction1,degree=2)

reg_A2.q <- loess(score_A~time_A,span=fraction2,degree=2)

ss.total<- sum(scale(score_A, center=TRUE, scale=FALSE)^2)

ss.resid<- sum(residuals(reg_A1)^2)

paste("Pseudo R-squared for A = ", round((1-ss.resid/ss.total),2))

ss.total<- sum(scale(score_B, center=TRUE, scale=FALSE)^2)

ss.resid<- sum(residuals(reg_B1)^2)

paste("Pseudo R-squared for B = ", round((1-ss.resid/ss.total),2))

We here use the results for linear regressions using 60% of the data (regA1 and regB1), but it is possible
to change that by using the predicted values from a di�erent regression model, by modifying the objects regA1

and regB1 in allpredictedA and allpredictedB .

allpredicted_A<- 1:length(score)

for (i in 1:length(score))

allpredicted_A[i] <- predict(reg_A1, i)

allpredicted_B<- 1:length(score)

for (i in 1:length(score))

allpredicted_B[i] <- predict(reg_B1, i)

start<- 1

end<- length(score)

for (i in 1:length(score))

{

if ( (!is.na(allpredicted_A[i])) &&



(!is.na(allpredicted_B[i])) && (start==1) ) start <- i

if ( (!is.na(allpredicted_A[i])) &&

(!is.na(allpredicted_B[i])) ) end <- i

}

d_AB<- allpredicted_A[start:end]-allpredicted_B[start:end]

paste("Average difference between predicted values = ", round(mean(d_AB),2))

Code ends here. Default output of the code below:

## [1] "Pseudo R-squared for A = 0.52"

## [1] "Pseudo R-squared for B = 0.78"

## [1] "Average difference between predicted values = 6.76"



The following code allows obtaining the graphical representation of what is being compared

par(mfrow=c(2,2))

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions", ylab="% intervals problem behavior",

font.lab=2, pch= " ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title (main="Fraction = 60%; Linear")

j <- order(time_B)

lines(time_B[j],reg_B1$fitted[j],col="red",lty="dashed",lwd=3)

j <- order(time_A)

lines(time_A[j],reg_A1$fitted[j],col="blue",lwd=3)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions", ylab="% intervals problem behavior",

font.lab=2, pch= " ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title (main="Fraction = 80%; Linear")

j <- order(time_B)

lines(time_B[j],reg_B2$fitted[j],col="red",lty="dashed",lwd=3)

j <- order(time_A)

lines(time_A[j],reg_A2$fitted[j],col="blue",lwd=3)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions", ylab="% intervals problem behavior",

font.lab=2, pch= " ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title (main="Fraction = 60%; Quadratic")

j <- order(time_B)

lines(time_B[j],reg_B1.q$fitted[j],col="red",lty="dashed",lwd=3)

j <- order(time_A)

lines(time_A[j],reg_A1.q$fitted[j],col="blue",lwd=3)

plot(indep,score, xlim=c(indep[1],indep[length(indep)]),

ylim=c(0,40), xlab="Sessions", ylab="% intervals problem behavior",

font.lab=2, pch= " ")

points(indep[condi=="B"], score[condi=="B"], pch=24, bg="black")

points(indep[condi=="A"], score[condi=="A"], bg="black")

lines(indep[condi=="B"],score[condi=="B"],lty="dashed")

lines(indep[condi=="A"],score[condi=="A"],lty="solid")

title (main="Fraction = 80%; Quadratic")

j <- order(time_B)

lines(time_B[j],reg_B2.q$fitted[j],col="red",lty="dashed",lwd=3)

j <- order(time_A)

lines(time_A[j],reg_A2.q$fitted[j],col="blue",lwd=3)



The default graphical output is:
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3.8 Piecewise regression

To use this code, it is necessary to �rst create a data matrix such as the one shown next. The data are then
located via the �rst line of code. In case the same names for the columns are used as shown here, the code only
needs to be copied and pasted without further modi�cations.

Data matrix for immediate e�ect: di�erence between the initial predicted values for the two conditions.

Time Score condi_B condi_A Time1 Time2 condiA_T2 condiB_T2
1 26.7 0 1 0 -2 0 0
2 33.1 0 1 1 -1 1 0
3 16.6 1 0 2 0 0 0
4 26.9 1 0 3 1 0 1
5 20.1 0 1 4 2 4 0
6 13.2 0 1 5 3 5 0
7 16.7 1 0 6 4 0 4
8 3.1 1 0 7 5 0 5
9 6.6 0 1 8 6 8 0
10 0 1 0 9 7 0 7
11 36.4 0 1 10 8 10 0
12 13.1 1 0 11 9 0 9
13 9.8 1 0 12 10 0 10
14 9.8 0 1 13 11 13 0
15 0 1 0 14 12 0 12
16 0 1 0 15 13 0 13

Data matrix for the di�erence in conditions (between predicted values) at the last measurement occasion.

Time Score condi_B condi_A Time2 condiA_T2 condiB_T2
1 26.7 0 1 -15 -15 0
2 33.1 0 1 -14 -14 0
3 16.6 1 0 -13 0 -13
4 26.9 1 0 -12 0 -12
5 20.1 0 1 -11 -11 0
6 13.2 0 1 -10 -10 0
7 16.7 1 0 -9 0 -9
8 3.1 1 0 -8 0 -8
9 6.6 0 1 -7 -7 0
10 0 1 0 -6 0 -6
11 36.4 0 1 -5 -5 0
12 13.1 1 0 -4 0 -4
13 9.8 1 0 -3 0 -3
14 9.8 0 1 -2 -2 0
15 0 1 0 -1 0 -1
16 0 1 0 0 0 0

# The already existing data matrix (e.g., a tab-delimited .txt) is located

Piecewise <- read.table(file.choose(),header=TRUE)

# Copy and paste the rest of the code in the R console

reg<- lm(Score ~ condi_B + condiA_T2 + condiB_T2, Piecewise)

summary(reg)

res<- sqrt(sum((residuals(reg)^2))/df.residual(reg))

print("Square root of the mean square error"); print(res)



Code ends here. Default output of the code below:
Comparing predicted values for the last measurement occasion:

##

## Call:

## lm(formula = Score ~ condi_B + condiA_T2 + condiB_T2, data = Piecewise)

##

## Residuals:

## Min 1Q Median 3Q Max

## -12.164 -5.202 -0.934 5.537 19.577

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 11.9712 8.0581 1.486 0.1632

## condi_B -11.7924 9.6750 -1.219 0.2463

## condiA_T2 -0.9703 0.7945 -1.221 0.2454

## condiB_T2 -1.5106 0.7045 -2.144 0.0532 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 9.227 on 12 degrees of freedom

## Multiple R-squared: 0.4991,Adjusted R-squared: 0.3739

## F-statistic: 3.986 on 3 and 12 DF, p-value: 0.03493

## [1] "Square root of the mean square error"

## [1] 9.226883



4 Illustrations with real data

4.1 Andersen et al. (2013) data

Illustration 1 contains the data gathered by Andersen et al.(2013) for Terrance [their �gure 1, middle right panel].

Andersen, M. N., Daly, III, A. J., & Young, N. D. (2013). Examination of a one-trial brief experimental
analysis to identify reading �uency interventions. Psychology in the Schools, 50, 403−414.

score <- c(35.4,71.1,40.9,58.7,37.4,30.9,49.1,35,40.2,41.2,42.2,29.2)

condi <- c(1,3,2,3,2,1,3,1,2,2,3,1)
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Andersen et al. (2013) data for Terrance

A summary of the results follows on the next page.



Conditions: 1 - ; 2 - ; 3 -  

Analytical technique Quantifications 

Mean difference −= 7.30 
− = 22.65 
− = 15.35 

Percentage of nonoverlapping data according 
to the proposal by Wolery, Gast, et al. (2010). 

 100.00% superior to  
 100.00% superior to  
 100.00% superior to  

Nonovelap of all pairs − = 100% 
− = 100% 
− = 100% 

Tau-U: only the direction and amount of 
monotonic trend is represented here, not 
including overlap 

 monotonic trend = 66.67% decrease 
 monotonic trend = 33.33% increase 
 monotonic trend = 100% decrease 

Piecewise regression, comparing at the last 
intervention measurement occasion 

− last point: 6.65 
− last point: 10.67 
−last point: −4.02 
 slope = −0.47 
 slope = −3.08 
 slope = 0.17 

Average difference between the values fitted 
via linear regression fitted lines 

− = 7.14 
− = 20.99 
− = 13.85 

Average difference between the values fitted 
via quadratic regression fitted lines 

− = 5.93 
− = 19.63 
−= 12.64 

Average difference between the values fitted 
via local regression (LOESS) with fraction α = 
0.60 and straight lines fitted 

− = 6.58 
− = 20.30 
− = 12.78 

ALIV: A comparison involving actual and 
linearly interpolated values 

− = 6.58 
− = 20.30 
− = 12.78 

ADISO: Weighted average difference between 
successive observations  
 
 
ADISO-O: percentage of ordinal superiority 

− = 7.30  (100% superior) 
− = 22.65  (100% superior) 
− = 15.35  (100% superior) 
 
 100% superior  to   
 100% superior  to   
 100% superior  to  

 

 



4.1.1 Mean di�erence
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Mean lines per condition

Mean difference 2−1= 7.3
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Mean difference 3−1 = 22.65
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Mean difference 2−3 = −15.35



4.1.2 Percentage of nonoverlapping data: Wolery et al. version

## Comparison PND-W

## [1,] "2 > 1" "100 %"

## [2,] "3 > 1" "100 %"

## [3,] "2 > 3" "0 %"
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4.1.3 Nonoverlap of all pairs

## Comparison NAP

## [1,] "2 > 1" "1"

## [2,] "3 > 1" "1"

## [3,] "2 > 3" "1"
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4.1.4 Monotonic trends estimated as in Tau-U

## [1] "Condition 1"

## [1] "Negative monotonic trend: 66.67 % decrease"

## [1] "Condition 2"

## [1] "Positive monotonic trend: 33.33 % increase"

## [1] "Condition 3"

## [1] "Negative monotonic trend: 100 % decrease"
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4.1.5 Piecewise regression, comparing at the last measurement occasion

## [1] "Comparison 2 vs. 1"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 1 35.4 1 0 -11 -11 0

## [2,] 3 40.9 0 1 -9 0 -9

## [3,] 5 37.4 0 1 -7 0 -7

## [4,] 6 30.9 1 0 -6 -6 0

## [5,] 8 35.0 1 0 -4 -4 0

## [6,] 9 40.2 0 1 -3 0 -3

## [7,] 10 41.2 0 1 -2 0 -2

## [8,] 12 29.2 1 0 0 0 0

## [1] " "

## [1] "Comparison 3 vs. 1"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 1 35.4 1 0 -11 -11 0

## [2,] 2 71.1 0 1 -10 0 -10

## [3,] 4 58.7 0 1 -8 0 -8

## [4,] 6 30.9 1 0 -6 -6 0

## [5,] 7 49.1 0 1 -5 0 -5

## [6,] 8 35.0 1 0 -4 -4 0

## [7,] 11 42.2 0 1 -1 0 -1

## [8,] 12 29.2 1 0 0 0 0

## [1] " "

## [1] "Comparison 2 vs. 3"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 2 71.1 0 1 -10 0 -10

## [2,] 3 40.9 1 0 -9 -9 0

## [3,] 4 58.7 0 1 -8 0 -8

## [4,] 5 37.4 1 0 -7 -7 0

## [5,] 7 49.1 0 1 -5 0 -5

## [6,] 9 40.2 1 0 -3 -3 0

## [7,] 10 41.2 1 0 -2 -2 0

## [8,] 11 42.2 0 1 -1 0 -1
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## Conditions Difference at last point

## [1,] "2-1" "-10.67"

## [2,] "3-1" "-6.65"

## [3,] "2-3" "4.02"

## Condition Trend

## [1,] 1 -0.47

## [2,] 2 0.17

## [3,] 3 -3.08



4.1.6 Linear regression: mean di�erence between �tted values
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4.1.7 Quadratic regression: mean di�erence between �tted values
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4.1.8 Local regression (LOESS): mean di�erence between �tted values
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4.1.9 Actual and linearly interpolated values: ALIV
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4.1.10 Weighted average di�erence between successive observations: ADISO

## Error in `[<-`(`*tmp*`, 2, 4, value = "1 superior: 0 %. 3 superior: 100 %"): subscript

out of bounds

## Error in `[<-`(`*tmp*`, 3, 4, value = "2 superior: 0 %. 3 superior: 100 %"): subscript

out of bounds
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## Comparison ADISO Superiority

## [1,] "1-2" "-7.3" "1 superior: 0 %. 2 superior: 100 %"

## [2,] "1-3" "-22.65" "-22.65"

## [3,] "2-3" "-15.35" "-15.35"



4.2 Coleman et al. (2015) data

Illustration 2 contains the data gathered by Coleman et al.(2015) data for Alice [their �gure 2].

Coleman, M. B., Cherry, R. A., Moore, T. C., Park, Y., & Cihak, D. F. (2015). Teaching sight words to
elementary students with intellectual disability and autism: A comparison of teacher-directed versus computer-
assisted simultaneous prompting. Intellectual and Developmental Disabilities, 53, 196−210.

score <- c(0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,1,3,0,3,2,2,4,1,4,1,3,1,5,5,2,4,1)

condi <- c(1,1,1,1,1,1,3,2,2,3,3,2,3,2,2,3,3,2,3,2,2,3,2,3,2,3,2,3,3,2,3,2)
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Coleman et al. (2015) data for Alice

A summary of the results follows on the next page.



Conditions: 1 -  [baseline not considered]; 2 - ; 3 -  

Analytical technique Quantifications 

Mean difference − = 1.92 

Percentage of nonoverlapping data according 
to the proposal by Wolery, Gast, et al. (2010). 

 92.31% superior to  

Nonovelap of all pairs − = 82.00% 

Tau-U: only the direction and amount of 
monotonic trend is represented here, not 
including overlap 

 monotonic trend = 46.15% increase 
 monotonic trend = 73.08% increase 
 

Piecewise regression, comparing at the last 
intervention measurement occasion 

−last point = 3.49 
 slope = 0.07 
 slope = 0.20 

Average difference between the values fitted 
via linear regression fitted lines 

− = 1.93 

Average difference between the values fitted 
via quadratic regression fitted lines 

−= 1.95 

Average difference between the values fitted 
via LOESS (fraction α = 0.60; straight lines 
fitted) 

− = 1.97 

ALIV: A comparison involving actual and 
linearly interpolated values 

− = 1.96 

ADISO: Weighted average difference between 
successive observations  
 
ADISO-O: percentage of ordinal superiority 

− =  1.77 
 
 
 90.00% superior to  

 

 



4.2.1 Mean di�erence
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4.2.2 Percentage of nonoverlapping data: Wolery et al. version
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4.2.3 Nonoverlap of all pairs

## [1] "NAP = 0.82"
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4.2.4 Monotonic trends estimated as in Tau-U

## [1] "Condition 2"

## [1] "Positive monotonic trend: 46.15 % increase"

## [1] "Condition 3"

## [1] "Positive monotonic trend: 73.08 % increase"
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4.2.5 Piecewise regression, comparing at the last measurement occasion

## [1] "Comparison 3 vs. 2"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 7 0 0 1 -25 0 -25

## [2,] 8 0 1 0 -24 -24 0

## [3,] 9 0 1 0 -23 -23 0

## [4,] 10 1 0 1 -22 0 -22

## [5,] 11 1 0 1 -21 0 -21

## [6,] 12 0 1 0 -20 -20 0

## [7,] 13 1 0 1 -19 0 -19

## [8,] 14 0 1 0 -18 -18 0

## [9,] 15 0 1 0 -17 -17 0

## [10,] 16 1 0 1 -16 0 -16

## [11,] 17 3 0 1 -15 0 -15

## [12,] 18 0 1 0 -14 -14 0

## [13,] 19 3 0 1 -13 0 -13

## [14,] 20 2 1 0 -12 -12 0

## [15,] 21 2 1 0 -11 -11 0

## [16,] 22 4 0 1 -10 0 -10

## [17,] 23 1 1 0 -9 -9 0

## [18,] 24 4 0 1 -8 0 -8

## [19,] 25 1 1 0 -7 -7 0

## [20,] 26 3 0 1 -6 0 -6

## [21,] 27 1 1 0 -5 -5 0

## [22,] 28 5 0 1 -4 0 -4

## [23,] 29 5 0 1 -3 0 -3

## [24,] 30 2 1 0 -2 -2 0

## [25,] 31 4 0 1 -1 0 -1

## [26,] 32 1 1 0 0 0 0

## [1] " "
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## [1] "Condition 2 trend = 0.07"

## [1] "Condition 3 trend = 0.2"

## [1] "Last occasion difference 2-3 = -3.49"



4.2.6 Linear regression: mean di�erence between �tted values
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4.2.7 Quadratic regression: mean di�erence between �tted values
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4.2.8 Local regression (LOESS): mean di�erence between �tted values
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4.2.9 Actual and linearly interpolated values: ALIV
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4.2.10 Weighted average di�erence between successive observations: ADISO
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A set of comparisons for ADISO

## Comparison ADISO Superiority

## [1,] "2-3" "-1.77" "1 superior: 0 %. 2 superior: 90 %"



4.3 Yakubova and Bouck (2014) data

Illustration 3 contains the data gathered by Yakubova and Bouck (2014) for Rick [their �gure 1; lower panel].

Yakubova, G., & Bouck, E. C. (2014). Not all created equally: Exploring calculator use by students with
mild intellectual disability. Education and Training in Autism and Developmental Disabilities, 49, 111−126.

score <- c(40,60,40,60,40, 100,80,100,100,60,80,60,80,60,60)

condi <- c(1,1,1,1,1,3,2,3,3,2,3,2,2,3,2)
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Yakubova & Bouck (2014) data for Rick

A summary of the results follows on the next page.



Conditions: 1 -  [baseline not considered]; 2 - ; 3 -  

Analytical technique Quantifications 

Mean difference − = 20 

Percentage of nonoverlapping data according 
to the proposal by Wolery, Gast, et al. (2010). 

 66.00% superior to  

Nonovelap of all pairs − = 82.00% 

Tau-U: only the direction and amount of 
monotonic trend is represented here, not 
including overlap 

 monotonic trend = 20% decrease 
 monotonic trend = 70% decrease 
 

Piecewise regression, comparing at the last 
intervention measurement occasion 

−last point = −4.19 
 slope = −1.51 
 slope = −5.48 

Average difference between the values fitted 
via linear regression fitted lines 

− = 13.71 

Average difference between the values fitted 
via quadratic regression fitted lines 

−= 16.08 

Average difference between the values fitted 
via LOESS (fraction α = 0.60; straight lines 
fitted) 

− = 15.00 

ALIV: A comparison involving actual and 
linearly interpolated values 

− = 15.00 

ADISO: Weighted average difference between 
successive observations  
 
ADISO-O: percentage of ordinal superiority 

− =  19.00 
 
 
 75.00% superior to  

 

 

 



4.3.1 Mean di�erence
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4.3.2 Percentage of nonoverlapping data: Wolery et al. version
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4.3.3 Nonoverlap of all pairs

## [1] "NAP = 0.82"
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4.3.4 Monotonic trends estimated as in Tau-U

## [1] "Condition 2"

## [1] "Negative monotonic trend: 20 % decrease"

## [1] "Condition 3"

## [1] "Negative monotonic trend: 70 % decrease"
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4.3.5 Piecewise regression, comparing at the last measurement occasion

## [1] "Comparison 3 vs. 2"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 6 100 0 1 -9 0 -9

## [2,] 7 80 1 0 -8 -8 0

## [3,] 8 100 0 1 -7 0 -7

## [4,] 9 100 0 1 -6 0 -6

## [5,] 10 60 1 0 -5 -5 0

## [6,] 11 80 0 1 -4 0 -4

## [7,] 12 60 1 0 -3 -3 0

## [8,] 13 80 1 0 -2 -2 0

## [9,] 14 60 0 1 -1 0 -1

## [10,] 15 60 1 0 0 0 0

## [1] " "
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## [1] "Condition 2 trend = -1.51"

## [1] "Condition 3 trend = -5.48"

## [1] "Last occasion difference 2-3 = 4.19"



4.3.6 Linear regression: mean di�erence between �tted values
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4.3.7 Quadratic regression: mean di�erence between �tted values
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4.3.8 Local regression (LOESS): mean di�erence between �tted values
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4.3.9 Actual and linearly interpolated values: ALIV
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4.3.10 Weighted average di�erence between successive observations: ADISO
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A set of comparisons for ADISO

## Comparison ADISO Superiority

## [1,] "2-3" "-19" "1 superior: 0 %. 2 superior: 75 %"



4.4 Sil et al. (2013) data

Illustration 4 contains the data gathered by Sil et al. (2013) for child cooperation as reported by the nurses
[their �gure 3; lower panel].

Sil, S., Dahlquist, L. M., & Burns, A. J. (2013). Case study: videogame distraction reduces behavioral
distress in a preschool-aged child undergoing repeated burn dressing changes: a single-subject design. Journal
of Pediatric Psychology, 38, 330−341.

score <- c(74.6,66.7,48.7,67.5,87.7,47.6,63.8,47.6,77.8,92.9,19.7,92.9,94)

condi <- c(1,1,1,3,3,2,3,3,2,2,3,2,2)
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A summary of the results follows on the next page.



Conditions: 1 -  [baseline not considered]; 2 - ; 3 -  

Analytical technique Quantifications 

Mean difference − = −23.78 

Percentage of nonoverlapping data according 
to the proposal by Wolery, Gast, et al. (2010). 

 40% superior to  

Nonovelap of all pairs − = 18.00% 

Tau-U: only the direction and amount of 
monotonic trend is represented here, not 
including overlap 

 monotonic trend =90.00 % increase 
 monotonic trend = 80.00% decrease 
 

Piecewise regression, comparing at the last 
intervention measurement occasion 

−last point = −94.04 
 slope = 6.65 
 slope = −8.38 

Average difference between the values fitted 
via linear regression fitted lines 

− = −26.38 

Average difference between the values fitted 
via quadratic regression fitted lines 

−= −26.85 

Average difference between the values fitted 
via LOESS (fraction α = 0.60; straight lines 
fitted) 

− = −27.08 

ALIV: A comparison involving actual and 
linearly interpolated values 

− = −27.08 

ADISO: Weighted average difference between 
successive observations  
 
ADISO-O: percentage of ordinal superiority 

− =  −24.98 
 
 
 33% superior to  

 

 

 



4.4.1 Mean di�erence
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4.4.2 Percentage of nonoverlapping data: Wolery et al. version
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4.4.3 Nonoverlap of all pairs

## [1] "NAP = 0.18"
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4.4.4 Monotonic trends estimated as in Tau-U

## [1] "Condition 2"

## [1] "Positive monotonic trend: 90 % increase"

## [1] "Condition 3"

## [1] "Negative monotonic trend: 80 % decrease"
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4.4.5 Piecewise regression, comparing at the last measurement occasion

## [1] "Comparison 3 vs. 2"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 4 67.5 0 1 -9 0 -9

## [2,] 5 87.7 0 1 -8 0 -8

## [3,] 6 47.6 1 0 -7 -7 0

## [4,] 7 63.8 0 1 -6 0 -6

## [5,] 8 47.6 0 1 -5 0 -5

## [6,] 9 77.8 1 0 -4 -4 0

## [7,] 10 92.9 1 0 -3 -3 0

## [8,] 11 19.7 0 1 -2 0 -2

## [9,] 12 92.9 1 0 -1 -1 0

## [10,] 13 94.0 1 0 0 0 0

## [1] " "
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Piecewise regression

## [1] "Condition 2 trend = 6.65"

## [1] "Condition 3 trend = -8.38"

## [1] "Last occasion difference 2-3 = 94.04"



4.4.6 Linear regression: mean di�erence between �tted values
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Linear regression

Mean difference = −26.38



4.4.7 Quadratic regression: mean di�erence between �tted values
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4.4.8 Local regression (LOESS): mean di�erence between �tted values
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4.4.9 Actual and linearly interpolated values: ALIV
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4.4.10 Weighted average di�erence between successive observations: ADISO
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A set of comparisons for ADISO

## Comparison ADISO Superiority

## [1,] "2-3" "24.98" "1 superior: 66.67 %. 2 superior: 33.33 %"



4.5 Braynt et al. (2015) data

Illustration 5 contains the data gathered by Bryant et al. (2015) for John [their �gure 1; middle panel].

Bryant, B. R., Ok, M., Kang, E. Y., Kim, M. K., Lang, R., Bryant, D. P., & Pfannestiel, K. (2015). Perfor-
mance of fourth-grade students with learning disabilities on multiplication facts comparing teacher-mediated and
technology-mediated interventions: A preliminary investigation. Journal of Behavioral Education, 24, 255−272.

score <- c(6.1,8.1,14.5,14.5,52.1,39.7,54.6,62,60.7,43.8,54.8,53.5,59.6)

condi <- c(1,1,3,2,2,2,3,1,3,2,1,2,3)
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Bryant et al. (2015) data for John

A summary of the results follows on the next page.



Conditions: 1 - ; 2 - ; 3 -  

Analytical technique Quantifications 

Mean difference −= 7.97 
− =14.6 
− = 6.63 

Percentage of nonoverlapping data according 
to the proposal by Wolery, Gast, et al. (2010). 

 50.00% superior to  
 75.00% superior to  
 25.00% superior to  

Nonovelap of all pairs − = 50.00% 
− = 62.50% 
− = 77.50% 

Tau-U: only the direction and amount of 
monotonic trend is represented here, not 
including overlap 

 monotonic trend = 66.67% increase 
 monotonic trend = 60.00% increase 
 monotonic trend = 66.67% decrease 

Piecewise regression, comparing at the last 
intervention measurement occasion 

− last point: 20.14 
− last point: 6.67 
−last point: −13.47 
 slope = 5.81 
 slope = 2.76 
 slope = 4.45 

Average difference between the values fitted 
via linear regression fitted lines 

− = −3.37 
− = 1.44 
− = 4.98 

Average difference between the values fitted 
via quadratic regression fitted lines 

− =−8.80 
− =−2.71 
−= 7.99 

Average difference between the values fitted 
via LOESS (fraction α = 0.60; straight lines 
fitted) 

− = −9.09 
− = 0.33 
− = 8.84 

ALIV: A comparison involving actual and 
linearly interpolated values 

− = −8.47 
− = 0.31 
− = 8.84 

ADISO: Weighted average difference between 
successive observations  
 
 
ADISO-O: percentage of ordinal superiority 

− = 11.41 
− = 14.60   
− = 2.16   
 
 33.33% superior to  
 66.67% superior to  
 75.00% superior to  

 



4.5.1 Mean di�erence

 
 

  

 

 

 

  

 

  

 

2 4 6 8 10

0
20

40
60

80

Sessions

C
or

re
ct

ly
 r

ea
d 

w
or

ds
 p

er
 m

in
ut

e

Mean lines per condition

Mean difference 2−1= 7.97
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Mean difference 3−1 = 14.6
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Mean lines per condition

Mean difference 2−3 = −6.63



4.5.2 Percentage of nonoverlapping data: Wolery et al. version

## Comparison PND-W

## [1,] "2 > 1" "50 %"

## [2,] "3 > 1" "75 %"

## [3,] "3 > 2" "25 %"
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4.5.3 Nonoverlap of all pairs

## Comparison NAP

## [1,] "2 > 1" "0.5"

## [2,] "3 > 1" "0.625"

## [3,] "3 > 2" "0.775"
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4.5.4 Monotonic trends estimated as in Tau-U

## [1] "Condition 1"

## [1] "Positive monotonic trend: 66.67 % increase"

## [1] "Condition 2"

## [1] "Positive monotonic trend: 60 % increase"

## [1] "Condition 3"

## [1] "Positive monotonic trend: 66.67 % increase"
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Monotonic trend: condition 1
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4.5.5 Piecewise regression, comparing at the last measurement occasion

## [1] "Comparison 2 vs. 1"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 1 6.1 1 0 -12 -12 0

## [2,] 2 8.1 1 0 -11 -11 0

## [3,] 4 14.5 0 1 -9 0 -9

## [4,] 5 52.1 0 1 -8 0 -8

## [5,] 6 39.7 0 1 -7 0 -7

## [6,] 8 62.0 1 0 -5 -5 0

## [7,] 10 43.8 0 1 -3 0 -3

## [8,] 11 54.8 1 0 -2 -2 0

## [9,] 12 53.5 0 1 -1 0 -1

## [1] " "

## [1] "Comparison 3 vs. 1"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 1 6.1 1 0 -12 -12 0

## [2,] 2 8.1 1 0 -11 -11 0

## [3,] 3 14.5 0 1 -10 0 -10

## [4,] 7 54.6 0 1 -6 0 -6

## [5,] 8 62.0 1 0 -5 -5 0

## [6,] 9 60.7 0 1 -4 0 -4

## [7,] 11 54.8 1 0 -2 -2 0

## [8,] 13 59.6 0 1 0 0 0

## [1] " "

## [1] "Comparison 2 vs. 3"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 3 14.5 0 1 -10 0 -10

## [2,] 4 14.5 1 0 -9 -9 0

## [3,] 5 52.1 1 0 -8 -8 0

## [4,] 6 39.7 1 0 -7 -7 0

## [5,] 7 54.6 0 1 -6 0 -6

## [6,] 9 60.7 0 1 -4 0 -4

## [7,] 10 43.8 1 0 -3 -3 0

## [8,] 12 53.5 1 0 -1 -1 0

## [9,] 13 59.6 0 1 0 0 0
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## Conditions Difference at last point

## [1,] "2-1" "20.14"

## [2,] "3-1" "6.67"

## [3,] "3-2" "-13.47"

## Condition Trend

## [1,] 1 5.81

## [2,] 2 2.76

## [3,] 3 4.45



4.5.6 Linear regression: mean di�erence between �tted values

 
 

  

 

 

 

  

 

  

 

2 4 6 8 10

0
20

40
60

80

Sessions

C
or

re
ct

ly
 r

ea
d 

w
or

ds
 p

er
 m

in
ut

e

Linear regression

Mean difference = −3.37
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Linear regression

Mean difference = 1.44
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Linear regression

Mean difference = 4.98



4.5.7 Quadratic regression: mean di�erence between �tted values
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Quadratic regression

Mean difference = −8.8
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Quadratic regression

Mean difference = −2.71
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Quadratic regression

Mean difference = 7.99



4.5.8 Local regression (LOESS): mean di�erence between �tted values
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Mean difference = −9.09
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4.5.9 Actual and linearly interpolated values: ALIV
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ALIV

Mean difference = −8.47
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Mean difference = 0.31
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4.5.10 Weighted average di�erence between successive observations: ADISO

## Error in `[<-`(`*tmp*`, 2, 4, value = "1 superior: 33.33 %. 3 superior: 66.67 %"): subscript

out of bounds

## Error in `[<-`(`*tmp*`, 3, 4, value = "2 superior: 25 %. 3 superior: 75 %"): subscript

out of bounds

 
 

 

 

 

 

 

  

2 4 6 8

0
20

40
60

80

Sessions

C
or

re
ct

ly
 r

ea
d 

w
or

ds
 p

er
 m

in
ut

e

A set of comparisons for ADISO
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A set of comparisons for ADISO

## Comparison ADISO Superiority

## [1,] "1-2" "-11.41" "1 superior: 66.67 %. 2 superior: 33.33 %"

## [2,] "1-3" "-10.32" "-14.6"

## [3,] "2-3" "-4.78" "-2.16"



4.6 Eilers and Hayes (2015) data

Illustration 6 contains the data gathered by Eilers and Hayes (2015) for Jacob [their �gure 2; upper panel].

Eilers, H. J., & Hayes, S. C. (2015). Exposure and response prevention therapy with cognitive defusion
exercises to reduce repetitive and restrictive behaviors displayed by children with autism spectrum disorder.
Research in Autism Spectrum Disorders, 19, 18−31.

score <- c(26.7,33.1,16.6,26.9,20.1,13.2,16.7,3.1,6.6,0,36.4,13.1,9.8,9.8,0,0)

condi <- c(3,3,2,2,3,3,2,2,3,2,3,2,2,3,2,2)
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Eilers & Hayes (2015) data for Jacob

A summary of the results follows on the next page.



Conditions: 2 - ; 3 -  

Analytical technique Quantifications 

Mean difference − = −11.27 

Percentage of nonoverlapping data according 
to the proposal by Wolery, Gast, et al. (2010). 

85.71 % superior (i.e., lower value) to  

Nonovelap of all pairs − = 77.00% 

Tau-U: only the direction and amount of 
monotonic trend is represented here, not 
including overlap 

 monotonic trend =33.33% crease 
 monotonic trend =58.33% crease 
 

Piecewise regression, comparing at the last 
intervention measurement occasion 

−last point = −11.79 
 slope = −0.97 
 slope = −1.51 

Average difference between the values fitted 
via linear regression fitted lines 

− = −7.74 

Average difference between the values fitted 
via quadratic regression fitted lines 

−= −7.44 

Average difference between the values fitted 
via LOESS (fraction α = 0.60; straight lines 
fitted) 

− = −6.76 

ALIV: A comparison involving actual and 
linearly interpolated values 

− = −7.00 

ADISO: Weighted average difference between 
successive observations  
 
ADISO-O: percentage of ordinal superiority 

− =  −9.60 
 
 
 83.33% superior to  

 

 



4.6.1 Mean di�erence
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Mean lines per condition

Mean difference= 11.27



4.6.2 Percentage of nonoverlapping data: Wolery et al. version
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PND−W comparisons

Superiority 2 vs 3: 85.71 %



4.6.3 Nonoverlap of all pairs

## [1] "NAP = 0.77"
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NAP: example of pairwise comparisons
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NAP: example of pairwise comparisons



4.6.4 Monotonic trends estimated as in Tau-U

## [1] "Condition 2"

## [1] "Negative monotonic trend: 58.33 % decrease"

## [1] "Condition 3"

## [1] "Negative monotonic trend: 33.33 % decrease"
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Monotonic trend example: condition 2

 

 

 

 

 

 
 

 
 

 

 

 
  

  0
10

20
30

40

Sessions

%
 o

f i
nt

er
va

ls
 w

ith
 p

ro
bl

em
 b

eh
av

io
r

2 4 6 8 10 12 14 16

Monotonic trend exmple: condition 2



4.6.5 Piecewise regression, comparing at the last measurement occasion

## [1] "Comparison 3 vs. 2"

## Time Score condi_B condi_A Time2 condiA_T2 condiB_T2

## [1,] 1 26.7 0 1 -15 0 -15

## [2,] 2 33.1 0 1 -14 0 -14

## [3,] 3 16.6 1 0 -13 -13 0

## [4,] 4 26.9 1 0 -12 -12 0

## [5,] 5 20.1 0 1 -11 0 -11

## [6,] 6 13.2 0 1 -10 0 -10

## [7,] 7 16.7 1 0 -9 -9 0

## [8,] 8 3.1 1 0 -8 -8 0

## [9,] 9 6.6 0 1 -7 0 -7

## [10,] 10 0.0 1 0 -6 -6 0

## [11,] 11 36.4 0 1 -5 0 -5

## [12,] 12 13.1 1 0 -4 -4 0

## [13,] 13 9.8 1 0 -3 -3 0

## [14,] 14 9.8 0 1 -2 0 -2

## [15,] 15 0.0 1 0 -1 -1 0

## [16,] 16 0.0 1 0 0 0 0

## [1] " "
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Piecewise regression

## [1] "Condition 2 trend = -1.51"

## [1] "Condition 3 trend = -0.97"

## [1] "Last occasion difference 2-3 = -11.79"



4.6.6 Linear regression: mean di�erence between �tted values
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Linear regression

Mean difference = −7.74



4.6.7 Quadratic regression: mean di�erence between �tted values
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Quadratic regression

Mean difference = −7.44



4.6.8 Local regression (LOESS): mean di�erence between �tted values
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Fraction = 60%; Linear

Mean difference = −6.76



4.6.9 Actual and linearly interpolated values: ALIV
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ALIV

Mean difference = −7



4.6.10 Weighted average di�erence between successive observations: ADISO
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A set of comparisons for ADISO

## Comparison ADISO Superiority

## [1,] "2-3" "-9.6" "1 superior: 16.67 %. 2 superior: 83.33 %"
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